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Abstract. The probabilistic distribution of the characteristics of
Voronoi polygons has been extensively studied due to its many areas of
application. In various works that differ in the number of polygons gen-
erated and in the size of their regions, it is concluded that the expected
value of the characteristic number of sides of Voronoi polygons is equal
to 6. In this work, this characteristic in the polygons generated by the
graphical passwords of the graphical authentication system PassPoint is
studied. Its distribution is estimated and it is shown that the expected
value of the number of sides of the Voronoi polygons in this scenario
differs from previous works. The effectiveness of this feature is evaluated
to detect weak graphical passwords made up of grouped dots. They are
to be detected by estimating the entropy of the number of sides and by
the expected value of the number of sides. It is concluded that the distri-
bution of the number of sides in this scenario does not the 3-parameter
gamma distribution reported in previous work or any of 61 distribu-
tions that were tested, and that the entropy and the expected value of
the number of sides are not efficient for the detection of weak graphical
passwords of PassPoint formed by 5 grouped points.
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1 Introduction

The antecedents of the Voronoi diagrams date back to the 17th century, when
the French mathematician Rene Descartes, in his work Principia Philosophiae
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published in 1644, describes a partition of the universe’s discs into ‘vortices’.
Although he does not explicitly define his vortexes in the manner of Voronoi cells
(regions), his work is conceptually very similar [2,36]. The first references on the
subject were known in 2003, because his idea did not coincide with that of the
mathematicians of that time. In the 19th century, the Voronoi diagram was con-
ceptually formalized by the German mathematician Johann Peter Gustav Leje-
une Dirichlet for the 2D and 3D cases, and extended at the beginning of the next
century by the Russian mathematician Georges Voronoi for the n–dimensional
case [36]. These diagrams are nothing more than a geometric structure studied in
computational geometry, which represents approximate information about a set
of points called sites or generators. Voronoi (or Thiessen) diagrams or polygons
(as they are also often called) are known in different ways due to their immense
applications in various branches of science, including computation, meteorology,
physics, geology, crystallography, anthropology, among others [2,36]. Recently,
in [26] and [39] they have been used in graphical authentication and robotics
respectively.

The dual of a 2D Voronoi diagram is a Delaunay triangulation (or Delaunay
mosaic), and was exposed before 1872 by the French mathematician Charles
Delaunay [36]. These diagrams and their dual, present a set of characteristics
determined by the properties of randomness or dependence of the initial set
of points. Polygons where their points follow a random distribution are called
Voronoi Poisson polygons [8–11,16,17,20].

One of the main applications of Voronoi polygons using their characteristics
is to evaluate randomness or detect the existence of patterns in the initial set of
points [37]. According to on the behavior of the points distributed in the plane,
the spatial point patterns are classified as random (homogeneous Poisson point
process), regular (uniform or an inhibiting pattern) or grouped (aggregated), see
[3,11,18,32,37,47].

In [11], a set of these characteristics was investigated for the existence of pat-
terns, however the exclusion of the number of sides of the Voronoi polygons from
the set of investigated characteristics is not argued. On the other hand, in [22] it
was shown that the K-Ripley function and the distance to the nearest neighbor,
two of the most used tests in spatial randomness, are inefficient to detect cluster-
ing in graphical passwords in the system PassPoint (which is based on the user
remembering 5 dot patterns on an image selected as their password) [29,41,48].
In this system, a password is considered weak if the 5 points selected by the
user do not follow a random distribution. The main types of non-randomness
that may be present between the points in that case are: grouping, regularity,
smoothness, and symmetry. By the results of [11] and [22] the efficiency of the
characteristic number of sides of Voronoi polygons, to detect graphical passwords
with points grouped in PassPoint is investigated in this work.

The numerous applications of the Voronoi polygons in different areas of
knowledge have generated a great variety of studies on their characteristics and
their proballistic distribution. These distributions, as well as those of the charac-
teristics of the Delaunay triangulations in the two-dimensional case, are unknown
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in many cases, and it is necessary to apply simulation techniques to estimate
them [7,8,11,13,14,23,24,28,38,46].

In [10,20,21], some theoretical results associated with the distribution of the
number of sides of the Voronoi polygons. In [7,8,11,13,14,23,24,28,46] the dis-
tribution of the number of sides of the Voronoi Poisson polygons is estimated by
simulation. Despite being generated in these studies between 200 and 208,969,210
of Voronoi Poisson polygons in a given region of the plane, the expected value
does not vary, it is always 6 [7,8,11,13,14,23,24,28,46]. In [6], to measure the
level of uniformity of the obtained polygons, the probability PN is defined as the
proportion of polygons with N sides and to this distribution {PN |ΣNPN = 1}
of the number of sides, the Voronoi entropy Svor = H(PN ) = −ΣPN log PN is
calculated, which allows quantify the ordering of the set of points in the plane
or the cells around these points.

On the other hand, in graphical authentication, entropy is used as a measure
of complexity, the amount of information in an image, or the security of a pass-
word. This is especially useful when estimating whether an image is useful for
the authentication process using the PassPoint system. In [27], it is concluded
that image passwords with high entropy are easy to forget, or what is the same
difficult to remember the password.

In this work a state of the art distribution of the characteristics of Voronoi
polygons is presented, in particular on the characteristic number of sides. It is
investigated, for the first time as far as we know, in a very peculiar scenario: the
polygons generated by the graphical passwords used in the PassPoint graphical
authentication system, where it is only possible to generate 5 polygons on a
rectangular area of the flat. The distribution of this characteristic in this scenario
is estimated and its effectiveness in detecting weak graphical passwords formed
by grouped points is evaluated.

The work is structured in 6 sections: Section 1 shows the Introduction; Section
2 is composed by Voronoi polygons and PassPoint ; Section 3 shows the back-
ground of the distribution of some characteristics of the Voronoi polygons and
specifically the background of the distribution of the number of sides of the
Voronoi Poisson polygons; Section 4 presents our main contribution: Analysis
of the number of sides of Voronoi polygons in PassPoint ; Section 5 show the
comparison with previous works; and finally in Section 6 the conclusions are
presented.

2 Preliminaries

2.1 Voronoi Polygons

Voronoi diagrams are a geometric construct that, given a set P = {p1, p2, . . . , pn}
of n points, called sites, allows to build a partition of the Euclidean plane in a
set of n disjoint regions, so that each region V (pi) corresponds to a single site
pi. The points q belonging to a given region V (pi) fulfill the property of being
at a lower (Euclidean) distance from the site pi corresponding to that region
than to any other site pj ; i.e., d(q, pi) ≤ d(q, pj), ∀pi �= pj , 1 ≤ i, j ≤ n. In
Voronoi diagrams not all regions are bounded, the bounded ones are known as
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closed Voronoi polygons (V.P.) or convex polygons, and the unbounded ones as
unbounded regions or open Voronoi polygons. The boundaries of the Voronoi
regions are defined by bisectors joining each pair of sites, and the point of inter-
section between the bisectors is called the Voronoi vertex. In [5,15,19,30,38,45],
the Voronoi regions are also often referred to as Voronoi cells, the boundaries
as edges, the sites by generating points, and the set formed by these points is
called the generator set.

 

Fig. 1. Representation of a Voronoi diagram and its dual.

The dual of a two-dimensional Voronoi diagram is a Delaunay triangulation
(D.T.), see Fig. 1. This triangulation is performed by connecting to the closest
vertices, satisfying that all circumscribed circles in the network of triangles are
empty, this restriction is known as the Delaunay condition. If P is a randomly
generated set of the plane, then the Voronoi polygons and Delaunay triangula-
tions are random, called Voronoi polygons and Delaunay Poisson triangulations
[7,8,11,13,14,23,24,28,38,46].

Voronoi polygons and their Delaunay triangulations have a set of character-
istics determined by the properties of randomness or dependence on the initial
set of points. In the two-dimensional case, these characteristics are the following
[11,38]:

– N number of sides (edges or vertices) of the polygons
– Length LV of a side of a Voronoi polygon
– Length LD of a side of a Delaunay triangle
– Distance R between a site and a vertex of its Voronoi polygon (R radius of a

circle circumscribed in a Delaunay triangle)
– Area AD and perimeter PD of a Delaunay triangle
– Area AV and perimeter PV of a Voronoi polygon
– Interior angle αint of a Delaunay triangle
– Minimum angle αmin, mean angle αmed and maximum angle αmax of a Delau-

nay triangle

In [11] the characteristics were analyzed, αmax, αmed, αint, LV , R, AD, PD,
LD and αmin, given an initial set of 100 clustered or regular patterns in a square
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unit, concluding that the first eight characteristics are more competent to detect
clustering and the last regularity [11].

2.2 PassPoint

The PassPoint [29,41,48] system is one of the most advantageous techniques of
the cued-recall type in graphical authentication, due to its security and usability.
This technique requires the user to select an ordered set of 5 pixels in an image
as their password in the registration phase, and in the authentication phase they
must select “approximately” the same pixels, and in the same order in which
they were selected in the registration phase.

In graphical authentication with PassPoint, if the set of points (pixels)
selected by the user as their graphical password do not follow a random pat-
tern, then said graphical password is considered weak, as it can be compromised
by so-called attacks from dictionaries [40,41]. For this reason, it is necessary
to detect user selection of weak passwords. For this reason, it would be useful
to evaluate the effectiveness of the Voronoi polygon characteristics in detecting
patterns in PassPoint.

3 Background of the Distribution of Some Characteristics
of the Voronoi Polygons

For many features of Voronoi polygons and Delaunay Poisson triangulations,
their distributions are unknown and have been approximated by simulation, but
in some cases theoretical results are already known. In [16] and [35], they report
the estimated probability density functions for the minimum angle αmin and

the edge length LD of a Delaunay Poisson triangle with intensity λ =
N(A)
| A | ,

(N(A) number of points distributed in the study area A) [18] respectively. In
[23] and [46], they obtained the first four moments of N , AV , PV and αint from
a Voronoi polygon and later adapted their histograms to a Gamma general-
ized three-parameter distribution; to estimate the parameters of the generalized
Gamma distribution of three parameters in [46] they used the maximum likeli-
hood estimator. A summary of various previous works, before the year 2000, on
the study of some of the characteristics of Voronoi Poisson polygons by simula-
tion is found in Table 5.4.1 of [38]. For the number of sides, Hayen and Quine
in [20,21] presented an integral formula for p̂3 (probability associated with the
number of side 3), obtaining in [20] a value of 7 decimal places and soon in [21]
the improved value for 10 decimal places, p̂3 = 0.0112400129. In 2002, Calka [10]
using a technique based on the famous formula given by Slivnyak in [34], proved
an explicit expression (an integral formula) for the distribution function of the
number of sides of a polygon of Voronoi Poisson, where the value of p̂3 in [20,21]
matches the value of [10].
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3.1 Background of the Distribution of the Number of Sides of the
Voronoi Poisson Polygons

In previous works that estimate the distribution of the number of sides of Voronoi
Poisson polygons through simulation, two fundamental variants of estimating the
number of sides of Voronoi polygons are observed:

– The first variant consists of the simulation of n polygons in n iterations,
generating in each of the iterations a set of m random points in a given rect-
angular region, in which only the number of sides of the polygon is extracted
Voronoi associated to the point closest to the center of the region to avoid
the edge effect.

– In the second variant, n polygons are generated in a set of the plane, with
n relatively “big” neglecting the polygons that are partially bounded by an
edge of the study area, calling said edge cause effect [33].

Despite their different estimation methods, their probabilities roughly cor-
respond to the theoretical distribution of the number of sides of the Voronoi
polygons found in [10].

Variant 1. In [14], Crain generated a total of 46,000 Voronoi Poisson polygons,
to which he added the results of the generation of 11,000 polygons that he had
previously published in [13], conducting a study of the number of sides of the
57,000 Voronoi Poisson polygons associated with the points closest to the center.
For the simulation of these polygons, he generated a set of 35 random points
in a square unit because it was the maximum number of points that could be
generated when compiling. Hinde and Miles in [23], to estimate with better
precision the properties of the distribution of the number of sides, simulated
in n iterations, 2,000,000 Voronoi Poisson polygons associated to the points
closest to the center of the rectangle, in each one of them they generated over a
rectangular region of the plane Voronoi polygons with intensity λ = 100. In [24],
they simulated 100 Voronoi Poisson polygons in a square of dimensions 25 × 25,
with units of arbitrary length and intensity λ = 0.16. To do this, they subdivided
the initial square into squares of 5×5, and in each one they generated 4 sites such
that the minimum distance to any other site of the square of 25×25 was greater
than a set value, in the case of random points they established the parameter
from δ = 0.0 up to δ = 0.1. Kumar and Kurtz [28] reported a simulation of
650,000 Voronoi Poisson polygons in 650,000 iterations, for this they defined a
square region in which they generated 100 random points with one of the points
in the center of the square, then they calculated the properties of the Voronoi
polygons associated with the center point. Tanemura [46] performed basically
the same procedure as Hinde and Miles [23], but unlike them, he generated
10,000,000 Voronoi Poisson polygons, for an intensity λ = 200, in a given region
of the plane simulated a number of Voronoi Poisson polygons by estimating only
the number of sides of the polygons corresponding to the center point.
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Variant 2. In [8], the antecedent with the highest number of simulated polygons
is reported, Brakke reports a simulation of 208,969,210 Voronoi Poisson poly-
gons in the plane. In a square unit he generated 88 polygons per second, for
a total of approximately 3,801,600 polygons per day, simulating the number of
polygons estimated in 55 days. Schmid and Leitner in [44], simulated 100,000
in 100,000 Voronoi Poisson polygons in a rectangular area of approximately
33 × 17, sampling up to 1,000,000 Voronoi polygons. To estimate the number
of sides of the observed Voronoi polygons, the edges of the study area were not
taken into account, the open polygons being discarded by the edge effect. In [7],
Bormashenko, Legchenkova, and Frenkel generated a set of 200 random points
in a circle of a given diameter, obtaining a Voronoi entropy equal to 1.65.

The studies carried out in [7,8] and [44] of the number of sides of the Voronoi
Poisson polygons, unlike the rest of the antecedents, generate in the same iter-
ation a relatively “large quantity” of polygons. However, their probabilities cor-
respond approximately to the previous ones and the expected value associated
with this characteristic is always 6, (see Table 1).

Table 1. Distribution and expected value of the number of sides the Voronoi polygons
of the antecedents, except those obtained in [7,44] because they do not explicitly give
their exact values, and those of [24] are not known.

N p̂N (Crain,

1978)

p̂N (Hinde &

Miles, 1980)

p̂N (Kumar &

Kurtz, 1993)

p̂N (Calka,

2002)

p̂N

(Tanemura,

2003)

p̂N (Brakke,

2005)

3 0.011000 0.01131 0.01100 0.011240 0.01125 0.01125

4 0.107800 0.10710 0.10710 0.106838 0.10685 0.10683

5 0.259400 0.25910 0.26000 0.259460 0.25941 0.25945

6 0.295200 0.29440 0.29400 0.294730 0.29479 0.29471

7 0.198400 0.19910 0.19900 0.198770 0.19884 0.19880

8 0.089600 0.09020 0.09000 0.089700 0.09003 0.09012

9 0.029600 0.02950 0.03000 0.029500 0.02963 0.02964

10 0.007510 0.00743 0.00700 0.000000 0.00743 0.00745

11 0.001420 0.00149 0.00150 0.000000 0.00149 0.00148

12 0.000175 0.00025 0.00023 0.000000 0.00025 0.00024

13 0.000053 0.00003 0.00004 0.000000 0.00003 0.00003

E[N ] 6 6 6 6 6 6

Regarding its distribution, as early as in 1980, Hinde and Miles shown that
the distribution of the number of sides adjusts to a generalized three parameter
Gamma (3P) distribution. Later, in 2003, Tanemura [46] estimated the param-
eters of said distribution, where â = 0.96853, b̂ = 3.80078 and ĉ = 20.86016.
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4 Analysis of the Number of Sides of Voronoi Polygons
in PassPoint

In the aforementioned previous works, the different scenarios of each study are
reflected to estimate the number of sides of the Voronoi polygons, avoiding the
edge effect [33] in each one. In [25] they analyzed the relationship between
the proportion of points that must be excluded and the number of points in
a given area using Monte-Carlo simulation, turning out to be very few points
not excluded if the number of points is less than 25.

4.1 Differences of the Polygons of This Scenario with Previous
Studies

In this work, the study area will be rectangular images, which can only be
partitioned into 5 polygons, corresponding to the 5 points of the password of
PassPoint. For this reason, at least 4 of these Voronoi polygons can remain
open, but if the open polygons are neglected to avoid the edge effect, only one
polygon at most should remain, and if the number of sides of the closest Voronoi
polygons were estimated, the center would be the risk of being an open polygon.
Therefore, the edges of the images will be taken into account when estimating
the number of sides to obtain closed Voronoi polygons.

4.2 Design of the Experiment

The analyzes are performed for two image sizes, 800×480 and 1366×768 pixels,
as they are the most common on mobile phones and computers, respectively. For
each image, two databases of 300 random graphic passwords (R.G.P.) each were
generated in PassPoint, with intensity λ = 1.3021×10−5 and λ = 4.7660×10−6,
respectively, for a total of 1,500 closed Voronoi-Poisson polygons in each case.
The estimation of the distribution of the number of sides of the Voronoi polygons
was done without taking into account the order in which the pixels are selected
by the user. The experiments carried out were developed in the R2018a version
of Matlab. For each password in each database, the image was divided into the
5 Voronoi polygons, corresponding to the password points, and the number of
sides, N , of each of the 1,500 polygons obtained in the 300 passwords of the 5
points each. The results are shown below.

4.3 Expected Value of the Number of Sides of the Voronoi Polygons
in the Graphical Passwords of PassPoint

By partitioning the selected images into Voronoi polygons, with their correspond-
ing random database, and counting the number of sides N of the Voronoi polygons
associated with each of the pixels in the password, Table 2 is presented. The first
database (DB.1) belongs to the image with size 800× 480 pixels and to the second
database (DB.2) the most frequent dimension in computers. These table is orga-
nized by the numbers of sides from highest to lowest absolute frequency to show



192 L. Suárez-Plasencia et al.

the numbers of sides that are more (4 and 5), less (6 and 3) and not (7) significant,
which can be observed in Fig. 2. Using said table and figure, it is also possible to
perceive the fit between the estimated distributions, due to the overlap between
both databases provided by the accumulated frequency and the Fig. 2.

Table 2. Observed frequencies of the occurrence of the number of sides in the DB. 1
and 2 respectively.

N Frequencies
DB.1

Frequencies
DB.2

Relative
F.(R.F.)
DB.2

1-Cum.R.F
DB.2

4 648 660 0.44000 0.56000

5 595 605 0.40333 0.15667

6 148 131 0.08733 0.06934

3 100 96 0.06400 0.00534

7 9 8 0.00534 0.00000

Total 1500 1500 1 –

The expected values and the variances associated with the random variable
(number of sides) for DB.1 and DB.2 are, E[N ] = 4.5453 and E[N ] = 4.53,
and V [N ] = 0.6147 and V [N ] = 0.5838 respectively. Note that both expected
values are approximately 4.5 and the variances approximately 0.6 despite the
differences between the intensities.

4.4 Evaluation of the Effectiveness of the Number of Sides of
the Voronoi Polygons to Detect Clustering in the Graphical
Passwords of PassPoint

In this subsection, a test based on the number of sides of the Voronoi polygons is
proposed to detect grouping of points in the graphical passwords of PassPoint.

 

Fig. 2. Pareto diagram of the most and least significant numbers of sides observed in
DB.1 and DB.2 respectively.
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4.4.1 Proposal of a Randomness Test Based on the Number of Sides
of the Voronoi Polygons in PassPoint

The following hypotheses are proposed: H0: The password points have been
selected at random and H1: Otherwise, with test statistic given by the number
of sides of the Voronoi polygons generated by the password selected by the user.
The critical region defined from the numbers of sides that appear less frequently
in graphical passwords whose points are random. There are 3 possible options:
CR.1: {N > 6}, CR.2: {N = 3} ∪ {N > 6}, CR.3: {N = 3} ∪ {N > 5}.

4.4.2 Evaluation of the Effectiveness of the Test
To evaluate the effectiveness of the proposed test, type I and type II errors were
measured.

Table 3. Probability estimated in DB.2.1, that the side number belongs to the critical
region (CR.) under the hypothesis of randomness.

Acceptance
region

H0 rejection region
(CR.)

p̂(N ∈ CR. | H0)
DB.2.1

3 ≤ N ≤ 6 {N > 6} 0.00667

4 ≤ N ≤ 6 {N = 3} ∪ {N > 6} 0.07934

4 ≤ N ≤ 5 {N = 3} ∪ {N > 5} 0.18267

In Table 3, due to the adjustment of the distribution of the number of sides
between DB.1 and DB.2, only a new database (DB.2.1) of 300 random graphical
passwords was generated in an image with a size of 1366×768 pixels to estimate
the type I error.

Note that since each graphical password is made up of 5 Voronoi polygons,
it may be the case that a graphical password contains 0, 1, or more than 2 or
more polygons whose number of sides belongs to the reject region.

As for the decision criteria, the graphical password selected by the user does
not follow a random pattern if in the Voronoi polygons generated by it, there is
at least a polygon with the number of sides that belongs to the rejection region.
The graphical password follows a random pattern if all the side numbers of the
Voronoi polygons generated do not belong to the rejection region, or they all
belong to the acceptance region.

A new database (DB.3) of 300 grouped graphical passwords (G.G.P.) was
generated in one sixteenth of the image of size 1366×768 pixels, and the proposed
test was applied to each of the passwords, results shown in Table 4.

As can be seen in Table 4, for each of the 3 rejection regions, the proportion
of passwords with grouped points that are rejected by the proposed test is very
small. The highest effectiveness is obtained for CR.3, with a 53% rejection, which
is still insufficient.
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Table 4. Number of rejected graphical passwords (G.G.P.) observed in DB.3.

Rejection region of H0 Number and proportion of G.G.P.
detected in DB. 3

{N > 6} 8/300 = 0.0266

{N = 3} ∪ {N > 6} 85/300 = 0.2833

{N = 3} ∪ {N > 5} 159/300 = 0.5300

Comparison of the Histograms of the Number of Sides for DB.2 and
DB.3

The low effectiveness of the proposed test is also explained by the overlap of both
distributions (by means of the green) illustrated in the following graph (Fig. 3).

4.5 Distribution and Evaluation of the Entropy of the Number of
Sides of the Voronoi Polygons in the Graphical Passwords of
PassPoint

In this subsection the fit between the estimated probabilities of the number of
sides of the Voronoi polygons is measured for the random databases (Table 2) and
the 54 theoretical distributions which supports the EasyFit 5.6 program [42,43],
with some of them for various parameter sets for a total of 61 distributions. This
program allows you to automatically fit the distributions to the sample data and
select the best model in a few seconds.

For the distribution of the number of sides of the polygons of the graphical
passwords formed by 5 random points and contained in DB.1 and DB.2, sets
of parameters other than those of Tanemura are obtained in [46] for a gener-
alized gamma function of 3P, α̂1 = 55.219, β̂1 = 0.10566, γ̂1 = −1.2878 and
α̂2 = 59.359, β̂2 = 0.09934, γ̂2 = −1.3664, respectively. When the Kolmogorov-
Smirnov, Anderson-Darling and χ2 tests are performed, they are rejected with

Fig. 3. Histograms of the observed frequencies of the number of sides of the Voronoi
polygons in the random (DB.2) and clustered (DB.3) graphical passwords. (Color figure
online)
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significance levels α = {0.2, 0.1, 0.05, 0.02, 0.01} and a p − value = 0. The test
statistics obtained for DB.1 were 0.24819, 103.22 and 720.95, respectively, and
those of DB.2, 0.25289, 108.88 and 710.42, respectively. This result differs from
those obtained in [23] and [46]. Even these distributions did not fit any of the
60 remaining distributions that this software brings by default.

4.5.1 Estimation of Entropy
In graphical authentication, entropy is used to measure the security of the pass-
word. In [4,29] they use the formula for the calculation: H(x) = Nlog2(| L ||
O || C |), where N is the number of runs, L the Locus alphabet, O the target
alphabet and C the alphabet color. For this they assume equiprobable passwords
and maximum entropy and illustrate in [4] a comparison between some graphical
authentication systems, including the Passpoint. But, dictionary attacks on these
systems do not traverse the equally likely (randomly distributed) passwords, as
they restrict their search space by selecting the most probable passwords. There-
fore, their approach does not measure resistance against dictionary attacks with
non-equiprobable password traversing.

To measure the level of uncertainty of this characteristic in random and
grouped graphical passwords in PassPoint, the entropy will depend on the prob-
abilities of the estimated number of sides. The entropy of said characteristic was
estimated using parametric, non-parametric and semi-parametric estimators. A
description and comparison of these estimators can be seen in [12]. In the back-
ground, when they calculate the entropy associated with the number of sides
they only use the maximum likelihood estimator (ML) [6,7,31], although it is
known to be a biased estimator. Also in [6,7] they call it Voronoi entropy, but
this name is not correct because the entropy they used to measure the informa-
tion is known as Shannon entropy. In this work, other estimators are used for a
better estimation, the parametrics calculated were the Bayesian estimators Jef-
freys, Laplace, Schürman-Grassberger, Minimax and finally the semi-parametric
Shrink estimator [1].

To find the entropy estimators in a sample of 300 graphical, random and
grouped passwords, these estimators were calculated for each of the passwords
in the size image, 1366 × 768 pixels. The 5 different probability distributions
associated with the side numbers that appear in the 300 passwords for the two
databases coincide, and therefore their entropies. Although only the probabil-
ity distributions shown in the Table 5 appeared, this does not mean that the
following probabilities [0; 1; 0; 0; 0] and [1/5; 1/5; 1/5; 1/5; 1/5] might not be
possible.
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Table 5. Frequencies of appearance (F.A) of the distributions in each type of database
(random (DB.2) and clustered (DB.3)) and the entropy estimators (calculated in bits)
associated with the number of sides of the 300 graphical passwords in each DB.

p̂N F.(R.G.P ) F.(G.G.P ) ĤML Ĥ
Bayes
JEF

Ĥ
Bayes
LAP

Ĥ
Bayes
SG

Ĥ
Bayes
Minimax

Ĥ
Bayes
Shrink

[1/5; 4/5; 0; 0; 0] 0.1033 0.0767 0.7219 1.6879 1.9610 1.3153 1.6407 1.1409

[2/5; 3/5; 0; 0; 0] 0.4533 0.4300 0.9710 1.8228 2.0464 1.5051 1.7832 1.3521

[2/5; 2/5; 1/5; 0; 0] 0.1100 0.0933 1.5219 2.0419 2.1710 1.8530 2.0187 1.7600

[1/5; 1/5; 3/5; 0; 0] 0.1500 0.2333 0.9503 1.9628 2.1219 1.7396 1.9348 1.6331

[1/5; 1/5; 1/5; 2/5; 0] 0.1833 0.1667 1.3710 2.1819 2.2906 2.0875 2.1703 2.0409

Total 1.0000 1.0000 – – – – – –

Ĥmax 2.2906 2.2906 1.5219 2.1819 2.2906 2.0875 2.1703 2.0409

Ĥmin 0.7219 0.7219 0.7219 1.6879 1.9610 1.3153 1.6407 1.1409

Ĥmax − Ĥmin 1.5687 1.5687 0.8000 0.4940 0.3296 0.7722 0.5296 0.9000

Ĥmax−Ĥmin
2 1.5063 1.5063 1.1219 1.9349 2.1258 1.7014 1.9055 1.5909

Table 5 allows us to visualize that in general, the maximum estimated value
is obtained for the Laplace estimator, ĤBayes

LAP = 2.2906, this value being close
to the maximum value of the entropy Hmax = 2.3219, for k = 5 categories.
Also in this table there are values corresponding to the ML estimator that are
“close” relatively to the values 1.65 and 1.71 respectively, but these values were
calculated for points randomly distributed in [7] and [31] using the estimator
ML, H(PN ) = −ΣPN ln PN .

 

Fig. 4. Pareto diagram of the probability distributions of the number of sides of the
Voronoi polygons that appear in the graphical random (DB.2) and clustered (DB.3)
passwords.

The probabilities with which these estimators appear only differ significantly
in the number of sides with probability [1/5; 1/5; 3/5; 0; 0], since this configura-
tion is more frequent in grouped passwords. Therefore, due to the small sample
and because they correspond to approximate probabilities to the entropy esti-
mators, associated with the number of sides of the random graphical passwords
and grouped with equal probability, it is not possible to distinguish whether the
points are grouped or randomly distributed in said image, as shown in Fig. 4 by
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the overlap between the probability distributions of the number of sides, which
coincides with the result of [6], where they used the maximum plausible estima-
tor to detect symmetry and not it worked. However, in [6] they later used the ML
estimator associated with the length of the sides and it was able to distinguish
symmetry.

5 Analysis of Results

An important result in this section is that the expected value continues to be
approximately 5, regardless of the fact that the points are grouped in a certain
region of the study area. Therefore, it is concluded that the characteristic “num-
ber of sides of Voronoi polygons” is not able to detect clustering in the graphical
passwords of PassPoint, on criteria based on expected value and entropy, due
to the similarity between the distributions of the number of sides in graphical
passwords. Randomized and grouped in PassPoint, and due to having a small
sample size, since only 5 observations are required (5 polygons in each password).

In our scenario, 300 sets of 5 Voronoi Poisson polygons were simulated in two
images of sizes 800 × 480 and 1366 × 768 pixels, for an intensity λ = 1.3021 ×
10−5 and λ = 4.7660 × 10−6 respectively. Previous works were generated in
a set of the plane 100, 200 and in several iterations of 100,000 to 1,000,000
Voronoi Poisson polygons, with densities λ = 0.16, unknown and from λ = 178
until λ = 1, 782 respectively. The known antecedent with the highest number
of polygons generated was 208,969,210, but its intensity is unknown. Unlike in
previous works, the expected value of the number of sides of the Voronoi polygons
in PassPoint is 5. In PassPoint the number of estimated sides varies in a range
from 3 to 7, while its range in previous works is from 3 to 13 by simulation
and from 3 to 9 according to the explicit expression of Calka in 2002 [10]. The
estimated distribution associated with the number of sides (or vertices) of the
Voronoi polygons in previous works was approximated to a generalized three-
parameter Gamma distribution, while its distribution in PassPoint has not been
able to fit any known distribution. The value of the ML estimator associated with
the probability distribution of the number of sides of Voronoi Poisson polygons
for 200 points in a set of the plane is relatively close to some of the values in
PassPoint ; however, the calculation of the estimators differ on the basis of the
logarithms.

6 Conclusions

In this work, the behavior of the number of sides of the Voronoi polygons gen-
erated by the graphical passwords of the PassPoint graphical authentication
system was investigated. Its distribution was estimated, which could not be
adjusted to any of the known distributions that the EasyFit program brings
by default, including the generalized three-parameter gamma. It was obtained
that the expected value of the number of sides of the Voronoi polygons was 5,
regardless of the sizes studied. Therefore, the expected value of the number of
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sides of the Voronoi polygons depends on the number of polygons generated in
a study region, and therefore on the intensity, said result differs from that of
the antecedents. In the studied scenario, the number of estimated sides varies
between 3 and 7, not coinciding with the simulations of the antecedents, in which
it varies from 3 to 13. Based on this distribution, a test was proposed, based on
the expected value of the number of sides of the polygons, to detect weak graph-
ical passwords formed by grouped points. The effectiveness of the proposed test
was evaluated and it was concluded that it is not efficient for the detection of
weak graphical passwords of PassPoint formed by 5 grouped points. The entropy
of the distributions of the number of sides of the Voronoi polygons in random
graphical passwords and in weak graphical passwords formed by grouped points
was estimated. No significant differences were detected in the value of both
entropies. It is concluded that the characteristic number of sides is not effective
for the detection of weak graphical passwords of PassPoint formed by 5 grouped
points. Future work will evaluate the ability of other features of Voronoi poly-
gons, such as the perimeter of a Delaunay triangle and the length of one side of
a Voronoi polygon (using the Voronoi entropy associated with this feature) to
detect a clustering pattern in PassPoint.
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12, no. Especial UCIENCIA, 13–27 (2018)

42. Schittkowski, K. (2000): EASY-FIT: A Software System for Data Fitting in
Dynamical Systems

43. Schittkowski, K.: Data Fitting in Dynamical Systems with EASY-FIT -User’s
Guide (2002)

44. Schmid, C., Leitner, M.: Monte-Carlo simulation of two-dimensional grain growth
(2011)

45. Snibbe, S.S., Tamassia, R.: Introduction to Voronoi diagrams. In: Computational
Geometry, C.S. vl. 252 (1993)

46. Tanemura, M.: Statistical distributions of Poisson Voronoi cells in two and three
dimensions. FORMA-TOKYO 18(4), 221–247 (2003)

47. Tico, M., Rusu, C.: Point Pattern Matching using a Genetic Algorithm and Voronoi
Tessellation. Tampere University of Technology, Signal Processing Laboratory
(1998)

48. Wiedenbeck, S., Waters, J., Birget, J.C., Brodskly, A., Memon, N.: Passpoints:
design and longitudinal evaluation of a graphical password system. Int. J. Hum
Comput Stud. 63(1–2), 102–127 (2005)

https://doi.org/10.1007/978-3-319-29538-1

	Analysis of the Number of Sides of Voronoi Polygons in PassPoint
	1 Introduction
	2 Preliminaries
	2.1 Voronoi Polygons
	2.2 PassPoint

	3 Background of the Distribution of Some Characteristics of the Voronoi Polygons
	3.1 Background of the Distribution of the Number of Sides of the Voronoi Poisson Polygons

	4 Analysis of the Number of Sides of Voronoi Polygons in PassPoint
	4.1 Differences of the Polygons of This Scenario with Previous Studies
	4.2 Design of the Experiment
	4.3 Expected Value of the Number of Sides of the Voronoi Polygons in the Graphical Passwords of PassPoint
	4.4 Evaluation of the Effectiveness of the Number of Sides of the Voronoi Polygons to Detect Clustering in the Graphical Passwords of PassPoint
	4.5 Distribution and Evaluation of the Entropy of the Number of Sides of the Voronoi Polygons in the Graphical Passwords of PassPoint

	5 Analysis of Results
	6 Conclusions
	References




