
The Effects of Masking in Melanoma
Image Classification with CNNs Towards

International Standards for Image
Preprocessing

Fabrizio Nunnari1,2(B), Abraham Ezema1,2, and Daniel Sonntag1,2

1 German Research Center of Artificial Intelligence, Kaiserslautern, Germany
{Fabrizio.Nunnari,Abraham Obinwanne.Ezema,Daniel.Sonntag}@dfki.de

2 Oldenburg University, Oldenburg, Germany
http://www.dfki.de/iml

Abstract. The classification of skin lesion images is known to be biased
by artifacts of the surrounding skin, but it is still not clear to what
extent masking out healthy skin pixels influences classification perfor-
mances, and why. To better understand this phenomenon, we apply dif-
ferent strategies of image masking (rectangular masks, circular masks,
full masking, and image cropping) to three datasets of skin lesion images
(ISIC2016, ISIC2018, and MedNode). We train CNN-based classifiers,
provide performance metrics through a 10-fold cross-validation, and anal-
yse the behaviour of Grad-CAM saliency maps through an automated
visual inspection. Our experiments show that cropping is the best strat-
egy to maintain classification performance and to significantly reduce
training times as well. Our analysis through visual inspection shows that
CNNs have the tendency to focus on pixels of healthy skin when no malig-
nant features can be identified. This suggests that CNNs have the ten-
dency of “eagerly” looking for pixel areas to justify a classification choice,
potentially leading to biased discriminators. To mitigate this effect, and
to standardize image preprocessing, we suggest to crop images during
dataset construction or before the learning step.

Keywords: Skin cancer · Convolutional neural networks · Masking ·
Reducing bias · AI standardization roadmap · Preprocessing

1 Introduction

As reported in the 2019 USA cancer statistics, skin diseases have been steadily
increasing over the years, whereby skin cancer represents 7% of the total cancer
cases. As of 2019, there were 104,350 expected cases of skin cancer, of which
96,480 were melanomas. The importance of promptly detecting skin cancer is
evident from the high percentage of survival (92%) after surgery resulting from
early detection [19].
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The classification of skin lesions using computer vision algorithms has been
a subject of recent research [6,10,13]. One of the breakthroughs being the pub-
lication of Esteva et al. [8], reporting a better performance than expert derma-
tologists using transfer learning on a deep convolutional neural network (CNN).
The network was first trained on a set of about one million diverse images, and
then fine-tuned with more than 100k images of skin lesions.

Given the promising progress of computer vision algorithms in aiding skin
lesion classification, the ISIC1 (International Skin Imaging Collaboration) hosts
a competition for the automated analysis of skin lesions. In the years 2016 [12],
2017 [5], and 2018 [4], the challenge included three tasks: segmentation, attribute
extraction, and classification. These tasks replicate the procedure usually fol-
lowed by dermatologists: to identify the contour of the skin lesion, highlight
the areas in the lesion that suggest malignancy, and classify the specific type of
lesion.

To accomplish these tasks, the ISIC challenge provides a public dataset that
has grown from 900 images as of 2016 to more than 33,000 images for the 2020
edition. This is the largest publicly available dataset of dermoscopic images, and
is widely used by many researchers throughout the world.

Masking skin lesion images, i.e., using segmentation to remove the pixels
pertaining to the healthy skin and retaining the pixels belonging to the lesion,
is an image pre-processing technique that is supposed to help the classification
of skin lesions by removing unneeded, unwanted image artifacts.

In fact, Winkler et al. [23] found that the presence of gentian violet ink,
often used by dermatologists to mark the skin in proximity to suspicious lesions,
can disrupt the correct classification and lower the specificity of commercial DSS
(Diagnosis Support Systems). Moreover, recently, Bissoto et al. [2] found a strong
bias in the ISIC dataset; by completely removing 70% of the central part of the
images (hence removing the totality of pixels containing the skin lesions), the
CNN model was still able to reach 0.74 AUC (with respect to 0.88 AUC reached
with full images). This suggests a strong bias of the dataset at its borders.

To date, while there seem to be clear advantages of masking out the skin
surrounding the lesion area, it is not clear to what extent masking images influ-
ences (positively or negatively) the quality of classification (e.g., by removing
bias). And what are other consequences for the process of training classifiers?

In this paper, we present a further investigation on image masking by, first,
assessing the presence of biases at the dataset images’ borders, and, second,
comparing the classification performances when applying several types of masks.
Third, we analyse the bias patterns through a visual inspection of Grad-CAM
saliency maps [18]. This analysis employs four types of masks (see Fig. 1):

1. Rectangular Mask (RM) removes 30% of the image surface around the border.
This is a direct contrast to the masking utilized by Bissotto et al. [2] to show
the presence of bias at the borders and its influence on model performance.
With this masking type, we verify whether removing the border affects the
performance of a classifier.

1 https://www.isic-archive.com/.

https://www.isic-archive.com/
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2. Circular Mask (CM) draws a circle at the middle of images. Here, we evaluate
if removing the corners of the images and inspecting only its central part
retains model performance.

3. Full Mask (M) reveals only the lesions and a fraction of the surrounding skin.
It is used to reveal whether completely removing the skin surrounding a lesion
improves prediction performance.

4. Finally, a rectangular cropping (CR) of the image is applied, which removes
the image borders and increases the quantity of information passed to the
classifiers.

In the rest of this paper, we conduct experiments on three popular skin lesion
image datasets (ISIC 2016, ISIC 2018, and MedNode), each evaluated through
a 10-fold cross validation approach to reduce biases by randomization. All the
maskings were implemented using a dedicated U-NET (de-)convolutional neural
network, following the procedure described in [14].

With the standardization roadmap for artificial intelligence, a comprehensive
analysis of the current state of and need for international standards and spec-
ifications has been published [22]. Data bias and the bias of classifiers is a key
factor. As a result of our experiments, we suggest to crop images during dataset
construction or before the learning step, towards a process to standardize image
preprocessing in CNN contexts.

Section 2 gives an overview of related work and on the importance of masking
to avoid biases. Section 3 describes the method used to train and test the data
material. Section 4 describes the experiments measuring the difference in per-
formances among different masking conditions. Section 5 reports on the analysis
of our results with the help of saliency extraction (visual explanation). Section 6
discusses the results, and Sect. 7 concludes the paper.

2 Related Work

The classification of skin lesions through the use of CNNs has increased in
popularity since the publication of Esteva et al. [8]. Their CNN-based model
matched the performance of experienced dermatologists. To this end, all perfor-
mant neural-network-based solutions for skin lesion classification are based on a
transfer learning approach [21]: a baseline deep CNN is pre-trained for example
on the ImageNet dataset [7], and the transfer-learning steps consists of substitut-
ing the final fully-connect layers of the network with a few randomly initialized
ones, then to continue training the model on skin lesion images. In our work, we
perform transfer learning using pre-trained versions of VGG16 [20].

Rather than focusing on benchmarks [10], our goal in this contribution to
investigate the change of performance between using plain images and segmented
or normalized ones for the classification task. To train our reference classifier,
we rely on three publicly available datasets: ISIC 2016 [12], ISIC 2018 [4], and
MedNode [9]. All of them were used to train several models, each on a number
masking methods, as later explained in Sect. 3.
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original RM CM (mask) M CR

Fig. 1. Masking examples, from left to right: the original full image (ISIC 0024307),
rectangular mask (RM), circular mask (CM), the segmentation mask, the segmented
image (M), the image cropped on the mask bounding box (CR).

Burdick et al. [3] performed a systematic study on the importance of masking
images used for training CNN models. They compared the performance of the
CNN model using the full images compared to applying the masks on several
levels: from fully masking out the surrounding skin to exposing some portion
of the skin surrounding the lesion. Tests show best results when only a limited
portion of the surrounding skin is kept for training. The hypothesis is that mask-
ing the healthy skin helps in classification while showing all the healthy skin in
the image “confuses” the network, that is, it becomes more probable that the
network learns image artefacts. Following the results in Burdick et al. [3], for
each image, we also extend the lesion mask from segmentation to 110% of its
original area, in order to expose a bit more of the surrounding skin areas during
training than the original mask shows.

Binary masking of an image defines a black/white area within it, whereas
white is associated with the pixels of interest, and black is associated with non-
interesting or the confounding part of the image to be discarded in subsequent
processing steps. This segmentation techniques have been significantly improved
by the use of deep learning models. Ronneberger et al. [17] first proposed the
application of the convolution-deconvolution network (U-Net) for medical image
segmentation. The U-Net architecture applies stacks of convolutional layers with
downsampling to extract latent image features and deconvolutional layers with
upsampling within the network. This method of segmentation has been very
successfully applied to medical image segmentation.

Variants of this model have shown to be very effective in the ISIC segmen-
tation challenge in the past, with a Jaccard index score of 0.765 and 0.802 in
the ISIC2017 and ISIC2018 editions, respectively, see [1,16]. In this paper, we
implement a transparent segmentation model to show the effects of masking in
melanoma images by using the approach described in [14] and using the data
provided for Task 1 of the ISIC 2018 challenge [4].

3 Method Overview

Figure 2 illustrates the method we follow to test the effectiveness of the different
masking conditions on prediction performance. The method is composed of three
phases: preparation of the segmentation model, masked images construction, and
training of the classification models. They are discussed in more detail in the
following.
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Fig. 2. Methodology overview. The top blocks depict the training of the segmentation
model. The middle blocks are related to the preparation of the masked images, and
the bottom blocks represents the training of the classification models.

3.1 Segmentation Model

We utilize the images from Task 1 of the ISIC 2018 to train a masking model
based on the U-Net architecture [17]. This dataset comprised of 2594 RGB skin
lesion images, and for each sample, the ground truth is a binary mask in the
same resolution as the input image.

Figure 3 shows the U-Net architecture together with a sample input and
output (binary mask). The architecture is composed of 9 convolution blocks,
where each of them is a pair of 2D same convolution with a kernel size of 3 ×
3 × 3. Downsamplig is the result of a max-pooling with size 2 × 2. Upsampling
is the result of a 2 × 2 transposed 2D same convolution. After each upsampling
step, the convolution is performed on the concatenation of the upsampling result
and the output of the downsampling with corresponding resolution. The initial
number of filters (32) doubles at each downsampling. For this work, we used an
input/output resolution of 160 × 160 pixels.

3.2 Masked Image Datasets

The segmentation model described above is used to extract masks for Melanoma
and Nevus images of the ISIC 2018 Task 3 [4], ISIC 2016 [12], and MedNode [9]
datasets. From ISIC 2018 Task 3, we selected only nevus (NV) and melanoma
(MEL) classes because these are the exactly the same classes which used as ground
truth for the masks in Task 1. After an initial visual inspection, we realized that
applying the mask prediction to any of the other 6 classes of the Task 3 dataset
often leads to erroneous results due to the very different nature of the lesions.
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Fig. 3. The U-Net architecture used for lesion segmentation. The input image is 3-
channel RGB, while the output image is 1-channel gray-scale with the same resolution.

In total we define five sets of pre-processed images: A (the full image, con-
taining all of the pixels), and the four types already described in the introduction
RM, CM, M, and CR. See Fig. 1.

The M and CR datasets are obtained through the composition between the
original images and the extracted masks. For the M dataset, the mask is first
scaled around its center by a factor of 1.1 to reveal a portion of the surrounding
skin (as suggested by [3]). The composition setting converts all pixels outside
the lesion mask to black. For the CR dataset, the mask is utilized to identify a
rectangular cropping region containing the lesions contour.

The CR datasets contains a few less samples than the others, because an ini-
tial inspection revealed that the masks of samples with a thin lesion–foreground
pixel variation result in very small (mostly inaccurate) lesion blobs. Hence, we
automatically filtered these defective images from our samples based on an auto-
mated comparison between the area of the masks and the total image size. Images
whose mask areas was less than 1

8 of the picture were discarded.

3.3 Binary Classifiers

For each of the 3 datasets and 5 masking conditions, we trained 10 binary classi-
fication models using a 10-fold splitting strategy. Each fold was composed using
10% of the dataset for testing and another random 10% for validation. While
splitting, we ensured to preserve the proportion between classes. In the rest of
this paper, we report the mean and the standard deviation among the 10 folds.

The performance of the binary classifiers in discriminating nevi from
melanomas are reported in terms of accuracy, specificity, sensitivity, and ROC
AUC (Receiver Operating Curve - Area Under the Curve) on the test set, where
the positive case is associated with the malignant melanoma.
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1 _________________________________________________________________
2 Layer (type) Output Shape Param #
3 =================================================================
4 input_1 (InputLayer) (None , 227, 227, 3) 0
5 _________________________________________________________________
6 block1_conv1 (Conv2D) (None , 227, 227, 64) 1792
7 _________________________________________________________________
8 block1_conv2 (Conv2D) (None , 227, 227, 64) 36928
9 _________________________________________________________________

10 block1_pool (MaxPooling2D) (None , 113, 113, 64) 0
11 _________________________________________________________________
12 [... 13 more layers ...]
13 _________________________________________________________________
14 block5_conv3 (Conv2D) (None , 14, 14, 512) 2359808
15 _________________________________________________________________
16 block5_pool (MaxPooling2D) (None , 7, 7, 512) 0
17 _________________________________________________________________
18 flatten (Flatten) (None , 25088) 0
19 _________________________________________________________________
20 fc1 (Dense) (None , 4096) 102764544
21 _________________________________________________________________
22 dropout_1 (Dropout) (None , 4096) 0
23 _________________________________________________________________
24 fc2 (Dense) (None , 4096) 16781312
25 _________________________________________________________________
26 dropout_2 (Dropout) (None , 4096) 0
27 _________________________________________________________________
28 predictions (Dense) (None , 3047) 12483559
29 =================================================================
30 Total params: 146 ,744 ,103
31 Trainable params: 146 ,744 ,103
32 Non -trainable params: 0
33 _________________________________________________________________

Listing 1.1. An excerpt of the VGG16 architecture used for the binary classification
task.

As already successfully employed in previous research (e.g., [8]), all of the
binary classifiers are based on the transfer learning approach [21] with CNNs.
The base CNN model is the VGG16 [20] architecture pre-trained on ImageNet
[11]. We then substituted the original three final fully connected layers with a
sequence of two fully connected layers, each followed by a dropout of 0.5, and
a final 2-class discrimination softmax layer. Listing 1.1 shows an excerpt of the
architecture.

Each model was trained for a maximum of 100 epochs and optimized for
accuracy. Input images were fed to the network with an 8× augmentation factor,
where each image was horizontally flipped and rotated by 0, 90, 180, and 270
degrees. To avoid the generation of black bands, images were rotated after scaling
to the CNN input resolution. Class imbalance was taken into account using a
compensation factor in the loss-function (parameter class weight in the fit
method of the Keras framework). For each model, we also report what epoch
returned the most accurate model.
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All training was performed on Linux workstations using our toolkit for Inter-
active Machine Learning (TIML)2, which uses the Keras3 (v2.2.4) framework
with Tensorflow4 (v1.13.1) as backend. Our reference Hardware is an 8-core
Intel 9th-gen i7 CPU with 64 GB RAM and an NVIDIA RTX Titan 24 GB
GPU.

4 Experiments

The following three sections report details on the analysis performed on the three
datasets: ISIC2016, MedNode, and ISIC2018. For each dataset, the metrics of
the binary classification are reported for each of the five masking conditions
described before: A, RM, CM, M, and CR. The analysis focuses on determining
a potential bias from the border of the images.

4.1 ISIC2018

Table 1 shows the distribution of the samples in the ISIC2018 dataset. Training a
full model (6256 samples, 100 epochs) takes about 9 h on our reference hardware.
Table 2 show the results of the tests.

Table 1. Distribution of the 7818 images from the ISIC2018 dataset.

conditions samples MEL NV train val test

A, RM, CM, M 7818 1113 (14.2%) 6705 (85.8%) 6256 781 781

CR 7645 1099 (14.3%) 6546 (85.9%) 6119 763 763

In order to measure the statistical significance of the metric among condi-
tions, we run a set of t-tests for independent samples between the no-mask con-
dition (A) against all the others. The results of the test are reported in Table 3.
The tests compare the results across the 10 folds (N = 10). The table reports the
compared conditions, followed by the different statistic metrics, their absolute
and relative difference, and the significance code for the p-value (+: p < .1; *:
p < .05; **: p < .01; ***: p < 0.001).

When applying a rectangular mask, the results show a significant reduction
on almost all metrics. For example, accuracy drops by 2.99%. Also circular masks
and full masking decrease accuracy by 2.85% and 4.37%, respectively. Only crop-
ping shows some improvewd accuracy values. Although not significant, we report
a positive tendency of 4.73% increase in sensitivity.

This results suggest that there is indeed a bias in the surrounding skin; the
other explanation is that exposing a large portion of the surrounding skin helps
2 https://github.com/DFKI-Interactive-Machine-Learning/TIML.
3 https://keras.io/.
4 https://www.tensorflow.org/.

https://github.com/DFKI-Interactive-Machine-Learning/TIML
https://keras.io/
https://www.tensorflow.org/
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Table 2. Results of the test on the ISIC2018 dataset.

set testacc testspec testsens testauc epch

A .909 (.014) .933 (.017) .763 (.062) .948 (.010) 90.3 (6.7)

RM .882 (.011) .899 (.018) .781 (.059) .937 (.011) 41.8 (3.9)

CM .883 (.017) .899 (.021) .789 (.066) .938 (.012) 41.5 (6.1)

M .870 (.013) .884 (.014) .785 (.034) .930 (.011) 39.0 (10.7)

CR .911 (.014) .929 (.017) .799 (.057) .955 (.010) 40.7 (7.8)

Table 3. Significant differences between masking conditions in the ISIC2018 dataset.

Condition Metric Difference Diff. pct Signif.

A vs RM ACC −0.027 −2.99% ***

A vs RM SPEC −0.035 −3.73% ***

A vs RM AUC −0.011 −1.21% *

A vs RM EPOCH −48.5 −53.71% ***

A vs CM ACC −0.026 −2.85% **

A vs CM AUC −0.1 −1.11% +

A vs CM EPOCH −48.8 −54.04% ***

A vs M ACC −0.04 −4.37% ***

A vs M SPEC −0.05 −5.33% ***

A vs M AUC −0.018 −1.90% **

A vs M EPOCH −51.3 −56.81% ***

A vs CR SENS 0.036 4.73% 0.2152

A vs CR EPOCH −49.6 −54.93% ***

in the classification to some extent. For the cropping condition, such deficiency
might be compensated by higher quantity of information passed to the neural
network. In fact, when the image is cropped, almost all of the 277 × 277 pixels
of the image are covered by the lesion–hence increasing the quantity of detail
attributed to the skin.

A common aspect across all our comparisons is the significant and consistent
drop (more than 50%) of the number of epochs needed to train the model.

4.2 MedNode

Table 4 shows the distribution of the samples in the MedNode dataset. Training
one fold of the full dataset (ca. 136 samples, 100 epochs) takes about 15 minutes
on our reference hardware. Table 5 show the results.

In comparison to A, we observed a considerable decrease in the performance
when applying a rectangular mask, e.g., accuracy −0.053 (−6.58%), and mild
loss in performance for all other conditions. However, none of the differences is
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Table 4. Distribution of the 170 images of the MedNode dataset.

conditions samples MEL NV train val test

A, RM, CM, M 170 70 (41.2%) 100 (58.8%) 136 17 17

CR 169 70 (41.4%) 99 (58.6%) 137 16 16

Table 5. Results of the test on the MedNode dataset.

set testacc testspec testsens testauc epch

A .806 (.123) .870 (.100) .714 (.181) .869 (.131) 34.1 (12.9)

RM .753 (.094) .800 (.118) .686 (.189) .860 (.073) 36.1 (23.5)

CM .818 (.140) .830 (.135) .800 (.194) .890 (.114) 40.5 (21.3)

M .806 (.112) .830 (.090) .771 (.214) .880 (.111) 43.6 (24.7)

CR .768 (.144) .820 (.087) .700 (.328) .843 (.120) 55.9 (32.2)

significant according to our t-tests, likely because of the high variance in the
measurements among the 10 folds from the limited number of samples.

4.3 ISIC 2016

Table 6 shows the distribution of the samples in the ISIC2016 dataset. Training
one fold of the full dataset (722 samples, 100 epochs) takes about 1 h 30 m on
our reference hardware. Table 7 show the results.

Table 6. Distribution of the 900 images of the ISIC2016 dataset. In the right columns,
the mean of the number of samples among the 10 folds used for validation (standard
deviation is ≤0.6).

conditions samples MEL NV train val test

A, RM, CM, M 900 173 (19.2%) 727 (80.8%) 722 89 89

CR 884 173 (19.6%) 711 (80.4%) 708 88 88

The only statistically significant difference stems from the specificity between
the A and CM conditions (−0.026, −2.92%, p < 0.1). We can also observe a
noticeable drop in sensitivity between A and CR conditions (−0,092, −22.18%),
but it is not significant for our tests (p = 0.2352).

As for the MedNode dataset, the reduced number of samples led to a high
variance during the cross-fold validation, making it thus impossible to validate
the differences among conditions using our statistical method.
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Table 7. Results of the on the ISIC2016 dataset.

set testacc testspec testsens testauc epch

A .806 (.028) .898 (.031) .416 (.163) .773 (.074) 45.1 (38.4)

RM .794 (.037) .878 (.069) .445 (.146) .756 (.063) 49.2 (36.2)

CM .788 (.026) .872 (.030) .432 (.151) .790 (.059) 52.7 (26.9)

M .784 (.035) .866 (.065) .445 (.181) .774 (.066) 57.7 (28.7)

CR .805 (.044) .923 (.045) .324 (.155) .755 (.078) 46.3 (35.1)

5 Visual Inspection

In order to visually explain the characteristics that influenced model predic-
tions, we leveraged the Grad-CAM method [18] to generate the saliency maps
of attention. Figure 4 shows a nevus and a melanoma images from ISIC2018
and their relative attention maps on all masking conditions. All the saliency
maps were extracted from the last convolutional layer of the VGG16 architec-
ture (block5 conv3).

Two contrasting patterns emerge, thus giving additional details about the
model’s discrimination strategy. The saliency is higher on the skin lesion pixels
(focused towards the center) for images correctly predicted as melanoma. In
contrast, the saliency is higher on the skin pixels (towards the borders) in pictures
correctly classified as nevus. The opposite happens when images are wrongly
classified, with the attention for wrongly classified nevus towards the center and
the attention for wrongly classified melanomas towards the border.

It is worth pointing out that the attention of the CNN moves towards the
border regardless of the kind of masking strategy used. To systematically quan-
tify this behaviour, we recorded the occurrence of this pattern in relation to the
classification results, categorizing images according to whether the salient pixels
are accumulated towards the (B)order or towards the (C) enter. The discrimina-
tion was made by a processing routine in terms of a pixel-level analysis. When
the activation value for the pixel along the image borders (left, top, bottom,
right) is very low (<0.1), then the image saliency map is considered as centered.
For opposite cases, that is, when high activation values are present along the
borders, an image-centred square patch covering 1

16 th of the total image size is
evaluated to confirm border images. As a result, when the patch is dominated by
low activation values, a border case is recorded for the image, while a centered
image is recorded for the opposite characteristic.

Table 8 shows the results on the ISIC2018 dataset. The observed behaviour
(saliency is at the center for correct melanoma and wrong nevus, otherwise at
the border) is prominent in the A, CM, and RM masking conditions, but less
prominent for the M and CR conditions.
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Fig. 4. ISIC 2018: colored saliency maps (aka heatmaps) extracted by Grad-CAM
from the last convolution layer of the VGG16 model. The heatmaps are relative to
one melanoma (top) and one nevus (bottom), both correctly classified. For each of
the five masking conditions we show both the input image and its composition with
the heatmap. Notice that for melanoma the heatmaps concentrate towards the center,
while for nevus the model focuses on the border, regardless of the mask type.
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Table 8. Results of the automatized saliency map inspection: counts of images with
saliency map concentration at (B) order or (C), divided for Melanoma (MEL) and
Nevus (NV), further split in (C)orrectly or (W)rongly classified.

ISIC 2018

Mask Concentration MEL-C MEL-W NV-C NV-W

A B 54 258 5430 20

C 795 6 830 425

CM B 0 235 5974 0

C 878 54 0 677

RM B 0 244 6024 0

C 869 0 2 679

M B 163 219 2986 71

C 711 20 2938 710

CR B 325 185 3599 162

C 554 36 2483 302

6 Discussion

Here we summarize our observations on the use of the different masking condi-
tions arising from the classification results and from the visual inspections. As
the low number of samples does not lead to statistically significant results for the
MedNode and ISIC2016 datasets, we focus our analyses on the results obtained
on the ISIC 2018 dataset.

From the classification results (Sect. 4.1) it is clear that masking the images
affects the overall performance, likely because this eliminates any biases of the
image borders. Moreover, we can notice a slight improvement in the sensitivity
for images cropped to contain their lesions (hence, somehow zoomed), likely
because of a increased quantity of details passed to the CNN model. We thus
propose CR as the preferred condition which takes away potential biases in the
data and forces the model to learn more from salient details (lesion area). We
expect the models trained on CR to generalize better to unseen data and deviate
from the learning process of models with high bias in data. This way, we can
potentially improve data quality and reduce overfitting, although this means a
slight drop in performance on the closed world test set.

It is worth noting that with all masking conditions, the number of epochs
needed to converge to the best predicting model, decreases by over 50%. This
happens not only when blackening out significant parts of the image, thus pro-
viding the CNN with flat-valued uniform color areas, but also when zooming
into the image and maximizing the number of pixels belonging to lesions. This
suggest that the network is indeed learning faster thanks to the high quantity
of meaningful, focused, information.
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From the visual inspection of the saliency maps (Sect. 5), it appears that
when images are classified as melanoma, the network concentrates most of its
“attention” in the central part of the image, as a human practitioner would
do. In contrast, when images are classified as nevus, the saliency map is more
spread towards the border. This last phenomenon is less regular in the M and CR
conditions, where most of the healthy skin is absent, suggesting that the CNN
(when classifiyng a nevus) tends to activate on the small areas of skin around
the lesion. Notably, this happens regardless of the correctness of the prediction,
showing that in fact the CNN learned to search for the features characterizing
the positive case (melanoma) within the lesion area.

However, it seems that in absence of visual elements characterizing a
melanoma, the network has the tendency to find a “reason” for the compet-
ing class (nevus) elsewhere in the image, either on blacked-out areas, which are
surely non-discriminating, but also on healthy skin areas. This might in part
question and refute the conclusions of Burdick et al. [3], who stated that extend-
ing the masks of a lesion allows us to take advantage of the contrast between the
lesioned and healthy skin. Differently, it seems that CNNs really need an “area
of alternative attention”, which we could define as the portions of the image on
which the CNN needs to concentrates the activation of its layers when predicting
a negative case (nevus).

7 Conclusions

In this paper, we presented a comprehensive investigation on the effect of mask-
ing on the binary classification of skin lesions between nevus and melanoma
towards international standards for image preprocessing to reduce bias and
increase data quality.

We performed our analyses on three datasets (ISIC 2018, MedNode, and
ISIC 2016) using a 10-fold cross validation procedure. Then, in order to discard
shallow conclusions due to the intrinsic randomness of CNN training procedures,
we considered only those differences that have been confirmed as significant
through statistical tests.

Inspired by the work of Bisotto et al. [2], who discovered the possibility of
classifying skin lesions still after covering 70% of the internal surface of the
images, we verified that prediction power indeed diminishes when removing 30%
around the border, thus confirming the existence of some kind of bias.

Further experiments, with other types of masking, confirmed the bias at the
border, and also showed that the best non-biased performances can be achieved
through automated cropping.

The cropping condition also leads to 50% shorter training times, suggesting
that the presence of healthy skin is noisy information that slows the convergence
of the training process.

Finally, an automated analysis of the saliency maps extracted from the CNN
classifier via Grad-CAM led us to formulate an hypothesis of area of alternative
attention. In fact, the analysis leads to the following informal argument: while
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it is true that one should better maximize the area of the image with visual
features able to identify a (positive) class, at the same time some of the pixels
should be left free for the network to “justify” the complementary (negative)
class. Future work, with more fine-tuned masking along the border of the lesion,
and on other datasets, should be conducted to confirm this hypothesis.

In fact, it is worth noticing that most of the research in image classification
has been conducted on databases of images where the objects of interests occupy
only a relatively small portion of an image. Consequently, visual explanation
methods like GradCAM [18] and RISE [15] have been developed and tested
with the goal of identifying the relatively small subset of pixels justifying a
classification. Differently, in the domain of skin cancer detection very often the
majority of the pixels of an image are associated to a single entity, and this case
has been so far received very little attention.

In general, the outcome of this investigation supports the idea that the cre-
ation of systems for skin lesion classification should go through a cropping pro-
cess, either automated or manual, for both the creation of training data and
for samples classification. This would both increase prediction performances (at
least on sensitivity) and would significantly reduce the computational power
needed for training—towards a process to standardize image preprocessing in
CNN contexts [22].
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