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Abstract. Neural Networks are powerful classifiers. However, they are
black boxes and do not provide explicit explanations for their deci-
sions. For many applications, particularly in health care, explanations
are essential for building trust in the model. In the field of computer
vision, a multitude of explainability methods have been developed to
analyze Neural Networks by explaining what they have learned during
training and what factors influence their decisions. This work provides an
overview of these explanation methods in form of a taxonomy. We adapt
and benchmark the different methods to time series data. Further, we
introduce quantitative explanation metrics that enable us to build an
objective benchmarking framework with which we extensively rate and
compare explainability methods. As a result, we show that the Grad-
CAM++ algorithm outperforms all other methods. Finally, we identify
the limits of existing explanation methods for specific datasets, with fea-
ture values close to zero.

Keywords: Explainable deep learning · Convolutional Neural
Network · Explanation quality metric · Medical time series data

1 Introduction

Neural Networks have become the state-of-the-art to model complex problems
in computer vision [1], speech recognition [2], and many other areas [3]. Given
enough data, they can be trained to be exceptionally accurate classifiers, some-
times even surpassing human performance. While some classical machine learn-
ing models such as Decision Trees are inherently interpretable, Neural Networks
are unfortunately black boxes when it comes to understanding why a classifi-
cation decision was made. However, for many applications, e.g. in autonomous
driving or in healthcare, it is of uttermost importance that the decisions of
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Fig. 1. Taxonomy of a few explanation methods for Neural Networks

machine learning models can be explained and therefore trusted. Decisions may
have severe consequences, especially in healthcare. Therefore, medical experts
need to be able to trust their models to make the right decisions for the right
reasons. Additionally, Neural Network explanations could be used to identify
new patterns in convoluted signals such as electroencephalography (EEG) and
therefore, advance scientific knowledge.

In the last few years, there has been an effort to develop different Neural
Network explanation methods [1,3–11]. Most of these methods have been pro-
posed for computer vision tasks. They highlight the areas of the model input
that are most relevant to the decision process. These so-called attributions or
heat maps associate a relevance score with each individual input feature. Some
algorithms generate explanations in more complex feature spaces such as the
frequency domain. Ultimately, one could aim for explanations in a given expert
language - meaning that the explanation from a more complex feature space
is translated into terms that are familiar to the user (e.g. text book rules in
medicine).

In this study, our goal is to adapt and benchmark Neural Network explain-
ability methods for medical time series data (Sect. 2). So far, researchers have
mainly compared explanation methods on image data, using a qualitative assess-
ments of the resulting explanations by humans. There have been some theoretical
attempts at defining characteristics of good explanations [12,13]. In contrast, we
introduce and apply quantitative explanation metrics (Sect. 3). This allows us
to rate and compare the different methods objectively (Sect. 4). Additionally,
the metric demonstrates the strength and limitations of the various approaches.
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2 Taxonomy of Explanation Methods for Neural
Networks

Machine Learning models can be divided into inherently interpretable models
(e.g. Decision Trees) and black box models (e.g. Neural Networks) that use
formulations too complex to be interpreted by humans. In an attempt to offer
explanations for decisions made by such models, a multitude of methods have
been proposed to analyze the model after training (a posteriori explanations) [1,
3,4,6–11,14,15]. These algorithms visualize what a Neural Network has learned
and how classification decisions are made. Most of these methods have been
developed in the context of computer vision (image data). However, the lack of
quantitative evaluation metrics does not allow an objective benchmarking.

The existing a posteriori explainability methods for Neural Networks can
be classified into multiple categories according to their underlying algorithms
and properties (see Fig. 1). At high level, they can be split into two types of
explanations:

– Model Explanations are visualizations of the patterns and concepts that
the network has learned during training.

– Decision Explanations highlight the most relevant parts of a given model
input that led to a specific classification decision.

2.1 Model Explanations

Two kinds of model explanations are most relevant: Filter Visualization [7] and
Activation Maximization [8]. The former depicts the kernel weights of the first
few layers of Convolutional Neural Networks (CNN), indicating the patterns each
filter is most susceptible to. The latter is based on the idea that each neuron
is looking for a particular pattern in the input. If this pattern is present, the
activation of the neuron is high, otherwise the activation is low or zero. This is
achieved by optimizing the input to the network with the objective of maximizing
the activation of a particular neuron. In the case of CNNs, there is the choice
between optimizing the activation of a neuron, a layer, a channel, a class logit,
or a class probability.

2.2 Decision Explanations

Decision explanations explain a specific classification decision, given a particular
input sample, by attributing relevance scores to single pixels (for images) or
time steps (for time series). The higher the relevance, the more impact a pixel
or time step has on the classification decision. It is important to note that the
terms saliency map, attribution map, heat map and relevance scores are used
interchangeably to describe the same concept.
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Decision explanations can be further divided into methods that linearly
approximate the model, methods that use the internal gradient flow within the
network, and perturbation based methods that alter the input while observing
the change in output probabilities to calculate attribution:

1. Linear approximation methods (e.g. LIME [9]) construct a linear proxy
model that serves as an approximation of a black box model by probing the
output behavior around a given input sample.

2. Perturbation-based methods (e.g. Occlusion [16]) calculate attributions
by removing or altering the input while observing how the classification prob-
abilities change. The higher the change, the more relevant is the part of the
input that has been altered.

3. Gradient-based methods (e.g. Saliency Maps [14], Gradient*Input [11] [6],
Integrated Gradients [17], Epsilon Layer Relevance Propagation (Epsilon-
LRP) [18], Grad-CAM [10], Grad-CAM++ [19]) make use of the partial
derivative of the logits of the output class with respect to the input or
with respect to the output of an intermediate layer as a measure of sensitiv-
ity, and thereby as a measure of attribution. Because gradient-based meth-
ods are computed with a single forward and backward pass, they are typ-
ically faster than occlusion or linear approximation methods. Additionally,
Gradient-based methods can be classified using the following three character-
istics as show in Fig. 1:

– Backpropagation: Some methods (Epsilon-LRP) change the distribu-
tion of the gradients during backpropagation, to improve certain proper-
ties of the attribution map.

– Gradient: Some methods either use the gradient with respect to the
input (Gradient, Gradient*Input, Integrated Gradient, Epsilon-LRP) or
the gradient with respect to an intermediate layer (Grad-CAM, Gad-
CAM++).

– Multiplication with the Input: Some methods (Gradient*Input, Inte-
grated Gradient, Epsilon-LRP) use a multiplication with the input in their
calculation of attribution.
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Fig. 2. Synthetic heartbeats (ECG) depicted as P, Q, R, S, T-complex with corre-
sponding Explanation Ground Truth (EGT) and example explanations resulting in:
(a) a Fidelity Score of 0.5 and a False Negative Rate of 0.5 for a normal sinus rhythm,
(b) a Fidelity Score of 1.0 and a False Negative Rate of 0.8 for atrial fibrillation, (c) a
Fidelity Score of 1.0 and a False Negative Rate of 0.0 for a normal sinus rhythm.
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3 Explanation Ground Truth and Quality Metrics

To the best of our knowledge, no method exists to rate different explanation
methods quantitatively with respect to a ground truth explanation. Most pub-
lications make use of qualitative comparisons. Alvarez-Melis et al. [20] proposed
a quantitative metric to assess how faithful the generated explanation is with
respect to the model. The basic idea is to observe the change in the model’s
predictions while removing pixels or time steps and correlating the attribution
score of the explanation method with that change. This faithfulness metric is not
a measure of how well the attributions correlate with a ground truth explanation
of the input, but only indicates how faithfully the explanation represents what
the model bases its decision on.

In order to asses the quality of generated explanations, we have to anno-
tate the data with a “true” explanation, also called the Explanation Ground
Truth (EGT). We can then assess individual explanations relative to this ground
truth. It contains all pixels or time steps that provide distinctive information for
the relevant class. The EGT does not contain features which are not distinct for
the specific class and could appear in other classes as well. Figure 2 depicts an
example of the EGT for a synthetic heartbeat as recorded by a ECG.

The P-Wave (first peak of the heartbeat waveform) is one of the distinctive
factors to distinguish a sinus rhythm from atrial fibrillation. The patient is suf-
fering from atrial fibrillation if the P-Wave is missing. Therefore, for the sinus
rhythm class, we place the EGT on all time steps containing the P-Wave (see
Fig. 2a). For the atrial fibrillation class, we define the EGT on all time steps
where the P-Wave could be located if it would be present (see Fig. 2b).

We constructed our own synthetic time series datasets with distinct features,
indicative for a specific class, to benchmark the explanation methods on con-
trolled cases. Furthermore, this approach allowed us to identify strengths and
limitations of the methods for time series data with different characteristics.

In order to benchmark an explanation, we defined Scores that allow to
perform a quantitative comparison. First, the generated explanation A =
{A0, ..., AN} needs to be normalized to a total area of 1, for N time steps.

Āi =
Ai∑
i Ai

(1)

We then propose two new metrics, which in combination characterize the
generated explanation under investigation: the Fidelity Score and the False Neg-
ative Rate.

– Fidelity Score: This metric measures how much of the explanation appears
inside the actual “true” explanation. We define it as the total sum of all attri-
bution values (area under the curve) inside the EGT. Due to the normalized
total area, this corresponds to the precision metric in classification.
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SFidelity =
∑

i∈Z
Āi where i ∈ Z if EGTi = 1 (2)

– False Negative Rate (FNR): This metric measures the completeness vs.
narrowness of an explanation. We define it as the number of non-relevant
pixels or time steps inside the EGT divided by the total number of pixels or
time steps in the span of the EGT. Since the explanation values are almost
never exactly zero, we use a threshold ε below which we consider the pixel or
time step to have no relevance. This threshold is chosen to be equal to the
explanation values of a perfectly distributed explanation (given a signal of
length N): ε = 1/N .

SFNR =

∑
i∈Z 1{Āi≤ε}
∑

i EGTi
where i ∈ Z if EGTi = 1 (3)
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Fig. 3. Synthetic datasets (blue) generated for the benchmarking of the explanation
methods: (a) Dataset Noise, (b) Background Dataset Noise, (c) Background Wide
Dataset Noise, (d) Background Dataset Inverse; Example Explanations (green) for
the Background Dataset Noise as resulted from: (e) Epsilon-LRP, (f) Grad-CAM++.
EGT’s are depicted in red for all cases. (Color figure online)
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4 Experiments and Results

To evaluate our explanation score and the explanation methods, four synthetic
datasets were designed and a Neural Network architecture was defined. Detailed
results of the experiments are reported and discussed in this chapter. Each chosen
explanation method was tested and analyzed. Finally, we show the limitations of
existing explanation methods when applied to a carefully constructed dataset.

4.1 Datasets

The four synthetic datasets consist of uni-variate time series signals, with the
following characteristics:

1. All generated datasets only contain clearly separable classes (1000 samples
per class). There is no ambiguity about the class membership.

2. Each class must be characterizable by features present in a specific region of
the signal. We call these regions Explanation Ground Truth (EGT) and use
them to qualitatively measure how close an attribution map is to the “true”
explanation.

The following four synthetic datasets were used for the experiments (see Fig. 3):

1. Dataset Noise: This dataset places a square wave signal within a class
specific region. Class one is represented by a negative square wave, while class
two is represented by a positive one. Additionally, white noise was added to
increase the classification problem complexity.

2. Background Dataset Noise: This dataset augments the Dataset Noise by
adding a constant background signal which forces the network to not only
recognize a non zero region, but also to identify the class specific signal on
top of another constant signal.

3. Background Wide Dataset Noise: This dataset considers two periods of
the Background Dataset Noise. In contrast to the Background Dataset, there
are two locations which simultaneously contain the class identifying signal,
testing the network’s ability to base its decision on multiple relevant regions.

4. Background Dataset Inverse: This dataset inverts the square wave such
that, in the relevant region, the signal goes from the background value to
zero. The explanation method is thus forced to cope with a zero signal where
the explanation value should be high. Thus, no noise was added.

4.2 Models

For our experiments, we use a LeNet [4] and VGG [15] inspired Convolutional
Neural Network (CNN): two convolutional layers and a MaxPooling layer make
up a block that is repeated three times. This is followed by a single fully con-
nected output layer.
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Fig. 4. Performance experiment results for three different datasets showing Grad-
CAM++ outperforming all other methods.

4.3 Explanation Method Experiments

In our experiments, we investigated how well each method performs on a net-
work that has been trained to perfect test accuracy. We then focused on the
investigation of the convergence of explanation methods during training of the
neural network.

Comparison of Converged Explanation Methods: In these experiments,
we investigated the quality of the generated explanations using the proposed
metrics. For every explanation we calculated the Fidelity Score and the FNR.
As shown in Fig. 4, we observed that we can split the methods into four groups:

1. Gradient shows the lowest Fidelity Score and the highest FNR. This method
clearly performs worse than any of the other explanation algorithms.

2. Gradient*Input, Integrated Gradients and Epsilon-LRP form a group
of similarly performing methods. We attribute this to the shared property of
these three methods: multiplication with the input resulting in attribution
maps that are largely dominated by the input signal. Additionally, Ancona
et al. [21] show that Gradient*Input and Epsilon-LRP are equivalent if the
model under investigation exclusively uses ReLU activation functions. We
therefore chose Epsilon-LRP as a representative for this group of the remain-
ing experiments (ε = 10−7).

3. Grad-CAM and Grad-CAM++ build a third group, outperforming all
other methods in terms of Fidelity-Score and FNR. The improved Grad-
CAM++ method slightly outperformed the original Grad-CAM algorithm.
We used Grad-CAM++ as a representative of this group for the remaining
experiments.

4. Occlusion performed slightly better than the second group but still worse
than the third.

We note that Grad-CAM, Grad-CAM++ and Occlusion perform well, but
show some artefacts, which result from the up-sampling of the embedding’s attri-
bution map, which in general is not aligned with changes in the signal. Therefore,
we observe an attribution value that is an average of the attributions of either
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Fig. 5. Behavior of explanation methods during the training process of the Network.
All methods converge to a steady state during training.

side of the input signal change. Figure 3e and 3f show two samples of gener-
ated explanations. We observe that methods which generate explanations using
a partial derivative with respect to the input produce more noisy explanations
as opposed to the Grad-CAM++ method. In summary, Grad-CAM++ outper-
formed all other methods with regard to Fidelity Score and FNR.
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Fig. 6. Performance collapse of existing explanation methods on the inverse dataset
due to an explicit or implicit multiplication with the input which is close to zero within
the EGT.

Comparison of Explanation Methods During Training. In the next step,
we investigated the evolution of explanations and their convergence during train-
ing of the Neural Network. We evaluated the performance of the explanation
methods at different stages during training.

Figure 5 shows the change of the Fidelity Score and FNR during training.
All methods improved the Fidelity Score and the FNR while the network was
learning. Once the network converges to a state where the accuracy does not
improve anymore (approximately after 20 epochs), the metrics converge to a
steady state.

4.4 Limitations of Explanation Methods

We observed that the nature of the dataset influences the performance of the
explanation methods. This is especially pronounced for methods that make use
of a multiplication with the input signal. We push this to an extreme by con-
structing a dataset (Background Dataset Inverse 3(d)) for which these methods
completely fail: The samples are constructed in such a way that the input signal
is close to zero for time steps which belong to the EGT.

Figure 6 depicts the performance drop of methods that contain a multiplica-
tion with the input (i.e. Gradient*Input, Integrated Gradients, Epsilon-LRP) for
the “Background Dataset Inverse” (Fig. 3(d)). The occlusion method also failed,
since it replaces the original values of the input with zeros - replacing zeros with
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zeros does not perturb the input, thus no change in output probabilities can be
measured. Surprisingly, Grad-CAM also failed, even though it had been supe-
rior to the other methods. We explain this as follows: Grad-CAM incorporates a
multiplication with the embedding to calculate the attribution for each spatial
location. If all of the inputs in the receptive field of a convolutional layer are
zero, the output map of that layer will also be zero. This propagates through
the network to the embedding. Therefore, Grad-CAM also indirectly contains
a multiplication with zero, which makes the method fail similarly to the other
algorithms.

5 Conclusion

We introduced two quantitative metrics to benchmark a Neural Network expla-
nation quality: the Fidelity Score and the False Negative Rate. The Fidelity
Score measures the overlap of the generated explanation with the Explanation
Ground Truth while the False Negative Rate measures the number of time steps
of the Explanation Ground Truth not covered by the generated explanation.

Using these two metrics in combination with our specifically crafted syn-
thetic datasets, we investigated the performance of various explanation methods
and concluded that the Grad-CAM++ algorithm outperforms all other methods
(Saliency, Gradient*Input, Integrated Gradient, Layer Relevance Propagation
and Occlusion).

Additionally, we demonstrated that existing explanation methods suffer from
a performance collapse for input data with values close to zero within the Expla-
nation Ground Truth.

5.1 Future Work

In Future work, the benchmarked explainability methods should be applied to
actual ECG data. Additionally, the explanation methods described in this work
produce explanations that indicate which locations of the input are responsible
for the network’s decision. However, location is not the only factor that influ-
ences a classification decision. There can also be frequency factors - the structure
of an object - that are essential for discerning two classes. Existing explanation
methods are not capable of communicating a reliance on frequency components
(structural features). To fully explain a network’s decision, an explanation algo-
rithm should be developed that can visualize dependencies on a combination of
location and frequency.

Acknowledgment. We would like to thank Anirban Das from the Rensselaer Poly-
technic Institute and Adam Invankay from IBM Research Zurich for their valuable
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