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Abstract. The problem of stress detection and classification has attr-
acted a lot of attention in the past decade. It has been tackled with
mainly two different approaches, where signals were either collected in
ambulatory settings, which can be limited to the period of presence in
the hospital, or in continuous mode in the field. A sensor-based con-
tinuous measurement of stress in daily life has a potential to increase
awareness of patterns of stress occurrence. In this work, we first present
a data-flow infrastructure suitable for two types of studies that conforms
with the data protection requirements of the ethics committee monitor-
ing the research on humans. The detection and binary classification of
stress events is compared with three different machine learning models
based on the features (meta-data) extracted from physiological signals
acquired in laboratory conditions and ground-truth stress level informa-
tion provided by the subjects themselves via questionnaires associated
with these features. The main signals considered in current classification
are electro-dermal activity (EDA) and blood volume pulse (BVP) sig-
nals. Different models are compared and the best configuration yields an
F1 score of 0.71 (random baseline: 0.48). The importance on prediction of
phasic and tonic EDA components is also investigated. Our results also
pave the way for further work on this topic with both machine learning
approaches and signal processing directions.

Keywords: Physiological monitoring · Stress prediction · Sympathetic
and parasympathetic activation · Affective computing ·
Telemonitoring · Self-management systems

1 Introduction

At the physiological level, stress is an organism’s response to some external
stimuli, or a challenge. In presence of stressor, the “fight or flight” response is
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activated through the sympathetic nervous system (SNS), which results in release
of cortisol and adrenaline, leading to heart rate increase, sweating, and increased
concentration of all senses on current situation. The parasympathetic nervous
system (PSNS) works in concert with SNS. Its main function is to activate
the ‘rest and digest’ response and return the body to homeostasis after the
“fight or flight” response. This results in a reversion of the physical effects of
SNS activation and particularly in a heart-rate decrease. Both SNS and PSNS
represent the autonomous nervous system (ANS).

In a sense, stress is a natural reaction of the organism. However, there exist
many studies showing the link between stress and illnesses [18]. This means that
it is not the fact of stress that causes problems to the organism, it is the level of
stress that might be excessive to an organism, such that the PSNS fails to return
it to homeostasis. Such an excessive and often prolonged stress is called a distress.
Identification of distress is not simple, since asking a person about how she or he
thinks, or feel is susceptible to a wide range of biases since humans are very often
not even aware of how they are affected by various stimuli or situations. This
way, it is important to give an objective quantitative evaluation to the level of
stress and study the activation of ANS as the first step towards definition of the
border between a positive stimulation of the organism and distress. This may
allow to not only detect the stress conditions leading to distress, but potentially
reduce the fear of stress and its unnecessary consequences.

The approaches to stress detection can be roughly classified into: 1) those
performed in the ambulatory setting during a relatively short period of time,
and 2) those that are performed during the long term when the participant
continue his/her normal life activities. The signals reflecting the ANS activity,
can be divided into physiological, such as, for example, electro-dermal activity
(EDA) [4], heart rate (HR), heart rate variability (HRV) [15], and levels of
cortisol [13,20], and behavioural, such as smartphone activity statistics [16], and
annotated geolocation. It is clear that experiment settings define the set of signals
that must be considered as more reliable for that experiment. It is obvious that
behavioural signals make much less sense in the ambulatory settings as well as
the level of cortisol, since its level is a subject to circadian rhythms. The other
physiological signals (EDA, HR, and HRV), in contrast, are less reliable in long
terms studies since they are often heavily corrupted with the movement artifacts
that are difficult to filter out. However, their good classification in the laboratory
setting could help to find the means to improve their use in the long term studies.

The ultimate goal of our study is a system for real-life seamless monitoring
of stress. Therefore, we have first created a data-flow application suitable for
two types of studies that conforms with the data protection requirements of the
ethics committee monitoring the research on humans, as described in this paper.

The stress classification approach presented in this paper is covering the
experiments performed in the laboratory setting during which EDA, and HRV
signals were collected by means of the Empatica E4 wrist bracelet. The partic-
ipants of the experiment were induced with four types of stress stimuli, aiming
to provoke emotional, intellectual, and physical activity types of stress as well as
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pain, alternated with relaxation periods. The signals are annotated with the indi-
cators of relative changes of perceived stress levels provided by each participant.
Further, all the signals are processed and vectors of important signals features
are extracted. The vectors of signal features with stress indicators are then com-
bined into simple or multiple windows and given as an input to machine learning
based models. Furthermore, a comparison of deep learning models is presented.

This paper is organized as follows: Sect. 2 presents related work for stress
evaluation, Sect. 3 provides details on the dataset, Sect. 4 presents details of
each data-flow step and Sect. 5 discuss experimental results. Finally, in Sect. 6
we summarize the importance of our contribution and suggest some future work.

2 Related Work

Several works proposed in literature aim to detect the condition of stress and
estimate the level of mental effort by using wearable sensors and mobile appli-
cations, such as in [3] and [12], which have demonstrated that smartphone data
can be used for mood classification.

Physiological measures such as EDA, HR and HRV are frequently used in
studies related to affection and well-being [16]. [6] proposes a smart-watch based
system to collect and analyses biosignal data to detect unobtrusively and at
low cost mental stress condition during daily life activities. In particular, EDA
has long been used to study a variety of physiological subjects including stress,
emotion, depression, anxiety, attention and information processing [7]. In [16] the
link between EDA and stress is explored. In the same study, the authors collected
data for the analysis and prediction of stress from smartphone logs. [14] proves
that the EDA is sensitive to cognitive stress during water immersion while others
used derivatives of the BVP signal as in [9] where information on respiratory rate
(RR) and HRV is analyzed to obtain reliable interpretation parameters for stress
assessment.

Some works have also added other types of data to better support their
results as in [2] which adds diameter of the pupil to the characteristics of the
user’s physiological signals such as blood volume pulse (BVP) providing HRV,
galvanic skin response (GSR), i.e. EDA, and temperature of the skin, to provide
a system for detecting stress. In [10], a classification method to determine stress
on GSR and speech was proposed. In our work we are focusing on signals that
can be acquired in a seamless manned in everyday life. Therefore, we are not
considering pupil dilatation as a potential physiological measure for our system,
even though we admit that it is a useful indicator of stress. Though, we might
consider speech recognition as a potential extension of our system in the future.

The wide variety of classification algorithms have been applied to tackle the
classification problem. In [2], signal processing techniques were applied to the
physiological signals monitored to extract characteristics used by various learning
algorithms: Naive Bayes, decision trees, and SVM to classify relaxed states (non-
stress) compared to stressed states (stress). In [10], the decision tree, K-means
clustering, and support vector machine (SVM) classifiers were proposed. In [6] a
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KNN classifier was used to predict stress, from the body temperature, GSR and
RR interval. The signals were collected to detect mental stress generated by the
subject solving the Tower of Hanoi puzzle. This work [21] used logistic regression
to predict the probability of stress state. In [11], the authors use a deep learning
model with 7 hidden layers to predict stress state using EEG signal. It is common
to classify stress with a binary class as in [8], with an RNN algorithm detecting
stress from a voice signal.

The most relevant to our approach is the method of WESAD experiment [17],
during which a multi modal data set was collected for stress classification and
tested by several algorithms based on physiological data. Data collection was
carried out in the laboratory. A binary definition of stress (stress, non-stress),
as well as a three-class definition (baseline, stress, and amusement), are tested.
However, all the tested algorithms are based on single sequence inputs, such as
decision trees, kNN, or AdaBoost.

3 Data Collection

In this section, we describe how the DESY dataset used for the detection and
classification of stress was collected.

The signals were acquired from 6 students of our university who have
signed the consent form. The study protocol (see Sect. 3.1) was approved by
the ethics committee on human resource (CER-VD) [1]. Exclusion criteria,
stated in the study invitation, were pregnancy or lactation, major psycho-neuro-
endocrinological or cardiac diseases and mental disorders, as well as participants
having insufficient knowledge of the project language. All selected subject wore
the Empatica E4 bracelet on their non dominant hand and the E4 records BVP
(64 Hz), EDA (4 Hz), TEMP (4 Hz), and ACC (32 Hz) were recorded during the
whole study. For more details about collected signals see Sect. 4. All the collected
data were carefully anonymized.

3.1 Study Protocol

The goal of this experiment was to record physiological signals that will have the
least possible movement induced artifacts often corrupting the physiological data
collected using wearable technologies. Therefore, this experiment was performed
in the laboratory conditions, while the participants were asked to make as little as
possible movement with the hand with the bracelet to avoid as much as possible
the movement artifacts. As the possible sources of stress we have selected the
emotional arousal, intellectual efforts, physical exercises, and pain.

In order to allow each participant to come to his/her baseline condition the
experiment was started by filling in a small questionnaire that was used further
to define the subjective level of the current health and stress conditions. The
participants were asked to answer the following questions using the 5 grade-
scale:
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– In general, my health is... - [Excellent (5) .. Poor (1)]
– I feel energetic... - [All of the time (5) .. Almost never (1)]
– Personality: I often stress when unexpected and difficult situations arise -

[Strongly agree (5) .. Strongly disagree (1)]
– Daily activities: I stressed a lot in the past 24 h - [Strongly agree (5) .. Strongly

disagree (1)]
– Sleep quality (1): I had trouble sleeping and had many sleep disturbances last

night - [Strongly agree (5) .. Strongly disagree (1)]
– Sleep quality (2): I did not sleep in the past 24 h - [Strongly agree (5) ..

Strongly disagree (1)]
– Sleep quality (3): I had trouble sleeping and had many sleep disturbances in

the past month - [Strongly agree (5) .. Strongly disagree (1)]
– Right now, I fell... - [Relaxed (5) .. Stressed (1)]

Fig. 1. An example of sequence of stressful and relaxing events with questionnaires.
Note that each participant had his own order of stressful events.

To emulate each of the sources of stress each participant was asked to perform
different activities. This way:

1. Emotional arousal was stimulated by showing a scary video during about
3 min;

2. Intellectual efforts was done by solving some riddles that were chosen by each
participant randomly from a bunch of riddles printed on a paper (2–3 min);

3. Physical activity was represented by series of squats (2–3 min);
4. Pain was emulated by letting the participant to put his hand in the icy water

for 1–2 min.

Each volunteer was participating in the above described studies with the ran-
domized order of stress test to avoid influence of the order of stressful events
on the results of classification. Each stressful period was followed by minimum
7 min of relaxation with some peaceful music and videos of the nature.

After each period (stressful or relaxed) of the experiment, each participate
was asked to report their perceived stress level regarding the just finished activity
describing it as either of the following: 1) I feel more relaxed, 2) No difference,
3) I feel less relaxed, and 4) I feel more stressed. An example of the sequence of
stressful and relaxing events is shown on Fig. 1.
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4 Methods

The general architecture of the dataflow in our data processing chain is presented
on Fig. 2. It starts with the raw physiological signals collected from bracelet sen-
sors (1), which are further sent to the mobile application (2). Next, the data flow
is securely sent to the RedCap platform (3), frequently used and recommended
for managing medical data. The data are stored in the cloud for further extrac-
tion of various features (4) using our proprietary signal processing and feature
extraction algorithms. After signal processing, the features are sent back sent to
the REDCap cloud. Further, the data are picked up by a classification algorithm
(5) capable of predicting the stressful events (6).

Fig. 2. The general architecture of the dataflow.

4.1 Wearable Sensor

The Empatica E4 bracelet1, the device that was used for this work, offers the
acquisition of physiological signals in real-time. The company has made avail-
able the Empatica Connect platform2, which allows to visualise the graphs corre-
sponding to the different signals. The bracelet works in two modes: (a) streaming
mode: the bracelet connects via Bluetooth with the mobile application, and (b)
recording mode: the wristband records the data in the internal memory, while it
can record up to 60 h. The Empatica E4 bracelet is equipped with the following
physiological sensors:

– EDA Sensor (or GSR Sensor): The skin is the only tissue of human body that
is innervated by only SNS branches of the ANS and not by PNS branch fibres.

1 https://www.empatica.com/en-eu/research/e4.
2 https://www.empatica.com/connect.

https://www.empatica.com/en-eu/research/e4
https://www.empatica.com/connect
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Activation of the SNS provokes activation of sweat gland and thereby reduc-
ing skin electrical resistance and increasing conductance, whose fluctuating
changes are measured by the EDA sensor in µSiemens. Consists of a tonic
(referred to as skin conductance level (SCL)) and a phasic (skin conductance
response (SCR)) component.

– PPG Sensor (Photoplethysmography Sensor) measures the blood volume
pulse (BVP) from which two important signals can be derived: (1) heart
rate (HR), and the inter-beat-interval (IBI). The blood volume pulse is mea-
sured in nanoWatts, heart rate HR in beats per minute (bpm), while IBI is
measured in time periods between two consecutive beats.

– Infrared Thermopile: measures the temperature of the skin and contains the
data measured in celsius degrees.

– 3-axis Accelerometer (ACC): measures activity based on motion, contains
the data of the 3-axis channels (x, y, and z) accelerometer sensor. It mea-
sures continuous gravitational force (g) applied to each of the three spacial
dimensions.

As was already mentioned earlier, in our study, we have used the signals
acquired only with EDA and PPG sensors. We believe that skin temperature is
greatly influenced by the temperature of the environment and therefore without
knowing the real environmental conditions it would be difficult to receive a
meaningful informations out of that particular signals. ACC signal, in contrast,
is very useful, especially for classification of different types of stress, in particular
differentiation between physical activity, with intensive movements or pain, with
abrupt movement, and emotional/intellectual stress, with minimal movements.
However, in this work we aim at binary classification, and therefore, the ACC
signal is not used in the current study. Once we extend the use of our prediction
model to the 5-class stress identification, this signal will be used.

4.2 Mobile Application

In order to perform experiments we have developed our proprietary mobile appli-
cation for Android mobile platform with a user-friendly frontend and a backend
performing three basic features, such as:

1. Data collection from the Empatica E4 bracelet and its temporal storage at
the smartphone;

2. Questionnaire, allowing to collect the perceived level of stress by each
participant;

3. Secure transmission of the recorded data into the RedCap database.

As temporary storage before sending data to cloud REDCap database at
the end of each experiment an intern database (SQlite) was used. Once the
experiment was over, all the signals were converted into the comma-separated
values (CSV) format and were sent to the cloud for further processing.
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4.3 REDCap Database

There exist several secure solutions to support human health data collection and
storage. REDCap3 is one of those with the further advantage of being available
for free for research purposes. REDCap is a secure web application for building
and managing online surveys and databases. REDCap provides multiple use-
ful features, including secure mailing facilities supporting exchange of big data
among researcher participants, as well as a built-in project calendar, a schedul-
ing module, and ad hoc reporting tools. One feature of interest is the REDCap
Mobile App interface that allows collecting data offline, for example, by a mobile
device when there is no Wi-Fi or cellular connection, and then, later, sync data
back to the server.

The logical portions of data in REDCap are grouped as ‘Instruments’. The
instruments of the DESY database in REDCap can be classified into communi-
cations with participants of the experiment (e.g. consent form), and ‘instruments
folders’ containing raw signals, features extracted from the raw signals, and ques-
tionnaires, providing ground-truth information.

4.4 Signal Processing

Signal processing was automatized, such that in one click all the available signal
processing techniques are performed on the raw data following the steps:

1. Getting the raw data from the REDCap;
2. Signal processing, analysis and restoration;
3. Features extraction;
4. Sending processed signals and features to REDCap.

It is quite often that the signals recorded by Empatica E4 bracelet are incom-
plete, such that some data are lost. This usually happens if the signal quality
was not good enough, for example, due to the weak connection of the PPG sen-
sor with the wrist. However, since feature extraction is done by small portions
from a part of signal selected by a window of as parameterized size sliding over
the signal with a regular step, it is crucial to have a complete signal. Therefore,
we have developed several methods for restoration of lost data based on another
available signal.

After analyzing the collected data, we have discovered that the most cor-
rupted physiological signal among those collected from E4 is the BVP signal
of the PPG sensor. However, it is rare that the data are lost from more than
20 s, especially when the experiments are performed in laboratory setting with
minimum movements during the experiment. Therefore, first of all we have imple-
mented an algorithm for HR signal extraction from BVP E4 signal by using a
simple Fast Fourier Transform (FFT) for a sliding window size (i.e. 30 s, 1 min
etc.) of the signal with a variable step that can be chosen according to the need,
e.g. 1 s, 5 s, 30 s, etc.

3 https://www.project-redcap.org/.

https://www.project-redcap.org/
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Apart from the raw BVP signal, Empatica E4 bracelet provides the IBI sig-
nal, the derivative of the BVP, representing the series of time interval between
individual beats of the participant heart, largely used in the HRV analysis (see
Sect. 4.5). Since IBI signal is build directly from the BVP signal that has missing
data, it also has missing data in the same time periods. However, the reconstruc-
tion of IBI signal is simpler than of the raw BVP. Therefore, we have developed
another algorithm that is reconstructing the missing parts of the IBI signal from
the HR signal extracted using our first algorithm. Such a reconstruction cannot
result in an ideal signal. Therefore, we also create a vector of quality of each
value of the IBI time series with three quality levels, where level 0 corresponds
to an optimal quality (the values provided by Empatica E4), level 2 - are the
values reconstructed from the HR, and level 3 - values that have no meaning.
Currently, this vector is not used but in our future work it is planned to be used
by the classification algorithm to weight the credibility of the data.

4.5 Features Extracted

The main signals used for classification were the IBI and EDA. This section
summarizes the features extracted from these two signals.

HRV Analysis: IBI signal analysis is often also called HRV analysis, and it
is the study of variations in the instantaneous heart rate time series using the
beat-to-beat RR-intervals (the RR tachogram, not to confuse with Respiratory
Rate (RR)). There exist three main approaches to HRV analysis: 1) time-domain
based, 2) frequency domain based, and 3) geometrical methods. The HR may be
increased due to activation of the SNS or decreased due to PSNS (vagal) activity.
While, in opposite, the variability of HR is decreasing with the activation of the
SNS and increasing with PSNS, leading to the decrease (for SNS) and increase
(for PSNS) of standard deviation (STD) of RR-intervals. The balance between
the effects of SNS and PSNS, is called sympathovagal balance and is believed to
be reflected in the beat-to-beat changes of the cardiac cycle. The time domain
features (mostly various calculations of STD of RR-intervals) used in our study
are presented in Table 1. While the frequency domain and geometrical domain
features are presented in Table 2 and 3, respectively.

Table 1. Time domain features

Feature Formula

Standard deviation SDNN = 1
N−1

√
(
∑N

i=1(RRi − RR)2)

Coefficient of variation CV = SDNN
RR

Standard deviation of the average RR
interval

SDSD = 1
N−1

√
(
∑N−1

i=1 (ΔRRi − ΔRR)2)
ΔRRi = RRi+1 − RRi

Mean difference of successive NN intervals RMSSD = 1
N−1

√
(
∑N−1

i=1 (RRi+1 − RRi)2)

Number of RR intervals NN50

Vagus activity pNN50 = NN50
(N−1)
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Table 2. Frequency domain features

Feature Formula Meaning

The power of the complete
signal

TP Associated with the
hypothalamic-pituitary
complex activity

High frequency 0.15–0.4 Hz HF Associated with breathing
arrhythmia and PSNS
activity. Subject to
circadian rhythms 24 h
signal analyzed

Normalized HF nHF = HF/TP

Low frequency 0.04–0.15 Hz LW Slow waves of first order,
SNS activity. Subject to
circadian rhythms if 24 h
signal analyzed

Normalized LF nLF = LF/TP Grows with SNS
activation, since TP goes
down and LF does not
change

Index of vagosympathetic
cooperation

LF/HF

Very low frequency
0.015–0.04 Hz

V LF Psycho-emotional tension

Ultra low frequency
<0.003 Hz

ULF Is measured only for long
term signals (≈24 h).
Subject to circadian
rhythm. Therefore, it was
not used in our study

Index of centralization IC = (V LF + LF )/HF

Table 3. Geometrical domain features

Feature Formula

Mode of the histogram Mo

Amplitude of the histogram AMo

Width of the histogram DeltaX(TINN)

Width normalized value DealtaX/RR

Index of SNS activity SNSind = AMo/(2 ∗ Mo ∗ deltaX)

Index of PSNS activity PSNSind = 1/(Mo ∗ deltaX)
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Table 4. EDA time domain features

Description Feature

SCR amplitude peak counts EDApeakCount

The minimum value found in the section EDAMIN

The maximum value in the section EDAMAX

Area under curve EDAAUC

Mean of first order derivatives EDAMEAN derivative

Mean of negative values of first order derivatives EDAMEAN negative derivative

Hjorth features [19] EDAcomplexity

EDA Analysis. The overall signal called EDA of electrodermal activity consists
of two components. One of the components is the EDA general tonic level which
relates to an overall signal level, the most common measure of this component is
the SCL and the changes in the SCL are believed to reflect the general changes
in autonomic arousal. The value of SCL can vary widely, typically between 2–20
µS, due to environmental and personal factors [5]. The second component is the
phasic component and this refers to the fast response variations of the signal in
the form of peaks, i.e. the SCRs, and appears either in response to a stimulus or
without evident stimulation. These instantaneous peaks can be characterized by
a rise time, amplitude and a half recovery time. In healthy adults, the rise time
is usually between 1 and 3 s, the amplitude often varies (a minimum is usually
between 0.01 and 0.05 µS), and the half recovery time is usually between 2 and
10 s [5]. The example of an EDA signal annotated with stress stimuli is presented
on Fig. 3.

From these signals we can extract several features in the time and frequency
domain. For our study we have chosen the most relevant ones, that are presented
in Tables 4 and 5.

Fig. 3. The EDA signal with four stressful activities and an unexpected stressful even
related to the knocking on the door.



106 F. Albertetti et al.

Table 5. EDA frequency domain features

Description Formula

Energy of the signal EDASignal Energy

Summation of FFT harmonics EDAharmonics summation

Area under curve of FFT EDAAUC fft

Standard deviation of FFT EDASTD fft

Mean of FFT EDAMEAN fft

Signal values in the frequency domain EDAcoefficients

4.6 Machine Learning

Stress can be detected and predicted by machine learning methods with classi-
fication or regression models. In the DESY dataset, stress and its predictors are
represented as a time series.

For the purpose of binary classification, we decided to compare 3 different
methods. First, a decision tree models based on a summarized time window
is presented. Second, a recurrent neural network (RNN) capable of handling
multiple time windows is tested. And third, an augmented RNN with some
convolutional layers first (CRNNs) is tested for a more in-depth extraction of
features.

Architecture and Learning Process. The DESY dataset consists of 6
patients, each with a duration of about 44 min. Due to the nature of time series
and to the need of a stratified split, we used 4 patients for the training set and 2
patients for the test set, resulting in 28% for the test set, cross-validated (K = 3).

The stress label, as described in Sect. 3, is filled in by participants at the end
of each period. All the values in between these periods are linearly interpolated.
The decision tree is augmented with gradient boosting and implemented with
the CatBoost library. The prediction of a single time window is performed with
a maximum depth of 6. The RNN consists of a single layer of LSTM cells, some
batch normalization, and a dense layer for the classification task (see Table 6).

Table 6. Architecture of the RNN. ‘None’ indicates the batch size (set to 256).

Layer Output shape # Parameters

LSTM (None, 64) 25’088

Batch normalization (None, 64) 256

Dense (sigmoid) (None, 1) 65

Total parameters: 25’409 Trainable parameters: 25’281 Non-trainable parameters: 128
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The CRNN consists of a single layer of the same RNN preceded by 3 convo-
lutional layers (see Table 7). All the methods use the same set features, however
with different window strategies.

Table 7. Architecture of the CRNN. ‘None’ indicates the batch size (set to 256).

Layer Output shape # Parameters

1D convolution (None, 10, 8) 4608

Batch normalization (None, 10, 8) 32

ReLU (None, 10, 8) 0

Max pooling (None, 5, 8) 0

1D convolution (None, 5, 16) 1536

Batch normalization (None, 5, 16) 64

ReLU (None, 5, 16) 0

Max pooling (None, 2, 16) 0

1D convolution (None, 2, 32) 3072

Batch normalization (None, 2, 32) 128

ReLU (None, 2, 32) 0

Max pooling (None, 1, 32) 0

LSTM (None, 64) 24’832

Dense (None, 256) 16’640

Batch normalization (None, 256) 1024

Activation (None, 256) 0

Dense (None, 32) 8224

Batch normalization (None, 32) 128

Activation (None, 32) 0

Dense (None, 1) 33

Total parameters: 60’321 Trainable parameters: 59’633 Non-trainable parameters: 688

Experimental Results. The overall results comparing the three different
approaches are presented in Table 8. The performance of the best classifier is
presented in Fig. 4. The threshold of the classifiers is selected according to the
Youden’s J statistic.

Furthermore, the impact of the phasic and tonic parts of the EDA signal is
investigated by their ablation (Table 9). That is the best model is trained and
tested without the presence of their related features.
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Table 8. Evaluation of the different machine learning models and pre-processing
parameters

Gradient boosting DT RNN CRNN

window size [sec] 30 60 120 180 30 60 120 180 30 60 120 180

step size [sec] 15 15 15 15 15 15 15 15 15 15 15 15 15

total # of windows 889 878 854 830 889 878 854 830 889 878 854 830

postive classes [%] 43 43 44 46 43 43 44 46 43 43 44 46

# time steps N/A N/A N/A N/A 10 10 10 10 10 10 10 10

AUC 0.63 0.62 0.61 0.62 0.64 0.65 0.71 0.73 0.62 0.63 0.59 0.61

weighted F1 0.57 0.58 0.56 0.58 0.65 0.61 0.72 0.77 0.67 0.69 0.65 0.68

macro F1 0.58 0.58 0.55 0.58 0.62 0.58 0.67 0.71 0.63 0.65 0.60 0.63

3-fold std macro F1 0.08 0.04 0.05 0.04 0.02 0.04 0.06 0.05 0.05 0.02 0.04 0.07

Random baseline macro F1: 0.48

Fig. 4. Classification metrics of the best RNN model

Table 9. Ablation results for the EDA signal with the RNN model of the best macro
F1

All features except tonic EDA All features except phasic EDA All features

AUC 0.65 0.71 0.73

weighted F1 0.67 0.75 0.77

macro F1 0.62 0.68 0.71

difference −13% −5%

5 Discussion

The best model for the binary classification of stress is achieved with a recurrent
neural network, and yields a macro F1 of 71%. In our tests, the lowest score is
of 55% (because of the imbalanced nature of the dataset, the random baseline
is of 48%). The AUC of the ROC curve of the best model is of 0.716, meaning
that if the focus were to detect stress with a better recall, an accuracy of almost
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100% could be achieved, traded off by almost 50% of false positives). We did
not include other metrics (such as accuracy) because of the imbalanced nature
of our dataset.

In almost every situation, RNN and CRNN outperforms decision trees. This
result confirms the general idea that time series are better handled by deep learn-
ing architectures and more precisely recurrent or convolutional networks, thanks
to their capacity to handle sequences of time. However, the hyper-parameters
for building the time sequences may highly impact the score (from 0.58 to 0.71
in the same RNN). We were unfortunately not able to acquire more data at this
stage of the project, since experimental part was planned for the beginning of
March 2020, when global confinement due to COVID-19 has started. Neverthe-
less, even though we had only six participants, for each of them we have recorded
signals, time-series, of about 35 minutes long. The feature extraction algorithms
processed these time-series with window size of 1 min and step of half a minutes,
thus providing a time-series of training point of 70 for each of six participants.
Despite the small size of our training set, the received results are promising,
especially considering a deep learning architecture.

As mentioned in Sect. 4, EDA contains information not only related to slow
changes, that is the tonic component, but also in the rapid or phasic changes of
the signal. We observed that the prediction of stress is strongly based rather on
the tonic component, with a drop of 13% on the F1 score with its ablation.

As future work, globally, we aim at developing a wearable system allowing
for seamless monitoring and detection of critical signatures of stress leading to
distress. To achieve this goal we still have a long road. First of all, to improve the
quality of stress prediction, we intend to continue our project towards implement-
ing a more personalized prediction, since the values contained in physiological
signals are specific for each participant. For example, as was already mentioned,
the value of SCL can vary widely, typically between 2–20 µS. Therefore, such
factors as physical constitution as well as the baseline level of stress of partici-
pant must be taken into account. Further, we would like to take into account the
ACC signal and provides a five-class definition of stress, differentiating between
emotional, intellectual, and physical stress, as well as pain, in contrast to the
non-stress conditions.

Once we will go from laboratory setting to everyday life our dataset will
include the contextual data, as well as measurement of cortisol. Measurements
of cortisol are quite intrusive. However, since some studies have presented
already that slow arousal of the morning cortisol level serves as the indication of
“burnout” state [13], its measurement performed with participants of the long
experiments will allows us defining the signature of stress events leading to the
‘burnout’ or distress state. Finally, other machine learning algorithms can be
implemented allowing to choose the best ones among them, in order to improve
stress detection and monitoring.
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6 Conclusion

Stress causes biochemical, physiological and behavioral changes, and can be
described as an uncomfortable emotion. The long-term exposure to stress can
cause illness. In this paper we have implemented a prediction stress detection
system from a wrist-device sensor providing stress relevant physiological signals.
We have implemented three classification algorithms providing two-class classi-
fication Stress vs Non-Stress. A reasonable prediction can be observed when we
apply a recurrent neural network, this model yiels a macro F1 of 71%. Our work
will not stop here, and as described in Sect. 5 we have several perspectives to
improve the system.
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