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Abstract. Many research articles used Machine Learning (ML) for early
detection of Alzheimer’s Disease (AD) especially based on Magnetic Res-
onance Imaging (MRI). Most ML algorithms depend on a large num-
ber of hyperparameters. Those hyperparameters have a strong influence
on the model performance and thus choosing good hyperparameters is
important in ML. In this article, Bayesian Optimization (BO) was used
to time-efficiently find good hyperparameters for Random Forest (RF)
and eXtreme Gradient Boosting (XGBoost) models, which are based on
four and seven hyperparameters and promise good classification results.
Those models are applied to distinguish if mild cognitive impaired (MCI)
subjects from the Alzheimer’s disease neuroimaging initiative (ADNI)
dataset will prospectively convert to AD. The results showed compa-
rable cross-validation (CV) classification accuracies for models trained
using BO and grid-search, whereas BO has been less time-consuming.
The initial combinations for BO were set using Latin Hypercube Design
(LHD) and via Random Initialization (RI). Furthermore, many models
trained using BO achieved better classification results for the indepen-
dent test dataset than the model based on the grid-search. The best
model achieved an accuracy of 73.43% for the independent test dataset.
This model was an XGBoost model trained with BO and RI.

Keywords: Bayesian optimization · Computer-aided diagnosis · Early
Alzheimer’s Disease diagnosis · eXtreme Gradient Boosting · Random
Forests

1 Introduction

Alzheimer’s Disease (AD) is a neurodegenerative disease [2] and the most fre-
quent cause of dementia. The early identification of subjects at risk to develop
AD is important to recruit and monitor subjects for therapy studies, as there cur-
rently is no causal therapy [2]. Subjects with Mild Cognitive Impairment (MCI)
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have a higher risk to develop AD [8] than cognitively normal (CN) controls.
Thus, the prediction of future conversion to AD is important for MCI subjects.
There have been many articles that used Machine Learning (ML) to improve the
identification of those subjects. Most of them use models with a large number
of hyperparameters.

Finding good hyperparameters is one of the key problems in ML. Hyperpa-
rameter tuning can improve model performance and prevent overfitting. For
real-world problems, like the prediction of AD, good hyperparameters often
depend on the data [34, p. 305]. Thus, parameter tuning is a complex and time-
consuming task. One possibility to find good hyperparameters are optimization
methods, which have the advantage to time-efficiently find robust parameters.

1.1 Prior Work

Many articles used ML models with a large number of hyperparameters to
predict different AD stages. Some approaches used the default hyperparame-
ters [4,20] to reduce the complexity of this problem. However, neither good
performance nor high generalizability can be guaranteed. Other articles used
grid-search [5,19,27], which is time-consuming for models with many hyperpa-
rameters. Some articles had no documentation about the hyperparameters at all.
Only a few approaches used methods for time-efficient and stable hyperparame-
ter optimization. In [18], Bayesian Optimization (BO) with Random Initializa-
tion (RI) was used to predict MCI conversion within three years. The hyper-
parameters of different ML models like Support Vector Machines (SVMs) [12]
and Random Forests (RFs) [6] were tuned for 353 subjects with stable MCI
(sMCI) and 193 with progressive MCI (pMCI) from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) [29] cohort. The feature set included sociode-
mographic and clinical characteristics, neuropsychological tests, and the baseline
(BL) MCI type. The final ensemble model achieved an Area Under the Receiver
Operating Characteristic (AUROC) of 0.88.

BO with RI has been also used in [28] to optimize the hyperparameters of a
Deep Neural Network (DNN). Two datasets, which are available online (https://
github.com/ChihyunPark/DNN for ADprediction. Last accessed 8 Aug 2020),
were used. The first one included large-scale gene expressions from 257 CN and
439 AD subjects and the second one contained Deoxyribonucleic Acid (DNA)
methylation data of 68 CN and 74 AD subjects. The final model achieved an
accuracy of 82.3% for the test dataset.

[32] used BO with RI to tune the parameters of a radial-basis SVM and
classifies 17 subjects with Subjective Cognitive Impairment (SCI) vs. 53 MCI
vs. 50 AD. The dataset was not publicly available. The feature set included
neuropsychological tests and the results of a reaction test. Accuracies of 80.6%
and 65.0% were reached for MCI vs. AD and SCI vs. MCI vs. AD classification.

This article aims to efficiently tune the parameters of RFs and eXtreme
Gradient Boosting (XGBoost) models for early AD diagnosis. In addition to the
previous articles, a Latin Hypercube Design (LHD) [25] was used to initialize
the BO. The results of this method were compared to a RI, a grid-search and

https://github.com/ChihyunPark/DNN_for_ADprediction
https://github.com/ChihyunPark/DNN_for_ADprediction


Using Bayesian Optimization to Effectively Tune Random Forest 287

Table 1. ADNI demographics at BL. p-values are calculated using Mann-Whitney-U-
test for continuous variables and χ2-test for frequency variables.

sMCI pMCI Σ p-value

n 401 319 720

Age in years (mean ± sd) 73.2 ± 7.5 74.0 ± 7.1 73.5 ± 7.3 0.1156

Gender (proportion of
males)

59.6% 59.9% 59.7% 1.000

MMSE (mean ± sd) 27.8 ± 1.8 27.0 ± 1.7 27.4 ± 1.8 <0.0001

CDR (mean ± sd) 0.5 ± 0.0 0.5 ± 0.0 0.5 ± 0.0 0.2634

ApoEε4 (count of ApoEε4
alleles): 0

56.9% 34.2% 46.8% <0.0001

ApoEε4: 1 33.9% 49.5% 40.8%

ApoEε4: 2 9.2% 16.3% 12.4%

Time to final diagnosis in
months (mean ± sd)

47.1 ± 32.4 30.6 ± 24.7 39.8 ± 30.4 <0.0001

the default parameters. Section 2 presents the dataset and methods. The ML
workflow is described in Sect. 3. The experimental results are demonstrated in
Section 4 and finally discussed in Sect. 5.

2 Materials and Methods

2.1 Dataset

Data used in the preparation of this article were obtained from the ADNI [29]
cohort. 720 subjects of the study phases ADNI-1 (354 subjects), ADNIGO
(92 subjects) and ADNI-2 (274 subjects) were selected. All subjects had a BL
diagnosis of MCI and were classified as sMCI if all subsequent diagnoses cor-
respond to MCI and as pMCI if they converted to AD at any visit and AD
was the diagnosis for all subsequent visits. Subjects who reverted to CN or
MCI were excluded from this study. The demographic data are summarized in
Table 1. The time between the BL and the final diagnosis ranged between 4.7
and 156.2 months.

For each subject, one fully preprocessed [21] BL 1.5 T or 3 T T1-weighted
Magnetization-Prepared Rapid Gradient-Echo (MP-RAGE) Magnetic Reso-
nance Imaging (MRI) scan was selected. FreeSurfer v6.0 [15] extracted volumes
of 34 cortical Regions of Interest (ROIs) per hemisphere, defined in Desikan-
Killiany atlas [13], 34 subcortical ROIs [16], and the estimated Total Intracranial
Volume (eTIV). The resulting 103 MRI features were normalized by eTIV [33].

Two different datasets were used for model training. Dataset 1 included 106
features - MRI-features, age, gender and count of Apolipoprotein E ε4 (ApoEε4)
alleles. Dataset 2 added Mini-Mental State Examination (MMSE), a logical long-
term (LDEL) and short-term memory test (LIMM) resulting in 109 features.
Clinical Dementia Rating (CDR) was excluded due to small variance.
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2.2 eXtreme Gradient Boosting

Boosting algorithms assume that the iterative combination of multiple weak clas-
sifiers leads to a strong classifier. Gradient boosting [17] meets this assumption
by training the first classifier to learn the independent variable and the subse-
quent classifiers to learn the gradients of the previous classifiers. The gradients
l(yi, ŷ

(t−1)
i ) are defined as the deviation between the additive classification ŷ

(t−1)
i

of the previous iteration (t− 1) and the correct classification yi of observation i.
The loss function L(t) at iteration t using n observations corresponds to Eq. 1.
Here, ft represents the weak classifier at iteration t and Ω(ft) is a regularization
term which controls the complexity of the classifier.

L(t) =
n∑

i=1

l
(
yi, ŷ

(t−1)
i + ft(xi)

)
+ Ω(ft) (1)

The additive combination of all weak classifiers fk determines the final classifi-
cation ŷi for observation i, as can be seen in Eq. 2.

ŷi =
K∑

k=1

fk(xi) (2)

eXtreme Gradient Boosting (XGBoost) [10] is an open-source software library
and an implementation of gradient boosting with a high focus on scalability, par-
allelization and distributed execution. XGBoost with Classification and regres-
sion trees (CARTs) [7] as weak classifier depends on seven hyperparameters,
summarized in Table 2. nrounds (n) determines the number of iterations in the
training process. The learning rate eta (η) controls the influence of each weak
classifier on the final model and thus prevents overfitting. The hyperparameter
gamma (γ) determines the minimum loss reduction required to specialize leaf
nodes. High values lead to preserving models. max depth (dmax) specifies the
maximum depth of a tree. Deep models are more complex and prone to over-
fitting. The parameter min child weights (wmin) sets the minimum number of
weighted observations in a child node. High values for min child weights achieve
more conservative models. subsample (s) sets the ratio of training instances
randomly selected in each iteration. Small values prevent overfitting. colsam-
ple bytree (c) is the ratio of randomly subsampled features in each iteration.
Small values lead to robust models, but values near zero lead to poor results.

2.3 Random Forest

Random Forests (RFs) [6] are based on multiple CARTs and the majority voting
is used to robustly predict an unknown observation. Table 3 summarizes the
hyperparameters for the RF. ntree sets the number of trees in the RF. Training
only a few trees often leads to less accurate results. For each tree, a bootstrap
sample [14] of the dataset is generated and for each split, a subset of mtry (mtry)
features are randomly chosen to train the models. The higher mtry, the higher
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Table 2. XGBoost parameters and intervals. The grid is a grid-search of length five.

Name Minimum Maximum Grid

nrounds (n) 1 500 {1.00, 125.00, 250.00, 375.00, 500.00}
eta (η) 0 1 {0.00, 0.25, 0.50, 0.75, 1.00}
gamma (γ) 0 20 {0.00, 5.00, 10.00, 15.00, 20.00}
max depth (dmax) 1 20 {1.00, 5.00, 10.00, 15.00, 20.00}
min child weights (wmin) 1 30 {1.00, 8.25, 15.50, 22.75, 30.00}
subsample (s) 0 1 {0.00, 0.25, 0.50, 0.75, 1.00}
colsample bytree (c) 0 1 {0.00, 0.25, 0.50, 0.75, 1.00}

Table 3. RF parameters and intervals. The grid refers to a grid-search of length five.

Name Minimum Maximum Grid

mtry (for dataset 1 ) (mtry) 2 109 {2, 28, 55, 82, 109}
mtry (for dataset 2 ) (mtry) 2 112 {2, 29, 57, 84, 112}
ntree (ntree) 250 1250 {250, 500, 750, 1000, 1250}
nodesize (smin) 1 20 {1, 5, 10, 15, 20}
maxnodes (ndmax) 50 100 {50, 62, 75, 87, 100}

is the risk of overfitting. nodesize (smin) sets the minimum size of terminal
nodes for each tree. The smaller nodesize, the less robust the trained models are.
Hyperparameter maxnodes (ndmax) specifies the maximum number of terminal
nodes for each tree. Trees with many terminal nodes tend to overfit the dataset.

2.4 Latin Hypercube Design

Latin hypercube design (LHD) [25] is a method to generate a nearly random
sample based on a multi-dimensional distribution. The objective is to select p
samples from a q-dimensional space. To generate an LHD each dimension is
split into p equidistant intervals. One value is randomly selected per interval,
resulting in p parameters for each dimension. The parameters of the individual
dimensions are randomly merged to p samples with q dimensions. LHD ensures
complete coverage of the range for each variable.

2.5 Bayesian Optimization

Bayesian Optimization (BO) [26] is a global optimization method for black-box
functions. In this research, hyperparameter tuning has been considered as the
optimization of a black-box function. The model performance was maximized
dependently on the hyperparameters. First, a set of initial parameter combina-
tions were arranged. In this article, LHD and RI were used for this purpose. The
models were evaluated for each combination to estimate their performance. A
Gaussian Process (GP) was fitted to model the relationship between parame-
ter combinations and model performances. This GP was optimized to find the
next promising parameter combination. The optimization considered exploration



290 L. Bloch and C. M. Friedrich

and exploitation using an acquisition function, which depends on the expected
model performance μ̂Θ and the covariance Σ̂Θ at parameter combination Θ. The
covariance Σ̂Θ was smaller the closer previously examined parameter combina-
tions were. In this work, the upper confidence bounds (UCB) [1,22], given in
Eq. 3, was used as the acquisition function. The parameter κ determines, the
proportion between exploitation and exploration. For higher values of κ, explo-
ration is preferred, whereas lower values favour exploitation.

UCB(Θ) = μ̂Θ + κ · Σ̂Θ (3)

The performance of the ML model was evaluated using the new parame-
ter combination and added to the GP model. This process was repeated until
previously determined criteria, e.g. a maximum number of iterations, were met.

3 Machine Learning Workflow

In this article, an ML workflow was implemented, using the programming lan-
guage R v3.5.3 [30], to distinguish sMCI and pMCI subjects. Figure 1 gives an
overview of the workflow. Subject selection and image processing are described
in Sect. 2.1. The subjects of each diagnosis group were randomly split into a
training and an independent test dataset. The test dataset contained 20% of the
original dataset and the remaining 80% were used to train the model and tune
the hyperparameters. LHD, implemented using the R package SPOT v2.0.3 [3],
and RI were used to generate ten initial parameter combinations for the BO.
After training the initial BO model, promising parameter combinations were
successively determined and evaluated. 25 parameter combinations were gen-
erated by BO to tune the hyperparameters of RF and XGBoost models. BO,
XGBoost and RF were implemented using the R packages rBayesianOptimiza-
tion v1.1.0 [35], xgboost v0.82.1 [11] and randomForest v4.6-14 [24]. 10 × 10-
fold Cross-Validation (CV) [31] was used as a resampling strategy and was
implemented using the R package caret v6.0-82 [23], by splitting the training
dataset into ten distinct folds. Ten iterations were performed with a different
fold used as validation dataset in each iteration and the remaining nine folds
were used to train the model. This procedure was repeated ten times, whereas
the data was shuffled and stratified in each repetition. CV-accuracy was used as
the metric for BO. The best parameters were selected to train the final model.
The preprocessing, nested in the tuning workflow, included centering, scaling and
median imputation. Synthetic Minority Over-sampling Technique (SMOTE) [9]
compensated class imbalances during the parameter tuning. The final model was
evaluated for the independent test dataset.

As a comparison, a grid-search was implemented using the R package caret
v6.0-82 [23]. The grid contained the cartesian product with five values per param-
eter, which results in 57 = 78125 XGBoost and 54 = 525 RF combinations.
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Fig. 1. Machine learning workflow.

4 Results

In the experiments, BO has been applied to optimize four hyperparameters of
an RF classifier (Sect. 4.1) and seven hyperparameters of an XGBoost model
(Sect. 4.2). This optimization has been demonstrated on two previously described
AD datasets. Dataset 1 included volumetric MRI features, demographics, and
ApoEε4, and dataset 2 added cognitive test results to dataset 1.

The experiments, that used BO, included ten initial parameter combinations
and 25 combinations during optimization, resulting in 35 evaluations. The grid-
search models used five values per hyperparameter m, resulting in 5m and thus
54 = 625 RF and 57 = 78125 XGBoost grid combinations. Thus, the number
of grid-search evaluations increased exponentially with the number of hyperpa-
rameters, while the number of evaluations was constant for BO. BO was applied
using five different values for the parameter κ (κ ∈ {0.5, 1.0, 2.0, 5.0, 10.0}).

4.1 Bayesian Optimization for Random Forest Classifiers

Dataset 1. Table 4 summarizes the RF results for the different hyperparameter
tuning methods on dataset 1. The best CV-results were 69.76% and achieved
using BO with RI and κ = 2.0. The grid-search model performed 0.30% worse
than the best model. The default parameter model reached the worst accuracy of
68.20%. The LHD BO models obtained CV-accuracies between those values. BO
with RI outperformed the LHD initialization for this dataset and CV-results.

The best accuracy for the independent test dataset was 67.83%, achieved by
the grid-search and the BO model with LHD initialization and κ = 2.0. All LHD
BO models except the model with κ = 2.0 selected the same hyperparameters
and thus obtained equal results. The worst accuracy for the independent test set
was 62.94%, reached by the BO model with RI and κ = 5.0. The performances
for the independent test dataset differed by 4.89% between the tuning methods.

The boxplots in Fig. 2 show the relations between grid-search parameters and
the mean CV-accuracies. The best performances for the hyperparameter mtry
were obtained for a value of 28. Consistently, all BO models selected mtry values
between 25 and 35. Increasing values of ntree led to better model performances.
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Table 4. Classification results and RF hyperparameters achieved for dataset 1. Com-
parison of default parameters, grid-search and BO with RI and LHD initialization for
parameter tuning. The best results are highlighted in bold.

Hyperparameter
optimization

mtry ntree smin ndmax CV-accuracy
(mean ± sd)
in %

Test
accuracy
in %

Default parameters 10 500 1 max 68.20 ± 6.47 65.73

Grid-search 28 1000 15 50 69.46 ± 6.53 67.83

BO RI κ = 0.5 25 1107 8 50 69.26 ± 6.30 66.43

BO RI κ = 1.0 30 615 8 50 69.28 ± 6.34 67.13

BO RI κ = 2.0 35 464 1 56 69.76 ± 6.35 65.73

BO RI κ = 5.0 30 1216 1 50 69.28 ± 6.54 62.94

BO RI κ = 10.0 33 647 3 81 69.10 ± 6.48 67.13

BO LHD κ ∈
{0.5, 1.0, 5.0, 10.0}

27 808 16 96 68.79 ± 5.99 65.73

BO LHD κ = 2.0 29 1250 3 68 68.96 ± 6.16 67.83

Fig. 2. Boxplots summarizing the mean CV-accuracies for RF grid-search hyperpa-
rameters and dataset 1.

A slight decrease was detected on the mean CV-accuracy for increasing values
of nodesize. The hyperparameter maxnodes obtained better results for a value
of 50 and the performance decreased for higher values. The observations were
mainly reflected in the BO model with LHD initialization and κ = 2.0 and all
RI models except for κ = 10.0. The other models selected deviating parameters.

Dataset 2. Dataset 2 supplemented cognitive test results to dataset 1. How-
ever, the experiments executed on the datasets do not differ and the results are
summarized in Table 5. CV-results of the RF models trained on dataset 2 were
between 70.01%, achieved by the default parameter model and 70.68% and thus
differ by 0.67%. The BO model with LHD initialization and κ = 2.0 obtained the
best results. The CV-results on dataset 2 outperformed the results for dataset 1.
The grid-search model reached a CV-accuracy of 70.61%.

The results for the independent test dataset were similar to the CV-results.
The worst result of 67.13% for the independent test dataset was achieved for
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Table 5. Classification results and RF hyperparameters achieved for dataset 2. Com-
parison of default parameters, grid-search and BO with RI and LHD initialization for
parameter tuning. The best results are highlighted in bold.

Hyperparameter
optimization

mtry ntree smin ndmax CV-accuracy
(mean ± sd)
in %

Test accuracy
in %

Default parameters 10 500 1 max 70.01 ± 6.41 69.23

Grid-search 29 1000 10 100 70.61 ± 6.53 69.93

BO RI κ = 0.5 11 959 9 60 70.52 ± 5.93 69.23

BO RI κ = 1.0 21 1250 16 72 70.61 ± 5.78 70.63

BO RI κ = 2.0 13 756 5 74 70.42 ± 6.10 69.23

BO RI κ = 5.0 18 1250 1 95 70.42 ± 5.91 69.23

BO RI κ = 10.0 39 1250 1 100 70.19 ± 6.13 71.33

BO LHD κ = 0.5 13 1250 16 92 70.48 ± 5.92 69.23

BO LHD κ = 1.0 16 757 20 62 70.23 ± 5.80 68.53

BO LHD κ = 2.0 20 1250 11 85 70.68 ± 6.01 67.13

BO LHD κ = 5.0 16 808 16 96 70.21 ± 6.32 67.83

BO LHD κ = 10.0 23 1250 1 82 70.49 ± 6.02 71.33

Fig. 3. Boxplots summarizing the mean CV-accuracies for RF grid-search hyperpa-
rameters and dataset 2.

the BO model with LHD initialization and κ = 2.0. This model achieved the
best CV-results. The best accuracy for the independent test dataset of 71.33%
has been reached for the BO models with κ = 10.0 and both LHD and RI. The
grid-search model reached an accuracy of 69.93%.

The boxplots in Fig. 3 illustrate the mean CV-accuracies depending on the
grid-search hyperparameters. The hyperparameters mtry and ntree showed sim-
ilar relations as those observed for dataset 1. All BOs, except the model with RI
and κ = 10.0, selected values between 11 and 23 for the mtry parameter. BO
preferred high values for ntree. nodesize showed slightly worse results for a value
of 20 in the boxplots, however, BO with LHD initialization and κ = 1.0 selected
this value. maxnodes showed slightly increasing results for higher values. All BO
models selected values higher than 62.
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Table 6. Classification results and XGBoost hyperparameters for dataset 1. Using
default parameters, grid-search and BO with RI and LHD initialization for parameter
tuning. CV-accuracies are given as mean ± sd. The best results are highlighted in bold.

Hyperparameter

optimization

n dmax η γ c wmin s CV-accuracy

in %

Test

accuracy in

%

Default parameters 100 6 0.300 0.000 1.000 1.000 1.000 65.29 ± 6.81 68.53

Grid-search 250 20 0.250 10.000 0.750 1.000 1.000 66.64 ± 6.46 60.84

BO RI κ = 0.5 490 7 0.020 10.263 0.190 2.580 0.924 66.26 ± 5.56 64.34

BO RI κ = 1.0 484 16 0.186 7.477 0.071 2.847 0.363 64.55 ± 5.67 62.24

BO RI κ = 2.0 483 14 0.095 19.642 0.283 17.813 0.200 66.44 ± 5.68 65.03

BO RI κ = 5.0 110 20 0.163 1.526 0.525 1.000 0.612 66.09 ± 5.69 71.33

BO RI κ = 10.0 500 20 0.200 0.000 0.439 1.000 0.935 65.57 ± 5.60 73.43

BO LHD κ = 0.5 149 6 0.010 11.364 0.781 8.062 0.817 66.59 ± 5.24 60.84

BO LHD κ = 1.0 452 2 0.085 20.000 1.000 1.000 1.000 66.75 ± 4.97 63.64

BO LHD κ = 2.0 426 1 0.120 0.371 0.349 17.080 0.746 65.14 ± 5.80 67.83

BO LHD κ = 5.0 50 1 0.171 20.000 0.994 19.490 0.654 66.54 ± 5.05 60.14

BO LHD κ = 10.0 193 1 0.045 0.000 1.000 29.822 1.000 66.66 ± 5.38 64.34

4.2 Bayesian Optimization for XGBoost Classifiers

Dataset 1. Table 6 summarizes the XGBoost results for dataset 1. Seven hyper-
parameters were tuned in these experiments. All models achieved similar CV-
accuracies. The best CV-accuracy was 66.75% for the BO with LHD initialization
and κ = 1.0. The worst CV-accuracy of 64.55% was reached by the same model
but RI. The grid-search CV-accuracy was 66.64%.

The best result of 73.43% for the independent test dataset was achieved using
BO with RI and κ = 10.0. The accuracy for the independent test set exceeds the
mean CV-accuracy of this model which was 65.57%. The XGBoost results for
the independent test dataset differed more than the RF results. The grid-search
model achieved a worse performance of 60.84% for the independent test dataset.
The BO model with κ = 5.0 reached the worst accuracy of 60.14%.

The boxplots in Fig. 4 summarize the relations between the grid-search hyper-
parameters and the mean CV-accuracies. All 28125 observations with a value of
0.00 for eta or subsample were excluded because a learning rate of 0.00 means
that there is no learning effect and a subsampling of 0.00% led to a model train-
ing without any subjects. All excluded results achieved mean CV-accuracies less
than 45.00%, which would distort the interpretability of the figure. All boxplots
had a large number of outliers below the box. Small values for eta were associated
with better results. Consistently, all BO models selected values between 0.010
and 0.200. The minimum value of 0.000 for hyperparameters gamma and col-
sample bytree and 1 for nrounds, showed stronger variations in the results than
the remaining values. Using only one boosting iteration led to worse results.
Small differences were detected between using 125 and 500 boosting iterations.
The BO selected values between 50 and 500 for this parameter.
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Fig. 4. Boxplots summarizing the mean CV-accuracies for XGBoost grid-search hyper-
parameters and dataset 1. All combinations with eta or subsample = 0.00 were
excluded.

Fig. 5. Boxplots summarizing the mean CV-accuracies for XGBoost grid-search hyper-
parameters and dataset 2. All combinations with eta or subsample=0.00 were excluded.

Dataset 2. Table 7 shows the results achieved by training an XGBoost model
with dataset 2. The achieved CV-accuracies exceed the results of dataset 1. The
best CV-accuracy was 69.14% ± 5.48%, reached by the BO model with RI and
κ = 1.0. The grid-search model achieved a CV-accuracy of 68.95% ± 6.25% and
the default parameter model a CV-accuracy of 68.08% ± 6.61%.

The results for the independent test dataset were between 65.03%, for the
BO with RI and κ = 2.0 and 71.33%, for the default parameter model and the
BO model with LHD initialiation and κ = 5.0. The grid-search model achieved
an accuracy of 69.93% for the independent test dataset.

The boxplots in Fig. 5 show the effects of the grid-search hyperparameters on
the mean CV-results. Consistently with Fig. 4, all examinations with an eta or
subsample value of 0.00 were excluded, as they represent random models. For the
parameter eta, small values performed better than large ones. This observation
is consistent with the BO parameter selection. The hyperparameters gamma,
colsample bytree and min child weight showed slightly better results the higher
the parameter values. BO showed no clear focus for these parameters. However,
all BO models with RI, except the model with κ = 5.0 selected values higher
than 0.929 for colsample bytree. The BO and the boxplots show, that using only
one boosting iteration has a negative effect on the mean CV-accuracy.
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Table 7. Classification results and XGBoost hyperparameters for dataset 2. Using
default parameters, grid-search and BO with RI and LHD initialization for parameter
tuning. CV-accuracies are given as mean ± sd. The best results are highlighted in bold.

Hyperparameter

optimization

n dmax η γ c wmin s CV-accuracy

in %

Test accuracy

in %

Default parameters 100 6 0.300 0.000 1.000 1.000 1.000 68.08 ± 6.61 71.33

Grid-search 250 20 0.250 20.000 0.250 30.000 0.250 68.95 ± 6.25 69.93

BO RI κ = 0.5 127 8 0.143 20.000 1.000 20.442 0.326 68.30 ± 5.42 67.83

BO RI κ = 1.0 359 14 0.146 3.037 1.000 30.000 0.174 69.14 ± 5.48 69.93

BO RI κ = 2.0 481 10 0.102 14.519 0.961 13.497 0.321 68.68 ± 5.53 65.03

BO RI κ = 5.0 418 3 0.134 14.849 0.280 23.008 0.316 68.20 ± 5.12 69.23

BO RI κ = 10.0 452 20 0.138 19.556 0.929 25.000 0.834 67.63 ± 5.55 65.73

BO LHD κ = 0.5 357 11 0.077 12.699 0.298 28.618 0.480 68.14 ± 5.32 70.63

BO LHD κ = 1.0 323 4 0.026 0.000 0.372 8.693 0.847 68.08 ± 6.04 69.23

BO LHD κ = 2.0 259 19 0.088 9.922 0.696 19.255 0.595 68.21 ± 5.92 67.83

BO LHD κ = 5.0 447 5 0.104 6.379 0.718 1.938 0.441 67.56 ± 5.95 71.33

BO LHD κ = 10.0 300 14 0.002 7.291 0.475 10.290 0.683 68.18 ± 6.03 66.43

5 Conclusions

In this article, BO has been used to time-efficiently find hyperparameters for
MCI-conversion prediction based on MRI volumetrics, demographics, ApoEε4
features and cognitive test results. As a comparison, a time-consuming grid-
search has been implemented. The XGBoost and RF models were evaluated using
10 × 10-fold-CV, a robust resampling method, and an additional evaluation for
an independent test dataset. The outcomes showed that BO was able to find
parameters which can keep up with the time-efficient grid-search and is thus
most interesting for models with many hyperparameters. Some tendencies for
good hyperparameter choices which were detected considering the grid-search
models can be also recognized for the BO parameter selection. Thus, BO offered
a trade-off between the time-efficiency and robust, reproducible models.

The approach was applied for two different AD datasets of the ADNI cohort.
Dataset 1 included MRI volumetric, demographic and ApoEε4 features and
dataset 2 additionally included BL cognitive test results. The results of the RF
models showed better accuracies for models trained on dataset 2. The best result
for the independent test dataset was achieved for dataset 1 and an XGBoost
model. The outcomes showed promising results for the models trained using BO
for hyperparameter optimization. For both datasets and both ML techniques,
the best CV-accuracies were achieved using BO. This observation could also be
confirmed for the independent test dataset except for the RF models trained on
dataset 1. In this case, BO and grid-search achieved the same accuracy. Compar-
ing CV-accuracies of the XGBoost and RF models, better results were achieved
by the RF models. The results for the independent test dataset showed a differ-
ent observation because two XGBoost models achieved outstanding results. No
major differences were detected between randomly initialized BO and BO with
LHD initialization. Some of the model errors for pMCI subjects can be traced
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back to a large distance in time between BL diagnosis and conversion diagno-
sis. For these subjects, a classifier depending on longitudinal input data might
be more expedient. Future studies should validate the results for different AD
cohorts. Both classifiers in this article were tree-based models. Thus, it should be
investigated in future research, how BO and LHD initialization works for differ-
ent ML models. The use of alternative optimization methods such as Sequential
Parameter Optimization (SPO) [3] might be another promising research app-
roach.
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Encyclopedia of Database Systems, pp. 532–538, Springer, US, Boston, MA (2009).
https://doi.org/10.1007/978-0-387-39940-9 565

32. Wallert, J., Westman, E., Ulinder, J., Annerstedt, M., Terzis, B., Ekman, U.: Dif-
ferentiating patients at the memory clinic with simple reaction time variables: a
predictive modeling approach using support vector machines and Bayesian opti-
mization. Front. Aging Neurosci. 10, 144 (2018). https://doi.org/10.3389/fnagi.
2018.00144

33. Westman, E., Aguilar, C., Muehlboeck, J.S., Simmons, A.: Regional magnetic res-
onance imaging measures for multivariate analysis in alzheimer’s disease and mild
cognitive impairment. Brain Topogr. 26(1), 9–23 (2012). https://doi.org/10.1007/
s10548-012-0246-x

34. Witten, I.H., Frank, E., Hall, M.A. (eds.): Data mining: practical machine learning
tools and techniques. In: The Morgan Kaufmann Series in Data Management Sys-
tems, Morgan Kaufmann, Boston, 3rd edn. (2011). https://doi.org/10.1016/B978-
0-12-374856-0.00023-7

35. Yan, Y.: rBayesianOptimization: Bayesian Optimization of Hyperparameters.
R package v1.1.0 (2016). https://CRAN.R-project.org/package=rBayesianOpti-
mization. Accessed 5 Aug 2020

https://doi.org/10.1016/j.eswa.2019.112873
https://doi.org/10.1212/WNL.0b013e3181cb3e25
https://www.R-project.org/
https://www.R-project.org/
https://doi.org/10.1007/978-0-387-39940-9_565
https://doi.org/10.3389/fnagi.2018.00144
https://doi.org/10.3389/fnagi.2018.00144
https://doi.org/10.1007/s10548-012-0246-x
https://doi.org/10.1007/s10548-012-0246-x
https://doi.org/10.1016/B978-0-12-374856-0.00023-7
https://doi.org/10.1016/B978-0-12-374856-0.00023-7
https://CRAN.R-project.org/package=rBayesianOpti-mization
https://CRAN.R-project.org/package=rBayesianOpti-mization

	Using Bayesian Optimization to Effectively Tune Random Forest and XGBoost Hyperparameters for Early Alzheimer's Disease Diagnosis
	1 Introduction
	1.1 Prior Work

	2 Materials and Methods
	2.1 Dataset
	2.2 eXtreme Gradient Boosting
	2.3 Random Forest
	2.4 Latin Hypercube Design
	2.5 Bayesian Optimization

	3 Machine Learning Workflow
	4 Results
	4.1 Bayesian Optimization for Random Forest Classifiers
	4.2 Bayesian Optimization for XGBoost Classifiers

	5 Conclusions
	References




