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Abstract. The automated in vitro segmentation of axonal phase-
contrast images to allow axonal tracing over time is highly desirable
to understand axonal biology in the context of health and disease. While
deep learning has become a powerful tool in biomedical image analysis
for semantic segmentation tasks, segmentation performance has been
limited so far since axons are long and thin objects that are sensi-
tive to under- and/or over-segmentation. We here propose the use of
an ensemble-based convolutional neural network (CNN) framework for
the segmentation of axons on phase-contrast microscopic images. The
mean ResNet-50 ensemble performed better than the max u-net ensem-
ble on the axon segmentation task. We estimated an upper limit for
the expected improvement using an oracle-machine. Additionally, we
introduced a soft version of the Dice coefficient that describes the visu-
ally perceived quality of axon segmentation better than the standard
Dice. Importantly, the mean ResNet-50 ensemble reached the perfor-
mance level of human experts. Taken together, we developed a CNN
to robustly segment axons in phase-contrast microscopy that will foster
further investigations of axonal biology in health and disease.
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1 Introduction

Axons are wire-like extensions from neuronal cell bodies that ensure the commu-
nication to neighboring neurons by building connections among them. Axonal
morphology is highly complex, with varying lengths, diameters, and degrees of
arborization [3] and studying the role of axons in health and disease is a major
emphasis of current research [10].
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In cell culture, individual axonal structures can be followed over longer peri-
ods of time by time-lapse microscopy. The respective data analysis, however,
requires dedicated software tools that allow for the precise identification of axonal
structures. At the same time, these software tools need to cope with the large
amount of data available from imaging where manual inspection is time consum-
ing, prone to error, and impractical [1,12].

Over the past two decades, many software packages such as NeuronMetrics,
NeuriteIQ, NeuriteTracer, and NeurphologyJ have been developed to trace
axons [7,12]. All of these tools are able to trace axonal structures only semi-
automatically and require high-contrast images that are only available in fluo-
rescence and not in phase-contrast microscopy. Apart from bleaching issues, fluo-
rescence imaging requires either fixation of the cells, which limits the observation
to a single time point, or genetic modulation, which is less efficient in primary
cells and may alter the behavior of the cells. Another tool, NeuronGrowth, is
able to analyze live-cell imaging recordings, but also needs user intervention to
select the starting point of the axonal structures to be traced [5]. Thus, auto-
mated software that allows for axonal tracing over time, based on phase-contrast
images – as it is well-established for in vitro cell tracking [16] – is highly desirable
and will greatly enhance our understanding of axonal function and morphology
in health and disease.

Many approaches to automatically segment axons are based on traditional
image processing algorithms, including global thresholding, Laplacian or Gaus-
sian filters, and morphological operations [13]. These approaches come with a
number of drawbacks: i) They are static and do not react robustly to changes in
data collection or the hardware used, ii) most of these procedures are adapted to
a particular application scenario and it is unlikely that they generalize well across
a wide range of experimental setups and questions, and iii) they are therefore
semi-autonomous, i.e., user interaction is required before the data can be col-
lected and automatically evaluated. As axons display morphological variability,
the complete segmentation of such an object is a highly demanding task.

In recent years, deep learning has expanded horizons in the field of
image processing, ranging from image classification [8] to more intricate tasks
such as detection or semantic segmentation with fully convolutional networks
(FCNs) [11]. Especially in biomedical image analysis, a very common FCN archi-
tecture for segmentation tasks is the u-net [17]. In many cases, the segmentation
performance of a network can be further increased using transfer learning [9],
i.e., employing deeper architectures such as ResNets [6] that were previously
trained on a demanding dataset, e.g., Imagenet [4].

There are few studies that have applied CNNs on axon segmentation in
2D [14,15,18] and 3D [20]. However, to our knowledge, there are no works on
2D phase-contrast microscopy images that enable the automated segmentation
of axonal morphology over time.

In this work, we used CNNs to robustly and reliably segment axons on mark-
erfree phase-contrast microscopic images in an automated manner. We employed
an ensemble approach to improve the quality of the output and estimated an
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upper limit for the expected improvement using an oracle-machine. We intro-
duced a soft version of the Dice coefficient that describes the visually perceived
quality of axon segmentation better than the standard Dice. Finally, we demon-
strate that our best model already reaches the performance level of human
experts.

2 Data and Methods

Data. We used microfluidic devices to separate neuronal cell bodies from their
axons [2]. We isolated murine primary cortical neurons from embryonic day
14.5 from Crl:CD1 (ICR) Swiss outbred mice (Charles River) as previously
described [21] (under the prospective contingent animal license number 2017-
07-06 Zille approved by the Schleswig-Holstein Ministry for Energy Transition,
Agriculture, Environment, Nature and Digitalization). We seeded the cells to one
compartment of the device, which extended their axons through the microgrooves
to the other compartment due to the volume difference of the two compartments.
We captured grayscale images of the axonal compartment using an Olympus IX2
inverted microscope from which 42 images were manually labeled using GIMP
v.2.10.14 (GNU Image Manipulation Program, RRID:SCR 003182). Each image
had a size of 1200 × 1000 pixels on average. Figure 1 shows an example of the
data.

Fig. 1. Original image and binary label image: The left picture shows a pre-processed
section of the original data, i.e., microscopic images of axons. The corresponding (man-
ually drawn) binary mask can be seen on the right image, which denotes all pixels that
are part of an axon in the left image.

Network Training and Ensembles. We compared two architectures: a stan-
dard u-net [17] and a u-net with a ResNet-50 encoder [6]. For each architecture,
we trained 8 networks on 10 splits. For each split, we separated the dataset into
31 training images and tested on 11 images. Both architectures were trained for
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90 epochs with stochastic gradient descent, a momentum of 0.9 and a learning
rate of 0.1. Every 30 epochs, we decreased the learning rate by a factor of 10.
We used a batch size of 4. For data augmentation, images were cropped ran-
domly with an input size of 512 × 512 pixels. Different input sizes did not alter
the performance and the size of 512 pixels exceeds the receptive field of both
networks.

By training 8 networks per split, we generated 8 output maps for each test
image. We compared the pixel-wise mean with the pixel-wise maximum and the
best single model of each split (mean-ensemble, max-ensemble, best model).

Oracle Machine. To investigate the impact of different ensemble strategies, we
used an oracle-machine. The max-ensemble achieved a much better recall than
the mean-ensemble (0.900 versus 0.799 for ResNet-50). Therefore, we defined a
max-mean-oracle for the two critical cases when both, max- and mean-ensemble
disagreed in their decision: If the max-ensemble recognized an axon but the
mean-ensemble did not (false negatives for the mean-ensemble) and - vice versa
- if the max-ensemble was wrong (false positives for the mean-ensemble). As
the oracle-machine can perfectly distinguish both cases, we used this oracle to
estimate an upper limit on how good the performance would be when combining
the information from both ensemble strategies.

ε-Dice Score. We based our evaluation on the standard Dice score. But even if
the prediction-label pairs looked reasonable on visual inspection, the Dice score
can be low. To test whether areas were just missed or simply not detected at all,
we used a soft version of the Dice score, called ε-Dice: If a ground truth pixel
was within the proximity of a false positive prediction (i.e., in a neighborhood
of ε pixels), we defined this false positive as an over-segmented true positive.
Thus, axon predictions that were slightly thicker than the ground truth mask
were not counted as errors. False negatives were defined as under-segmented true
positives, if there was another true positive in the given neighborhood.

Note that the ε-Dice requires explicit knowledge of the ground truth and
thus did not improve the accuracy of the segmentation in any way. Rather, we
used this measure to estimate how much of the error occurred in the imme-
diate vicinity of the axons or whether there were completely undetected axon
segments.

Comparison to Human Performance. To further test our assumption that
a perfect Dice score is almost impossible to accomplish on this dataset, we com-
pared it to the human performance level on this task using 7 images labeled by
three experts, which we compared to each other and to our best model.

3 Results

The Mean ResNet-50 Ensemble Outperformed the U-Net Ensemble
and All Single Networks. To identify the best performing CNN, we compared
the mean- and max-ensembles as well as the best single models of each split for
both u-net and ResNet-50 (see Table 1). We observed that the ResNet-50 was
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superior to the u-net with the mean ResNet-50 giving the best results (Dice =
0.827). To estimate the influence of the pixels for which max- and mean-ensemble
would vote differently, we defined an oracle-ensemble, which would always make
the right decision in these cases. The oracle improved the Dice score for both
u-net and ResNet-50 by about 20 %.

Table 1. Dice score for 10 train and test splits with the u-net and ResNet-50. bestmodel
was the best of the 8 single networks. max always used the highest output from the
ensemble. mean was rated based on the average ensemble rating. With different ratings
of max and mean, oracle always made the correct decision. The results are shown for
u-net and ResNet-50 using normal Dice score (ε = 0) and a soft Dice (ε = 1).

Method u-net ResNet-50 (ε = 0) ResNet-50 (ε = 1)

mean std mean std mean std

bestmodel 0.757 0.042 0.815 0.023 0.939 0.018

max 0.784 0.034 0.805 0.029 0.927 0.028

mean 0.754 0.046 0.827 0.021 0.942 0.016

oracle 0.852 0.028 0.887 0.014 0.965 0.011

Segmentation Errors Occurred on the Object Border. Comparing
the original mask (ground truth) and the resulting masks from the different
approaches, the potential errors occurred at the edges of the object. Upon closer
examination, we revealed that the critical pixels were located more or less ran-
domly at the object edges (Fig. 2) and it was hardly ever the case that a whole
section of an axon was not segmented (Fig. 3). We did not find any further
scheme that was able to distinguish over- or under-segmentation here.

The ε-Dice Described Best the Visually Perceived Quality of Axon
Segmentation. To test whether the observed segmentation error can be
attributed to cumulative individual errors, we used the ε-Dice score that also
includes the surrounding pixels in the evaluation. We observed that the ε-Dice
exceeded 90% for all examined approaches, with the ResNet-50 mean-ensemble
achieving the best result with 94% (Table 1). Also noteworthy is the reduc-
tion in the distance between our ensemble approach and the oracle to only 2%,
indicating that many of the critical pixels were located close to uncritical axon
structures.

The Recall-Precision Trade-Off Can Be Altered by Linear Classifica-
tion. We observed that the max-ensemble achieved a better recall than the mean-
ensemble (0.900 vs. 0.799). Therefore, we investigated if combining the max-
recall with the mean resulted in a better segmentation. When both approaches
made the same decision, the performance did not improve. However, two cases are
critical (Fig. 4): If the max-ensemble recognized an axon but the mean-ensemble
did not (mean false negatives, case a) and - vice versa - if the max-ensemble is
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Fig. 2. Comparison of the mean- and max-ensemble and the oracle (best viewed in
color). Black pixels show true positives correctly segmented by all approaches. Green
and red pixels show false positives and false negatives of all approaches, respectively.
The critical pixels that can further improve the result are shown in blue. Here, the
max-ensemble yielded a true positive prediction, while the mean-ensemble predicted a
false negative. However, the output of the max-ensemble increased the number of false
positives (pink pixels). (Color figure online)

wrong (max false positives, case b). The distribution for case a) indicated that
for many pixels, the max score was close to 1.0, the mean score was close to
0.5 but did not exceed it. In case b), however, the mean score was rather small
(< 0.2) and the max-score was only slightly above 0.5.

Thus, we defined a 2-dimensional linear classifier that re-determined the out-
put of the ensemble for those relevant pixels (Fig. 4). We evaluated the results
for three linear classifiers, where each separating line was orthogonal to the man-
ually determined line spanned between p0 = (0.05, 0.5)T and p1 = (0.5, 1.0)T .
The three classifiers had the same normal vector n = (p1 − p0)/‖p1 − p0‖2,
but differed in their bias value b ∈ {0.3, 0.5, 0.7}. Note that b can be seen as
the percentage of the distance between p0 and p1. The decision is reached as
follows:

f(x) =

{
1 if (x − p0)(n) ≥ b

0 else
. (1)

The first two approaches achieved a better recall than the mean-ensemble, but
since the precision decreased similarly, the overall Dice-score did not change
(Fig. 5). The third approach was almost identical to the mean-ensemble, and
again, the quality of the segmentation did not improve.
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Fig. 3. Ground truth and error images of the different approaches and metrics: In
all images except the ground truth image, a black pixel indicates a deviation from
the label. The two images on the bottom middle and bottom right show the counted
error pixels of the mean-ensemble when the ε-Dice score was used. Although, the max-
ensemble increased the recall, a strong over-segmentation decreased the precision. The
oracle further detected the few axon pixels that were correctly predicted by the max-
ensemble but were neglected by the mean-ensemble. The ε-Dice images show that the
majority of errors was due to over- and under-segmentation and only scarcely, small
isolated regions were misclassified.

The Mean ResNet-50 Ensemble Reached Human Expert Performance.
Finally, in addition to the expert that labeled the entire data set, we asked two
more experts to re-label some of the images used here to examine the variance in
their ratings (Table 2). Thus, we had the opinions of three experts for evaluation
and the test segmentation results of a ResNet-50 ensemble. These experts among
themselves hardly achieved a better result than the mean ResNet-50 ensemble.
On the contrary, none of the other experts came as close to the masks of the
author of the training data (Expert 02) as the CNN ensemble (Dice = 0.793,
0.766, and 0.833 for 01, 03, and mean ResNet-50 vs. 02). This highlights that
our approach can sensitively and specifically segment axons on phase-contrast
microscopic images at a level similar to manual labeling by experts and is thus
suitable for further application.
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(a) mean false negatives (b) max false positives

Fig. 4. Distribution of critical pixels on mean- and max-ensembles (darker shades indi-
cating a higher point density). All pixels that were rated differently by the mean- and
max-ensemble were considered critical. There were two cases: (a) the pixels that the
mean-ensemble did not recognize as axons (mean false negatives) and (b) those that
the max-ensemble incorrectly recognized as axons (max false positive).

Fig. 5. Scores for different line values. For three different configurations, a linear clas-
sifier for the critical points was chosen and decided after its voting. The critical data
was mixed and consequently, either recall or precision improved for each of the settings,
but without improving the Dice score significantly.

Table 2. Dice score comparison of different human annotators and our best approach
(mean ResNet-50). Note that 02 annotated the training data for the network.

Name 01 02 03 mean ResNet-50

01 1.000 ± 0.000 0.793 ± 0.016 0.773 ± 0.035 0.794 ± 0.026

02 0.793 ± 0.016 1.000 ± 0.000 0.766 ± 0.040 0.833 ± 0.033

03 0.773 ± 0.035 0.766 ± 0.040 1.000 ± 0.000 0.750 ± 0.043

mean ResNet-50 0.794 ± 0.026 0.833 ± 0.033 0.75 ± 0.043 1.000 ± 0.000
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4 Discussion

We here present an ensemble-based CNN framework for the automatic segmen-
tation of axons on phase-contrast microscopic images. We demonstrate that the
ResNet-50 is superior to the u-net and that an ensemble can further improve
the results. Importantly, our approach reaches the performance level of human
experts.

As axons are thin and highly branched objects, segmentation is difficult and
thus we needed to use a very deep network (ResNet-50) to reach the best perfor-
mance. The ResNet-50 outperformed the u-net because i) ImageNet pretraining
leads to better features and a better starting point in parameter space, ii.) deeper
architectures generalize better, and iii) residual connections enable the learning
of identity mappings [6,11].

Interestingly, even with an ensemble of multiple ResNets, we achieved a Dice
score of about only 83%, despite the fact that visually inspected results looked
very convincing. While the Dice score is a widely used measure to evaluate
segmentation results, here, the cumulative errors in the very close proximity of
the axons induced a strong bias. Therefore, we proposed the soft Dice score and
were able to demonstrate that 94% of the ground truth within a 1-pixel radius
were actually recognized by our ensemble, which we think better reflects the
visually perceived performance.

We further demonstrated with the help of an oracle what perfect ensem-
ble recombination can achieve. It would theoretically be possible to reach a
Dice score of almost 89% by combining max- and mean-ensemble. However, in
practice and as demonstrated by the linear regression model, this seems almost
impossible to achieve as we did not identify an approach to combine the knowl-
edge of both ensembles in a usable way. Finally, a comparison with human
experts revealed that our ResNet-50 ensemble can very well reach human per-
formance level in the task of axon segmentation.

The dataset used here is relatively small due to the remarkably high labeling
cost for these delicate structures, but the size is comparable to similar datasets
such as the IOSTAR retina vessel segmentation set [19]. This further strength-
ens the contribution of our approach as using a network with a performance
comparable to an expert can aid in labeling more images.

Taken together, the proposed ensemble CNN allows for the automated
axon segmentation at a near-human performance level that makes the high-
throughput analysis of the markerfree in vitro detection of axonal morphology,
growth, and degeneration in health and disease a feasible task.
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10. Lingor, P., Koch, J.C., Tönges, L., Bähr, M.: Axonal degeneration as a therapeutic
target in the CNS. Cell Tissue Res. 349(1), 289–311 (2012)

11. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic seg-
mentation. In: The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2015

12. Meijering, E.: Neuron tracing in perspective. Cytometry Part A 77(7), 693–704
(2010)

13. Meijering, E.: Cell segmentation: 50 years down the road [life sciences]. IEEE Signal
Process. Mag. 29(5), 140–145 (2012)

14. Mesbah, R., McCane, B., Mills, S.: Deep convolutional encoder-decoder for myelin
and axon segmentation. In: 2016 International Conference on Image and Vision
Computing New Zealand (IVCNZ), pp. 1–6. IEEE (2016)

15. Naito, T., Nagashima, Y., Taira, K., Uchio, N., Tsuji, S., Shimizu, J.: Identification
and segmentation of myelinated nerve fibers in a cross-sectional optical microscopic
image using a deep learning model. J. Neurosci. Methods 291, 141–149 (2017)

16. Rapoport, D.H., Becker, T., Madany Mamlouk, A., Schicktanz, S., Kruse, C.: A
novel validation algorithm allows for automated cell tracking and the extraction of
biologically meaningful parameters. PLoS ONE 6(11), e27315 (2011)

http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
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