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Abstract. In this work mathematical models of 3D representative volume ele-
ments (RVE) with systems of nanoinclusions are developed. Ellipsoidal and
conical nanoinclusions of different sizes are considered in a cuboidal matrix of
nanocomposites. Optimized packing is used for computational modeling of filling
a givenmatrixwith ellipsoidal and conical nanoinclusions. The proposed approach
permits designing different nanoscale structures with desired properties.
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1 Introduction

Solid-type nanocomposites have remarkable mechanical properties and are widely used
in practice in many engineering structures and systems. Taking into account diversity of
material components and distribution of particles, variety of shapes and arrangements
of nanoinclusions, developing new models and methods to study nanocomposites is
extremely important.

Computational experiment permits a unified parameterization of elastic properties
of nanocomposites in a wide spectrum of their material characteristics, geometric and
surface features. Moreover, numerical simulation can replace the expensive field work
and essentially reduce the scope, cost and time for experiments.

In contrast to broad experimental studies of nanocomposites and metamaterials
[1–3], only a limited number of works on their static and dynamic behavior is known
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[4–7]. The reason is complexity of mathematical models used to describe adequately
elastic properties of involved structures. Inmanycases thesemodels are basedonmerging
basic theoretical principles of continuum mechanics with molecular level descriptions.
Computational nanotechnology focuses on numerical simulation in the area [4] and the
results are basically related to two-dimensional configurations of the objects [8, 9].

Concerning three-dimensional configurations, they have been analyzed mainly with
the assumptions of canonical single spherical particles in the nanocomposite or spheri-
cal inclusions in the periodically structured nanomaterial. In this study we consider 3D
nanocomposites. Under linear elasticity assumptions, elastic and mechanical properties
of composite materials and nanocomposites are considered. The non-classical boundary
conditions on the interfaces are addressed to the problems [10–12]. Boundary element
methods are applied to numerical solutions of the problems under consideration. The
effective algorithmbased onGauss formula is proposed for the singular integrals [13, 14].
A numerical solution of the boundary integral equations is proposed with unknowns dis-
tributed on the interface surfaces only. To study size influences at micro-and-nanoscale,
the Gurtin-Murdoch theory is applied for the description of nanoscale contacts between
the matrix and inclusions. This results in non-classical boundary conditions at the inter-
face surface. This surface is considered as an elastic membrane under a given surface
tension and with its own elastic characteristics such as the Lame coefficients [3, 15].
The three-dimensional isotropic elasticity equations are used for Somigliana’s identity
[1, 16].

In what follows a cube matrix with inhomogeneity inclusions is considered. The
inhomogeneitiesmay have the formof an ellipsoid or a (truncated) cone.A representative
volume element (RVE) defined by the cube matrix containing non-homogenic elements
can be used to study mechanical properties of composites and nano-composites [11, 17].

In [11] expressions for integral operators were obtained, while in [13] and [3] the
effective methods were elaborated for numerical integration of corresponding equa-
tions. In [3] an effective procedure was presented for estimating the effective mod-
ules of nanocomposites. Different types of inclusions were considered resulting in new
nanomaterials.

Mathematical and computational models for estimating the effective modulus of
nanocomposites usingRVEwith differentmechanical and geometrical characteristics are
presented in this paper. To analyze interactions of nanoinclusions in compositematerials,
3D optimized packing models are used (see, e.g. [18–27]).

In the current research the phi-function technique (see, e.g. [28–34]) is used to
describe placement conditions in mathematical models of filling a given volume with
ellipsoidal and conical shaped nanoinclusions.

The structure of the paper is as follows. An optimized packing problem for 3D
nanoinclusions and its mathematical model are presented in Sect. 2 together with mod-
eling geometric tools. Solution strategy and computational results are given in Sect. 3,
while Sect. 4 presents concluding remarks.
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2 Problem Formulation

The following notations are used to formulate the packing problem. Let � be a cuboid
of having length l, width w and height h, which are considered as variable parameters.

Let a set of nanoinclusions {Ti, i ∈ In = {1, 2, . . . , n}} has to be placed completely
inside the cuboid � without overlaps. Each nanoinclusion Ti can take the shape of an
ellipsoid or a truncated cone.

The size of each nanoinclusion Ti is assumed to be fixed. Each nanoinclusion Ti is
described in a local coordinate system while a fixed coordinate system is used for the
domain �.

The arrangement and orientation of Ti are represented by a vector (vi, θi). Here the
translation is defined by vi = (xi, yi, zi) and rotation is represented by the vector θi,
where θi = (θ1i , θ

2
i , θ

3
i ), θ

1
i , θ

2
i , θ

3
i are Euler angles. The nanoinclusion Ti, translated by

the vector vi and rotated by θi, is stated as

Ti(ui) = {p ∈ R3 : p = vi + M (θi) · p0,∀p0 ∈ T 0
i },

where T 0
i is the nanoinclusion Ti without translation and rotation, M (θi) is a standart

rotation matrix.
The problem of filling nanoinclusions into the volume can be stated as the following

optimization problem:
Pack all 3D objects Ti(ui), i ∈ In fully inside the cuboid � of minimal volume.
The following constraints have to be met in the problem:

non-overlapping nanoinclusions

int Ti(ui) ∩ int Tj(uj) = ∅ for j > i ∈ In, (1)

containment of nanoinclusions into the cuboid �

Ti(ui) ⊂ � ⇔ int Ti(ui) ∩ int �∗ = ∅ for i ∈ In, (2)

where �∗ = R3\int�.
To describe placement constraints (1)–(2) the phi-functions and quasi-phi-functions

are used.
A quasi phi-function for two 3D objects Ti(ui) and Tj(uj) is used to present the

non-overlapping conditions (1).
Let P(uP) = {(x, y, z): ψP = α · x + β · y + γ · z + μP ≤ 0} be a half-space, where

α = sin θyP, β = − sin θxP · cos θyP, γ = cos θxP · cos θyP and uP = (θxP, θyP,μP).
A continuous function defined by

�′
ij(ui, uj, uP) = min{�TiP(ui, uP),�TjP∗

(uj, uP)}, (3)

is a quasi-phi-function for Ti(ui) and Tj(uj), where
�TiP (ui, uP) is the normalized phi-function forTi(ui) andP(uP) is a half-space,while

�TjP∗
(uj, uP) is the normalized phi-function for Tj(uj) and P∗(uP) = R3\int P(uP).
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As follows from the definition of a quasi-phi-function max
uP

�′
ij(ui, uj, uP) is a

phi-functions of Ti(ui) and Tj(uj) and hence (1) holds if max
uP

�′
ij(ui, uj, uP) ≥ 0.

It follows from the properties of a quasi-phi-function that if �′
ij(ui, uj, uP) ≥ 0 for

some uP , then int Ti(ui) ∩ int Tj(uj) = ∅.
To describe containment constraints (2) a phi-function for the objects Ti(ui) and �∗

is constructed. This phi-function may be defined in the following form

�Ti�∗
(l,w, h, ui) = min{ϕki(l,w, h, ui), k = 1, . . . , 6}, (4)

where ϕki(l,w, h, ui) is a phi-function for Ti(ui) and a half-space Pk = {(x, y, z): ϕk ≤
0}, while ϕk = 0 for k = 1, . . . , 6 are equations of sides of the cuboid �.

Quasi-phi-Function to Assure Non-overlapping Ellipsoids
Let Ti(ui) and Tj(uj) be two ellipsoids defined by corresponding semi-axes ai, bi, ci = bi
and aj, bj, cj = bj.

To describe the non-overlapping condition int Ti(ui) ∩ int Tj(uj) = ∅ in (1), a new
quasi-phi-function is introduced for ellipsoids Ti(ui) and Tj(uj) in the form

�′
ij(ui, uj, u

′
ij) = nij · (vTi − vTj ) −

∥
∥
∥Q−1(θj) · τj · nTij

∥
∥
∥ −

∥
∥
∥Q−1(θi) · τi · nTij

∥
∥
∥,

where τi =
⎛

⎝

ai 0 0
0 bi 0
0 0 bi

⎞

⎠, τj =
⎛

⎝

aj 0 0
0 bj 0
0 0 bj

⎞

⎠,

vi = (xi, yi, zi), vj = (xj, yj, zj), u′
ij = (θ1ij, θ

2
ij).

Values nij and θ1ij, θ
2
ij are defined in the following way. A plane Lij = {(x, y, z) : αij ·

x + βij · y + γij · z + ζij = 0} is constructed for each pair of ellipsoids. The normal
vector of the plane Lij is denoted by nij = (αij, βij) = Q(θij)(1, 0, 0)T , where Q(θij) =
Q2(θ

2
ij) · Q1(θ

1
ij), αij = cos θ1ij · cos θ2ij, βij = cos θ1ij · sin θ2ij, γij = − sin θ1ij and θ1ij, θ

2
ij

are angles of rotation around the OY and OZ for the plane. Thus, Lij(θ1ij, θ
2
ij, ζij) = {p =

(x, y, z) : nij · pT + ζij = 0}. Detailed description of the quasi-phi-functions is presented
in [30, 33].

Quasi-phi-Function for Non-overlapping Truncated Cones
Each truncated cone is defined by three vectors pi1 = (xi1, yi1, zi1), pi2 = (xi2, yi2, zi2)
and ni = (nxi , n

y
i , n

z
i ), as well as a pair of parameters ri1 and ri2. Here the bottom and

top bases of Ti are centred at pi1, pi2 and have radii ri1, ri2 correspondingly, ni denotes
the unit vector normal to the bottom (top) base of Ti. For each circular truncated cone
ri1 �= ri2 and ri1 > 0, ri2 > 0. The height of Ti is denoted by hi.

A quasi phi-function for truncated cones Ti(ui) and Tj(uj) is defined in the form

�′
ij(uq, ug, u

′
ij) = min{�i(ui, u

′
ij),�

∗
j (uj, u

′
ij)},

where�i(ui, u′
ij) is a phi-function corresponding to the object Ti(ui) and the semi-space

P̃ij, �
∗
j (uj, u

′
ij) is a phi-function corresponding to the object Tj(ui) and the semi-space
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P̃∗
ij = R3\int P̃ij. Here the vector u′

ij = (θ1ij, θ
2
ij,μij) contains all auxiliary variables of

the quasi phi-function �
prime
ij (see [30] for details).

The phi-function corresponding to the object Tj(ui) and a semi-space P̃∗
ij has the

form

�∗
j (ui, u

′
ij) = min{f1(ui, u′

ij), f2(ui, u
′
ij)},

f1(ui, u
′
ij) = −ñij · p̃j1 − μij − rj1

√

1 − (ñij · ñi)2

f2(uj, u
′
ij) = −ñij · p̃j2 − μij − rj2

√

1 − (ñij · ñqi )2

The non-overlapping condition (1) can be represented by the inequality
�′

ij(ui, uj, u
′
ij) ≥ 0.

All variables of the problem can be grouped in the following vector: u =
(l,w, h, u1, u2, . . . , un, τ) ∈ Rσ , where (l,w, h) is the vector of the dimensions of
the container �; ui = (vi, θi) = (xi, yi, zi, θ1i , θ

2
i , θ

3
i ) represents placement parameters

for the object Ti, i ∈ In; τ denotes the vector of auxiliary variables u′
ij for j > i ∈ In.

The optimized packing problem may be formulated in the form

min ( )u s.t. u W , (5)

W = {u ∈ Rσ: �′
ij(ui, uj, u

′
ij) ≥ 0, j > i ∈ In,�i(l,w, h, ui) ≥ 0, i ∈ In}, (6)

where , �′
ij(ui, uj, u

′
ij) is the quasi phi-function (3)

defined for the pair of the 3D objects Ti and Tj (describing the non-intersection con-
straint (1)), �i(l,w, h, ui) is the phi-function (4) for the 3D object Ti(ui) and the object
�∗ = R3\int Ω (enforcing the containment constraint (2)).

Each inequality in (6) contains the phi-function and in fact is a system of inequalities
involving differentiable functions. The model (5)–(6) is a continuous nonlinear non-
convex programming problem. The formulation (5)–(6) is exact in the sense that it
contains all solutions for the original packing problem.

3 Solution Strategy and Computational Results

The solution approach is proposed involving the main stages as follows:

Stage 1. Generating starting points feasible to (5)–(6). The homothetic transformations
of objects are used to construct feasible solutions as follows. First, construct a sufficiently
large container and circumscribe each nanoinclusion (3D object) by the sphere. Then
randomly generate in the large container n centers for the spheres. Scale all the spheres to
the full size by solving an auxiliary nonlinear programming subproblem. Forma vector of
feasible translation for all nanoinclusions (3D objects). Randomly generate parameters
of rotation for all 3D objects. Construct a point feasible to the problem (5)–(6) (see, e.g.
[32–34] for details).



206 T. Romanova et al.

Stage 2. Minimize (locally) in the problem (5)–(6) starting from the feasible points gen-
erated at Stage 1. Here the optimization procedure described in [35] for large-scale pack-
ing problems is used. This algorithm substitutes the original problem (5)–(6) with O(n2)
constraints for a sequential solution of nonlinear subproblems with (O(n)) nonlinear
constraints and variables (see [32, 33] for more details).

Stage 3. The best local minimum obtained at Stage 2 is considered as a solution to the
original problem (5)–(6) .

Two problem instances below illustrate thework of the proposedmultistart approach.
The algorithms were implemented and executed on an AMD Athlon 64 X2 5200+
computer. For NLP subproblems the IPOPT solver (https://github.com/coin-or/Ipopt)
was used [36]. The sizes of the objects were defined similar to [17].

Example 1. Packing conical nanoinclusions (truncated cones):

a) n = 35 including 10 items with h = 3 nm, r1 = 1.2 nm, r2 = 1 nm and 25 items with
h = 2, r1 = 0.6, r2 = 0.5.

The best objective function value obtained for 962.43 s. (10 starting points) is

b) n = 40 including 10 items with h = 3 nm, r1 = 1.5 nm, r2 = 1 nm and 30 items with
h = 2, r1 = 0.8, r2 = 0.5.

The best objective function value found for 1187.06 s. (10 starting points) is

The local optimal solutions corresponding to Example 1 are shown in Fig. 1.

Example 2. Packing n = 100 ellipsoidal nanoinclusions (spheroids) with semi axes a
= 5 nm, b = 3 nm and c = 3 nm.

The best objective function value found for 35548.86 s. (25 starting points) is

The local optimal solution for Example 2 is presented in Fig. 2.

https://github.com/coin-or/Ipopt
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Fig. 1. Local optimal packings for conical nanoinclusions: a) n = 35; b) n = 40.

Fig. 2. Local optimal packing for n = 100 elliptical nanoinclusions.
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4 Concluding Remarks

In this work novel mathematical models of representative volume elements with dif-
ferent mechanical and geometrical characteristics are proposed. To represent mutual
interactions of nanoinclusions in composite materials, 3D optimized packing models
are developed. Numerical experiment was conducted to illustrate the approach. Using
numerical modeling instead of expensive full-scale experiments facilitates synthesis of
nanocomposites with desired properties.

Simple convex (regular) shapes (ellipsoids and truncated cones) were used in this
work to represent the composite matrix and nanoincusions in packing models. However,
in many practical cases nanoinclusions may have irregular shapes [37–41] or can be
represented as a composition of regular shapes [37]. An alternative research direction
is covering complex objects by more simple shapes [42, 43] or applying other ideas
for placement conditions [44]. Large dimension of the problem (5)-(6) may complicate
its direct solution. Using aggregation approach [45] or decomposition [46] may help
constructing low-dimensional models to get reasonable suboptimal solutions.

Acknowledgment. T. Romanova, A. Pankratov and E. Strelnikova acknowledge partial support
by the “Program for the State Priority Scientific Research and Technological (Experimental)
Development of the Department of Physical and Technical Problems of Energy of the National
Academy of Sciences of Ukraine” (#6541230).
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