®

Check for
updates

Expanding eVision’s Granularity
of Influenza Forecasting

Navid Shaghaghi®™) @, Andres Calle, George Kouretas, Supriya Karishetti,
and Tanmay Wagh

Biolnnovation and Design Laboratory, Santa Clara University, Santa Clara,
CA 95053, USA
{nshaghaghi,acalle,gkouretas, skarishetti,twagh}@scu.edu

Abstract. According to the United States’ Center for Disease Control
and Prevention (CDC) between 39 and 56 million people in the US suf-
fered from Influenza Like Illnesses (ILI) in the 2019-20 flue season. From
which, 410 to 740 thousand were hospitalized and 24 to 62 thousand
succumbed to the disease. Therefore, the existence of an early warning
mechanism that can alert pharmaceuticals, healthcare providers, and
governments to the trends of the influenza season well in advance, would
serve as a significant step in helping combat this communicable disease
and reduce mortality from it.

As reported in the [ACM Special Interest Group in Computers
and Society (SIGCAS) 2020 Computers and Sustainable Societies
(COMPASS)], [IEEE Technology and Engineering Management Soci-
ety (TEMS) 2020 International Conference on Artificial Intelligence for
Good (AI4G)], and [IEEE Global Humanitarian Technology Conference
(GHTC) 2020] Long Short-Term Memory (LSTM) neural networks are
utilized by Santa Clara University’s EPIC (Ethical, Pragmatic, and Intel-
ligent Computing) and Biolnnovation & Design laboratories for contin-
ued research and development of an eVision (Epidemic Vision) machine
learning tool to predict the trend of influenza cases throughout the flu
season.

There we reported eVision’s success in making 3, 7, and 14 weeks
in advance predictions for the 2018-2019 United States flu season with
88.11%, 88%, and 74.18% accuracy respectively and delineated future
steps of expanding eVision’s granularity by 1) adding state level predic-
tions in order to enhance national predictions and 2) utilizing metropoli-
tan area keyword trends to improve both state level and national pre-
dictions. This resulted in the improvement of the model’s accuracy to
90.38%, 91.43%, and 81.74% for 3, 7, and 14 weeks in advance predic-
tions respectively. This paper is to report on the methodology of obtain-
ing these improved results.
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1 Introduction

Influenza (a.k.a. the flu) is a pervasive respiratory infection caused by Influenza
viruses with an estimated 3 to 5 million severe cases annually, which lead to
between 290 to 650 thousand respiratory deaths world wide [12]. For the 2019-
2020 US flu season, which started October 1, 2019, and ended April 4, 2020,
the United States’ Center for Disease Control and Prevention (CDC) estimates
between 39 and 56 million cases of flu illness, which led to between 410 and 740
thousand hospitalizations and between 24 and 62 thousand deaths [2].

During the 2018-2019 flu season, influenza vaccines prevented between 3.4
and 7.1 million flu cases and, thus, prevented 30 to 156 thousand hospitalizations
as well as 1 to 13 thousand deaths [3]. At the time of this writing, the 2019-2020
flu season’s flu vaccine effectiveness statistics were not yet finalized and released
by the the CDC.

Since Influenza vaccination is the primary strategy to prevent influenza [16],
an accurate prediction model is essential for pharmaceutical companies and
healthcare providers to be able to properly prepare for an upcoming flu season.
For instance, vaccine manufacturers in the US rely heavily on seasonal influenza
data provided by the CDC [1] which, due to the two-week reporting lag of the
CDC, leaves the vaccine manufacturers insufficient time to produce enough flu
vaccines for the appropriate flu strains that can be distributed through the health
care network in time.

However, the CDC only collects US data and thus for the rest of the countries
the World Health Organization (WHO)’s global estimates must be used as a
basis for a prediction model. Though, improvements are required to gain more
accurate results, as the WHO only extrapolates based off of the limited data it
receives from the countries [12].

2 Related Work

Between 2008 and 2015, the Google Flu Trends project provided an influenza
activities forecaster with a linear model [9]. The idea being that since many
potential patients or relatives and friends of potential patients will use Google
Searches as a first attempt at diagnosis, by monitoring a region’s population’s
Google search queries into influenza related terminology and symptoms, the
presence of ILI in the population of that region may be predicted. However, no
actual flue statistics from the CDC or WHO were used to validate or enhance
the predictions.

Ginsberg et al. estimated weekly influenza activities by finding and monitor-
ing Google search queries that are highly correlated with CDC data, achieving
an accurate estimate with a one-day reporting lag [8]. However, their aim was
only to overcome the two week reporting lag of the CDC. No attempt was made
to help predict future numbers of ILI cases.

Dugas et al. applied a generalized linear model to Google Trends data [6] on
a city level. Similarly to Ginsberg et al. predictions of future influenza trends
was not within the scope of the research.
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Paul et al. used both Google Trends and Twitter data to forecast influenza
outbreak, but because people usually only tweet about influenza after the out-
break has happened, their research can only be used for post-verification [17].

Xie used a vector auto-regression model which factors state population den-
sity, weekly temperature, and precipitation as predictors to forecast ILI incidence
rate based on the Google Flu Trends and the CDC ILI incidence [23]. However,
the goal of her project was not as narrowly focused as eVision. It does not aim to
provide companies and health providers with an easily understood forecast of an
upcoming influenza season, and as such it cannot provide a long term forecast.

3 Vector Autoregression (VAR) Model

Regression modeling is a technique which provides a relationship between depen-
dent and independent variables. One such model is the Vector Auto Regression
(VAR) model, which generalizes the uni-variate auto regression model by allow-
ing it to include more than one predictor variable. The VAR model is thus an
extension of the Autoregression model that is used to predict multiple time
series variables using a single core model. Therefore, VAR helps in performing
multivariate time series forecasting between multiple predictors and a response
variable. This model works on the concept of lags, which means that each vari-
able is a linear combination of past lags of itself and past lags of the other
variables [18].

For example to measure three different time series variables, denoted by
T1, T2, T3 the Vector Autoregression model of order 1, denoted as VAR(1),
is as follows:

Tyl = Q1+ Q11Ti—1,1 + P12Te—1,2 + P13T4—1,3 + W1
Ty, = Qg+ Q21Tr—1,1 + P22T¢—1,2 + P23T4—1,3 + W2

Ty3 = Q3+ 0310411 + $32T¢—12 + P33T¢—1,3 + W 3

3.1 Utilization of the VAR Model for Flu Prediction

The VAR model was built in MATLAB. It was entirely constructed with the
functions provided by MATLAB’s Econometric Toolbox. Initial pre-processing
of the data was carried out and then the VAR(4) model was created. The model
was constructed using a function called varm() provided in the aforementioned
toolbox, which returns a varm object, which in turn characterizes the model [14].

The VAR model was constructed to take in the same data as the eVision
model to predict across the same distances. However, as the results (depicted in
Sect. 6.1) show, this model does not perform as accurately as eVision’s LSTM
model described below (with results in Sect. 6.2).
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4 Modifications to eVision

Prior work on eVision has established the base LSTM model which takes in the
number of ILI reported cases along with Google Trends data to make long-term
forecasts on the number of cases [20-22]. While work had previously been done
on making national level predictions using state-level data, the optimal selection
of states was not yet found and the effects of lower level division data were not
explored.

4.1 Selecting States

Adding states was the first step in augmenting national level forecasts with more
granular data.

The CDC, in addition to national level influenza statistics, provides statewide
statistics for influenza. Similarly, Google Trends provides popularity of keywords
by state. Thus eVision is capable of incorporating these state level indicators as
features to augment its predictions.

4.2 Adding Metropolitan Data

Adding metropolitan data was done as an attempt to see if the granulation of
Google Trends data would correlate to a higher level of prediction accuracy.

The municipalities on Google Trends are broken up into what were known
as Designated Market Areas (DMA). DMA are 210 regions in the Unites States
which receive the same radio and television options created by the Neilsen Media
Research firm [11]. Having the option of a metropolitan level, it allows further
testing to see if the granulated Google Trends data leads to more accurate pre-
dictions. Each of these DMA has a distinct three digit code, which Google Trends
used to differentiate the different metropolitan areas from one another.

5 Data Acquisition

5.1 Google Trends

Google Trends data was used as the basis for the LSTM and VAR models. It
provided a great level of flexibility because of the volume and scope of Google
searches that people frequently make. Google Trends data is presented in time
intervals that can range from the last 24 h to the last 10 years. The data in Google
Trends is normalized from data points that correspond to searches at a given time
and place. The data is normalized on a scale of 0-100 with respect to the time
interval allocated, with time periods of higher search frequency corresponding
to a higher number [10].

Google Trends provides data on three levels: region-wide, state-wide, and
metropolitan. The region-wide levels consist of countries across the world and
the state-wide areas consist of the 50 states plus the municipality of the District
of Columbia.
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5.2 Google Search Keywords

eVision uses four key terms: cough, flu, sore throat, and tamiflu. The search
frequency for these influenza related terms strongly correlate to the frequency
of influenza cases, making them an excellent source of information for training
the model.

5.3 Data Acquisition Accommodations Due to COVID-19

The current COVID-19 pandemic has severely skewed data for many of our rel-
evant search terms. As mentioned earlier, Google Trends comparatively ranks
search frequency on a normalized scale from 0-100. When a significant and irreg-
ular event occurs, such as a pandemic, there is usually a corresponding alteration
in search frequency for relevant terminology. This has caused an intense spike in
the number of searches for virus related keywords (cough, flu, etc.), which due
to Google’s data post processing, eliminates the variance in weekly data.

A prime example of this is the search term “fever”, which is a common
symptom for both COVID-19 and influenza. Figure 1 illustrates this discrepancy
by showing search frequency for a given time before and after COVID-19. When
using a custom time range that does not encroach upon the hysteria of COVID-
19 related Google searches, its magnitude becomes comparatively much smaller
than the time range which includes COVID-19 related searches.
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Fig. 1. Past 5 Years (blue) vs. Custom Date Range (orange) Search Frequency for
Search Term “fever” (Color figure online)

The date range used for testing was a five year interval between February
16, 2015 to February 16, 2020, who’s difference with modern data can be seen
in Fig. 1.
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5.4 Python Scraper

To obtain data from Google Trends, the publicly available Google Trends API
was utilized. Using this API, a scraper was created that was able to extract
selected data from Google Trends.

An older scraper created for the previous version of eVision [21], did not meet
all requirements for the new additions to eVision. The main features implemented
for the scraper were to allow for settings that can be toggled in order to extract
results by the regional levels that Google supported: state, metropolitan, and
country. It allows for the mass extraction of search data from any region in a
matter of seconds.

Geographical codes were needed in order to successfully distinguish between
the different regions being scraped. Since there are different scopes of regions
that can be searched, Google Trends differentiates the geographical scopes in
distinct ways. The way that the API accepts inputs for search terms such as
geographical region, date range, etc., is by the URL of a search term on the
Google Trends site as depicted in Fig. 2.

C) https://trends.google.com/trends/explore€date=2015-02-16%202020-02-2 geo@q@ ¢

Fig. 2. Standard URL for Google Trends search

In order for the scraper to be able to yield data from different regions, a
database of country, state, and metropolitan codes was needed. This is because
Google differentiates locations by ISO 3166-2 codes for countries and states,
while using DMA codes for metropolitan areas. These codes would be needed
as an essential parameter within the scraper that would allow it to scrape data
from any area in the world.

A list of all the existing DMA codes in the United States was found online
[15], along with a comprehensive database of country and state codes from a
public GitHub repository [7]. This proved to be sufficient to allow the scraper
to swiftly and efficiently extract data from any region in the US recorded by
Google Trends.

5.5 Data Selection

In addition to including a national forecast without any states and a forecast with
all states to serve as comparative baselines, two main approaches for selecting
states with which to make the prediction were undertaken: selecting states with
the highest population and selecting those which are the largest transit hubs
with the highest level of traffic.
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For selecting the states that have the highest level of international trans-
portation, it was decided that the largest ports of entry and the states with the
busiest airports would be used. To find the busiest airports, the total number
of passengers each airport reported to have serviced in the year 2019 was stud-
ied, and the six airports that serviced over 60 million passengers that year were
selected. These airports were located in the states of Georgia, California, Illinois,
Texas, Colorado, and New York.

Airports were selected as they represent the most rapid and commonly used
method of transportation into the United States, especially from countries that
do not directly border it. As such, it represents a major vector of disease trans-
mission from abroad, and it could be argued that these busiest transit states
would exhibit a growth in infections before the national average begins to in any
significant way. Thus, under this hypothesis, data of infections in these states
would be useful for predicting the total amount of infections in the future.

Data on the busiest ports of entry into the United States from Mexico and
Canada was gathered from the Department of Transportation’s Bureau of Trans-
portation Statistics. Data from 2019 shows that San Ysidro, California and El
Paso, Texas were by far the largest ports of entry with Buffalo, New York com-
ing in as a distant third. The logic behind these three states serving as useful
precursors to a national epidemic is the same as with airports.

The six highest population states were chosen to contrast with the airport
selection, with an anomaly in the Floridian data resulting in two versions being
created with and without the state. The anomaly in question is that in the CDC
FluView state by state records of influenza like illnesses, data from Florida is
not included resulting in it appearing as if it has always had no cases. While this
does not prevent data gathered on the google keyword trends in Florida, it was
determined that this could be harmful to the model and a version of the data
without Florida was generated to determine if this was the case.

As previous research has determined that national level predictions can be
enhanced with state level data, it raised the question of whether or not metropoli-
tan level data could enhance these predictions further.

In order to explore this possibility, four data sets were made consisting of
the top five, ten, fifteen, and twenty most populated metropolitan areas in the
United States and their Google keyword search results. National level predictions
were made using only national data and the metropolitan data sets. Predictions
were run with and without state data as well to observe the effect of including
all three levels.

For the purposes of investigating the ability for metropolitan level data to
boost state level predictions, a simple set of predictions were made for California,
Texas, and New York, using the state data sets alone for each of them, followed
by collecting metropolitan data sets for every metropolitan area that Google
Trends collected data for in each state.
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6 Results

The calculation error is measured using the same metrics established in the pre-
vious paper on eVision [21]. Originally Mean Absolute Percentage Error (MAPE)
[4] was used to determine error, but after review it was determined that Symmet-
ric Mean Absolute Percentage Error (SMAPE) [13] would be a more effective
metric to make use of. The methodology behind the construction of the con-
fidence intervals in use for the LSTM results were also not changed from the
aforementioned paper.

6.1 VAR Results

Various forecasts were conducted with the VAR model in order to compare its
results with the ones of the LSTM model. Table 1 contains the series of national
VAR forecasts, including SMAPE scores for 3, 7, and 14 weeks ahead predictions.

Table 1. VAR national forecast results

Forecast States 3 week SMAPE | 7week SMAPE | 14 week SMAPE
National all All states 28.31 36.98 41.21
National ports of entry | CA, TX, NY 30.12 43.98 51.15
National population CA, TX, FL, NY, PA, IL | 32.96 48.10 67.80
National only N/A 32.10 40.79 72.22

The best results were obtained for the national level prediction when all the
states were included. Across every forecast, the level of error increased the further
out the prediction was made. The best national results given by VAR was an
error rate of 28.31%, 36.98%, and 41.21%, for 3, 7, and 14 weeks respectively. In
the case of a curated selection of states, the Top 3 largest Ports of Entry proved
to be a better selection of states than using the 6 largest population states.
The results for 3 weeks ahead prediction between both selections was 2.84%, and
the difference only rose to 4.12% for 7weeks, but for the 14 week forecast the
difference became a significant 16.65%.

Finally, the model provided with national data only had the most varied
performance. With SMAPE errors of 32.1%, 40.79%, and 72.22% for 3, 7, and
14 weeks, its placement varies from third to second to last place respectively. The
resulting graphs produced by these predictions can be seen in Fig. 3 For all the
results obtained, it can be seen that the forecast for initial weeks matched the
number of cases but completely missed the peak period, leading to high SMAPE
as compared to the LSTM model.

The results in Fig. 3 were promising for 3 weeks ahead predictions but failed
as the length of the prediction was increased. Considering different combinations
of states for forecasting on the National level, the results were almost the same.
For all the results, the model is unable to predict the peaks at the expected time
interval.
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State Level Forecast. Forecasts were also created to for state level predictions
using no further outside data to augment them. The states selected for examina-
tion were California, Texas, and New York as they are held in common between
the population selection and the ports of entry selection.
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Fig. 4. Top: Texas only (3, 7, 14 weeks) Bottom: New York only (3, 7, 14 weeks)

The following Table 2 contains the SMAPE scores for the state forecasts at
3, 7, and 14 weeks ahead predictions.

Figure 4 demonstrates the results for the Texas and New York predictions.
It should be noted that although the Texas forecasts have significantly higher
SMAPE scores than the New York forecasts, the utility of the predictions gen-
erated are both abysmal as can be seen in the figure. Although both California
and Texas manage to obtain error rates of 30% in their 3 week forecasts, and
7 week forecast, in the case of California these forecasts fail to consistently pro-
vide accurate information on the start, peak, and magnitude of an influenza
outbreak.
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Table 2. VAR state forecast results

Forecast VAR | SMAPE 3 week | SMAPE 7 week | SMAPE 14 week
California only | 23.52 27.00 41.62
New York only | 56.16 57.17 61.76
Texas only 27.43 31.69 47.64

Overall Model Analysis. The regression model used here generates hypothesis
functions which produce a nonlinear curve. From the results obtained, it can be
seen that the model was unable to predict the peak week of an outbreak, missing
its mark by 10 weeks when it predicts an outbreak at all.

Therefore, it can be inferred from these results that this model under-fits
on the data, and as such fails to extrapolate useful patterns with which it can
create accurate predictions. It even fails to capture patters as basic as continuing
a steady rise in cases until a shift downwards is noticed. All results generated in
the VAR model would be greatly improved upon with the LSTM model, which
makes use of recursive neural networks to ensure that the problem of under-
fitting would be avoided and that long term patterns could be noticed in order
to provide accurate, and long term forecasts.

6.2 LSTM Results

Numerous trails were conducted with the LSTM in order to determine the effects
of various combinations of states, as well as the inclusion of Google keyword
popularity in metropolitan areas on the accuracy of national and state forecasts.
The results of these trails are included in the tables below, with SMAPE scores
for three different extents of prediction, 3 weeks, 7 weeks, and 14 weeks ahead of
the present week.

Two other important measures consist of the ability for a model to predict
the peak week of a influenza outbreak, and its ability to predict the number of
reported cases. While these two are related to the SMAPE score, severe failures
on either measure would cause significant damage to the score as they are not
directly related and it is possible for one model to have a higher SMAPE score
than another yet fall behind on other metrics.

Most Effective State Selection for National Forecast. While there is no
one selection of states that performed the best across all levels of forecasts, in
fact each level performs best with a different selection, there are some important
patterns that can be gleaned from the data.

The first point that stands out is the clustering that occurs in the accu-
racy between the levels of forecast. Across every national forecast, the difference
between the SMAPE score for the 3 week and 7 week forecasts are less than the
difference between either level of forecast and the 14 week forecasts.
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Table 3. State selection for national forecast

Forecast States 3 weeks 7 weeks 14 weeks
SMAPE |SMAPE |SMAPE

National airports GA, CA, IL, TX, CO, NY | 10.85 10.43 18.26

National all All states 19.69 16.08 23.22

National ports of CA, TX, NY 09.87 08.57 22.56

entry

National CA, TX, FL, NY, PA, IL |11.85 09.10 19.80

population

National CA, TX, NY, PA, IL 09.62 08.96 20.68

population Sans

Florida

National only N/A 11.89 12.00 25.82

Table 4. Effect of metropolitan data on national forecast

Forecast 3 weeks SMAPE | 7weeks SMAPE | 14 weeks SMAPE
National top 5 metros 11.02 12.72 26.39
National top 10 metros 10.87 10.33 19.47
National top 15 metros 12.67 09.89 23.77
National top 20 metros 12.27 11.06 23.73
National top 10 with states | 11.56 10.23 21.47
National top 10 states only | 10.31 10.08 21.33
National top 20 with states | 15.07 10.46 25.62
National top 20 states only | 10.60 12.01 20.22

Table 5. Effect of metropolitan data on state forecast

Forecast SMAPE 3 week | SMAPE 7week | SMAPE 14 week
California metro | 14.34 16.07 20.84
California only | 37.01 23.28 18.54
New York metro | 20.43 22.79 33.35
New York only |38.42 13.03 29.32
Texas metro 19.85 19.40 41.37
Texas only 20.20 25.13 35.77

The 14 week forecasts also notably always show a higher level of SMAPE
error than any of the earlier weeks. However, as can be seen in Fig. 5, a model’s
predictions can still be useful even when they do not follow the results of the
outbreak perfectly. For the first outbreak in the testing data, the model is able to
determine the peak week of the outbreak within one week of error, while keeping
the number of cases comfortably within the confidence intervals. Although the
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model performs more poorly after that point, it maps a general path of the virus
in the off season, and more importantly, manages to keep the second outbreak
at the end of the testing data close to its maximum confidence interval. Another
consistent pattern is that the magnitude of the sharp, second outbreak is best
captured by the 14 week forecasts.

The second point of note is that the no states added and all states added
categories both performed worse than any of the curated state selections. As can
be seen in Table 3 the all state model demonstrates the worst performance in
the 3 and 7week levels achieving 19.69% and 16.89% error rates respectively,
far worse than any other model. While it does perform better in the 14 week
forecast, it only does so by 2.6%. Furthermore, the accuracy with which the all
state model predicts the magnitude and location of the peak week is worse than
the no state model, which are the main benefits of the 14 week forecast to begin
with.

The models based on largest ports of entry and highest population states,
excluding Florida, are the only models that manage to break below 10% error
in the 3 week forecast, and 9% error in the seven week forecast. Of the two, the
model based on population performs best in the 3 week and 14 week forecast, but
the ports of entry model achieves the lowest SMAPE score of only 8.57% error in
the 7week forecast. As can be seen in Fig. 6 the overall results are qualitatively
similar, and it should be noted that the major difference between the two data
sets is the inclusion of the states of Pennsylvania and Illinois in the population
model.

Finally, the last major point of note can be seen in the effect that the inclusion
of the state of Florida has in the population model compared to the one that
excludes it. Similar to the no states/all states comparison, excluding Florida
allowed the population model to perform better in the 3 and 7 week levels, but
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Fig. 6. Top: Ports of Entry (3, 7, 14 weeks) Bottom: Population sans FL (3, 7, 14 weeks)

in the 14 week level it performed 0.88% worse than the model containing Florida’s
ILI cases and keyword trends. In terms of the magnitude and peak week location
measures, the two models also perform similarly, with only minor differences in
the 3week and 7week forecasts where the Florida excluding model provides a
better measure of the number of cases in the first outbreak in the testing data.

Effect of Metropolitan Data on National Forecast. For the models con-
sisting of the top metropolitan areas, the results follow a pattern similar to state
selection. The model performs worse both in the case of being provided with
too little supporting data, and when provided with too many features. As each
metropolitan data has four keywords to keep track of each as their own inde-
pendent feature, the total number of metropolitan features can reach as many
as 80 in the case of the Top 20 model.

Overall, the best performing model of the four was the Top 10 model as can
be seen in Table 4. Achieving the best SMAPE scores for the 3 week and 14 week
levels, and coming just 0.44% short of the best 7 week result, the model provides
the most consistently accurate results across the three levels of forecast. With a
total of 40 features added from the keyword trends, it has a higher feature count
than most state selections, though only by ten.

Two additional models were created for the Top 10 and Top 20 data sets,
adding the data for every state of the metropolitan areas as well as including a
data set with only the state data. In all but a single case, the 7 week forecast for
the Top 20 model, the models with both state and metropolitan data performed
worse than either of the two data types alone. This was expected as adding state
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data would increase the number of features and harm the LSTM’s ability to
detect patterns.

When placing the two data types head to head against each other, it can
generally be said that state data performs better at the 3 and 7 week levels,
though the difference is more pronounced in the case of the Top 20 model.
In the case of the 14 week forecast, the metropolitan data does manage to out-
perform the state data by 1.86% in the Top 10 model, where as the Top 20 shows
the state data 3.51% more accurately. The most likely source of the superiority
of the state level data would be their ILI data. Though as can be seen in the
results, the benefits of the ILI data prove to be mostly marginal compared to
the keyword trends data.

Effect of Metropolitan Data on State Forecast. The major outstanding
pattern with regards to applying metropolitan data to state level forecasts is
that there is no major pattern.

Smaller patterns do exist, such as metropolitan augmented forecasts per-
forming worse at the 14 week forecast across all three states as can be seen in
Table 5. But beyond that the results become more varied, such as the metropoli-
tan data increasing accuracy in the 3 week forecasts, but with its improvements
varying from highly significant in California (22.67%), to almost negligible in
Texas (0.35%). In the case of the 7week forecast, metropolitan data aids in the
case of California and Texas, but adds even higher error in the case of New York.
Furthermore, it should also be noted that this was not an exhaustive study of
the effects of metropolitan data on state level forecasting. The states of Califor-
nia, New York, and Texas were examined as they were the states that appeared
in every stat selection for national level predictions. The inconsistencies in the
results here may suggest that the utility of metropolitan level forecasts may
vary depending on the state in question. Further study will be required to draw
serious conclusions, particularly in the case of low population states.

7 Future Work

7.1 Google Trends Data Ranges and Adjustments

As aresult of the COVID-19 outbreak, a lot of the data has been skewed. Because
of this, the model is currently trained on data predating the outbreak so that it
would not be affected by this anomaly. However, the end goal of this software
is for it to be practical for commercial use by pharmaceutical companies, which
necessitates the creation of a solution to the current skewing of Google Trends
data. This is because, in the future, there will likely still be a level of corruption
in Google Trends data from COVID-19.

It may be possible to simply omit that data and work around it, but it is
unknown how a missing chunk of data will affect the model’s ability to make
accurate predictions.
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7.2 Influenza Strain-Level Predictions

The model is also expected to be able to predict the trends of influenza strains.
There are four distinct strains of influenza: A, B, C, and D. Of these strains,
influenza types A and B lead to the majority of influenza cases [5].

Ideally, predictions for different influenza strains would yield similar results
as the influenza forecaster. However, this may need to be achieved through a
different means than what is currently done. Types A and B do not have dis-
tinguishing symptoms [19], therefore symptoms of the strains cannot be used to
predict the trends.

However, there are some general trends of the timing of the dominant strain,
with type A being most prevalent at the start of the flu season and type B
becoming more frequent in the latter half of the season [19]. Common trends
of timing like this will be the starting point in helping the model determine a
dominant strain during a given period of time.

7.3 Ease of Use

For future versions of eVision, there are hopes for a more uniform prediction
process. Currently, there exists a multi-step prediction process involving run-
ning the Python scraper, acquiring the data, and running the MATLAB script
that makes the prediction. There is the end goal of making the entirety of the
model mostly autonomous by having the model run continually on a server. This
will allow the model to make predictions more frequently and no longer require
trained programmers to make edits to allow for said predictions.

There is also hope to incorporate a user-friendly and simplistic UL. The end
goal for eVision has always been for it to be a tool used by pharmaceutical
companies and healthcare providers to gauge the quantity of tester kits, vaccines,
and medication they need to manufacture or resources they need to allocate in
order to prevent and treat Influenza. Having a quality GUI for instance, will
allow for its ease of use by even nontechnical staff at said organizations.

8 Conclusion

Through adding state level predictions in order to enhance national predictions
and utilizing metropolitan area keyword trends to improve both state level and
national predictions, eVision’s success in making 3, 7, and 14 weeks in advance
predictions were improved from 88.11%, 88%, and 74.18% accuracy to 90.38%,
91.43%, and 81.74% respectively. Furthermore, it was determined that the LSTM
model is superior to the VAR model on all counts, and that generally speaking
for national level forecasts state level data is superior to metropolitan data or
a mixture of the two. Meaning, granularity in prediction is helpful in improving
overall prediction as long as the grains are not selected to be too small, and not
too many of them are selected such that the model is overwhelmed with features.
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