®

Check for
updates

MTGWA: A Multithreaded Gray Wolf
Algorithm with Strategies Based
on Simulated Annealing and Genetic
Algorithms

1(=) 1

Felix Martinez-Rios , Alfonso Murillo-Suarez'®,
Cesar Raul Garcia-Jacas?®, and Juan Manuel Guerrero-Valadez?

! Facutad de Ingenierfa, Universidad Panamericana, Mexico City, Mexico
{felix .martinez,alfonso.murillosuarez,
juanmanuel.guerrerovaladez}@up.edu.mx
2 Departamento de Ciencias de la Computacién, CICESE,
Ensenada, Baja California, Mexico
cesarrjacas19850gmail.com

Abstract. In this paper, we present an improvement of the Gray Wolf
algorithm (GWO) based on a multi-threaded implementation of the orig-
inal algorithm. The paper demonstrates how to combine the solutions
obtained in each of the threads to achieve a final solution closer to the
absolute minimum or even equal to it. To properly combine the solutions
of each of the threads of execution, we use strategies based on simulated
annealing and genetic algorithms. Also, we show the results obtained
for twenty-nine functions: unimodal, multimodal, fixed dimension and
composite functions. Experiments show that our proposed improves the
results of the original algorithm.

Keywords: Nature-inspired algorithm * Optimization -
Multi-threaded execution - Optimization techniques - Metaheuristics -
Gray Wolf algorithm

1 Introduction

Metaheuristic optimization algorithms have developed impressively in the last
two decades. Some of these, such as Artificial Bee Colony (ABC) [9,10,31], Ant
Colony Optimization (ACO) [4,24,25], Bat-Inspired Algorithm (BAT) [1,19,29],
Particle Swarm Optimization (PSO) [5,8,22], have had great repercussions
among scientists from different fields. Metaheuristics have become popular meth-
ods for solving problems for four main reasons: simplicity, flexibility, derivation-
free mechanism and optimal local avoidance [12].

The metaheuristics are quite simple and have been mostly inspired by con-
cepts related to physical phenomena, natural phenomena or animal behaviors in
nature. This simplicity allows metaheuristics to be applied to different problems
© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2021
Published by Springer Nature Switzerland AG 2021. All Rights Reserved

J. A. Marmolejo-Saucedo et al. (Eds.): COMPSE 2020, LNICST 359, pp. 157-172, 2021.
https://doi.org/10.1007/978-3-030-69839-3_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-69839-3_11&domain=pdf
http://orcid.org/0000-0002-2346-5922
http://orcid.org/0000-0003-2370-5479
http://orcid.org/0000-0002-3962-7658
http://orcid.org/0000-0002-0442-1959
https://doi.org/10.1007/978-3-030-69839-3_11

158 F. Martinez-Rios et al.

without special changes in the structure of the algorithm. Also, most meta-
heuristics are free of derivation because, unlike gradient-based optimization
approaches, metaheuristics optimizes the problems stochastically, the process
begins with random solutions which are modified with the metaheuristic in the
search space to find the optimum. Finally, metaheuristics have superior capabil-
ities to avoid local optimum. Compared to conventional optimization techniques
because due to the stochastic nature of metaheuristics, it allows them to avoid
local solutions [16,30].

The metaheuristic algorithms can be divided into two main classes: those
based on a single solution (for example, Simulated Annealing [6,11,13]) and those
based on populations (for example, Firefly algorithm [3,17,26]). In the single
solution based search process, start with a candidate solution. This unique can-
didate solution then improves throughout the iterations. The population-based
metaheuristics use a set of random initial solutions called population, and are
improved for the iterations. Population-based metaheuristics have some advan-
tages over single solution metaheuristics. Multiple candidate solutions share
information about the search space that provokes in sudden leaps towards more
promising values; these multiple candidate solutions mutually cooperate to avoid
optimal solutions locally. Finally, population-based metaheuristics generally have
a higher and better search space exploration compared to algorithms based on
individual solutions [2,7,30].

One of the most exciting branches of population-based metaheuristics is
swarm intelligence (SI). ST algorithms are easy to implement. A common feature
is the division of the search process into two phases: exploration and exploita-
tion. The exploration phase refers to the research process of the promising areas
of the search space. Exploitation refers to the search capacity in the promis-
ing regions obtained in the exploration phase. Find a proper balance between
these two phases is considered a difficult task due to the stochastic nature of
metaheuristics [15,21].

2 Gray Wolf Algorithm

Gray wolves are considered top predators of the food chain. Gray wolves mostly
prefer to live in a herd of size with 5 to 12 wolves on average. These herds have a rig-
orous dominant social hierarchy. The leaders are male and female called alphas and
are responsible for making decisions about hunting, resting places, etc. The pack
obeys the decisions of the alpha wolf. The second level in the gray wolf hierarchy
is beta. The betas are subordinate wolves that help the alpha in decision making
or other activities. The beta wolf respects the alpha but gives orders to the lower
level. The lesser gray wolf is omega. It may seem that omega is not an important
individual in the group, but it has been observed that they maintain the structure
of domination and care of the young. If a wolf is not alpha, neither beta nor omega,
it is called delta, and they have functions of scouts and sentries.

MTGWA: A Multithreaded Gray Wolf Algorithm with Strategies 159

Fig. 1. Typical behaviors of wolf hunting in Yellowstone National Park. (A) Approach,
track, and persecution of the prey. (B - D) Persecution, harassment and surrounding
maneuver. (E) Wolves at the end of the hunt in the last configuration that approximates
a regular polygon [20].

In addition to the social hierarchy of wolves mentioned above, group hunting
is another interesting social behavior of gray wolves. According to Muro et al.
[20], the main phases of the gray wolf hunt are:

1. Tracking, chasing, and approaching the dam.

2. Pursue, surround, and harass the dam until it stops.
3. The movement to surround it.

4. Attack on the prey.

GWO algorithm [18,27,28] models this technique of hunting and social hier-
archy to perform the optimization. In Fig. 1, we can see real examples of these
stages.

To model the social hierarchy of wolves, we consider that the alpha wolf (X,)
is the one in the position with the lowest value of the function to optimize in
each iteration of the algorithm. Equally, the second and third-best solutions are
named beta wolf (X3) and delta wolf (X,), respectively. As mentioned earlier,
gray wolves surround their prey during hunting and to model this behavior the
following equations are proposed:

D= ‘8 *)’(Z(iter) -)Z(iter)‘ (1)
X (iter + 1) = X, (iter) — A « D (2)
— — —
Da = ’C « Xo — X,
— —_ = =
Dy = ’c « X5 — X, (3)
— —_ - =
Ds ‘C « X5 — X,

160 F. Martinez-Rios et al.

A=2am - d (4)

N iteration
=2-2— 5
@ MaxIterations (5)
C =27 (6)

—
where iter indicates the current iteration, X, is the position vector of the
—
prey (position of the alpha wolf), and X; indicates the position of each gray wolf
—

in the group. The vectors A and D are calculated with the following equations:

In Eq. 5 it can be seen how the components of @ are linearly reduced from
2 to 0 in the course of the iterations. On the other hand 77 and 75 are random
vectors in the interval [0, 1).

Gray wolves can recognize the location of the prey and surround it, the alpha
wolf guides this process and the beta wolf and delta have a better idea of the
position of the prey than the rest of the group. To simulate the above, we keep
the three best positions (alpha, beta and, delta wolves respectively) regarding
the value of the function we are optimizing. The remaining wolves update their
positions using the following equations:

— — — —
X1 =Xo— A1 % D,
— — = —
Xy = X5 — Ay Dy (7)

— =

— —
X3=X5— As*x Ds

X, (iter) + Xo(iter) + Xa(it
)-()(z'ter—kl): 1(iter) + 2(;67‘)+ 3(iter) ()

The pseudocode of the GWO algorithm is presented in Algorithm 1. Random
parameters A and C help the candidate solutions to have hyper-spheres with
different random radii for the search space exploration process. The balance
between exploration and exploitation is guaranteed by the values of @ and
X, which allow the algorithm a smooth transition between smooth exploration
exploitation.

The multi-threaded implementation of the Gray Wolf Algorithm shown in
Algorithm 1 starts initializing six parameters:

1. N_.GW number of Gray Wolf by each thread 7 in P.

2. P value that indicates how many iterations of each thread 7 will execute
before the implementation of the selected crossover technique.

3. Maxlter indicates the total number of iterations of the Gray Wolf Algorithm
that each thread is going to execute.

4. SPest is the best solution obtained.

MTGWA: A Multithreaded Gray Wolf Algorithm with Strategies 161

Algorithm 1: Pseudocode of the Gray Wolf Algorithm (GWO).

Data: n,MaxlIterations

Result: Function fitness and position

1 begin

2 Initialize the Gray Wolf population W = w;(i = 1,2,...,n)
3 Calculate Z, @, and E') using Egs. 4, 5, and 6

4 Calculate the fitness for each wolf w;

5 Xo = the best wolf agent
6

7

8

9

X = the second best wolf agent
X5 = the third best wolf agent

iter =1

while iter < Maxlterations do
10 foreach wolf w; from W population do
11 ‘ Update X; position of w; using Eq. 8
12 end

- — .

13 Update A, @, and C using Egs. 4, 5, and 6
14 Calculate the fitness for each wolf w;
15 Update X, = the best wolf agent
16 Update X3 = the second best wolf agent
17 Update Xs = the third best wolf agent
18 end
19 Return the best solution X, and function fitness
20 end

The multithreaded implementation of GWA executes independent versions
of Algorithm1 on each thread, as shown in Algorithm 2 on line 7, until the
number of iterations in each thread reaches the cut-off value P. Once the cutoff
value is reached, all threads return the solution reached S, and the best of
all solutions S"** is obtained (lines 9 to 11 Algorithm2), once this is done,
the crossover techniques are executed. In the experiments for this work, four
crossover techniques were implemented.

— To the best(TB): This cross method takes the thread with the best solution
Stest and copies the values obtained for all other threads.

— Annealing to the best (ATB): Similar to the simulated Annealing algo-
rithm [6], in this ease, the best solution obtained S*¢*! is copied to the rest
of the threads when the following condition is met: [9]:

1
rand [0,1) < exp | — ——3rgors (9)
(log (Mazlt))

foreach T in P

ifT 7é Thest
fori = 1topos

Sr(i) = §"*(0)

162 F. Martinez-Rios et al.

— Genetic with the best (GTB): This method is inspired by the procedures
of the genetic algorithm [13]. A random number pos = rand(1, dimension) is
selected and, the first pos values of the best solution are combined with the
results of each of the remaining threads as:

— Annealing genetic with the best (AGTB): This method combines the
previous two (Annealing to best and Genetic whit the best) if Eq. 9 is true,
we execute the combination of the best solution S%¢**(7) with the remaining
threads using the Eq. 10.

Algorithm 2: MTGWA: Multi-threaded implementation of Gray Wolf
Algorithm.

Data: N.GW, P, MaxIter, S****
Result: %!

1 begin
2 foreach 7 in I' do
3 ‘ Initialize T with n = N_.GW, MaxIterations = P
4 end
5 t—0
6 while ¢t < MaxIter do
7 foreach 7 in I' do
8 Execute GWA (Algorith 1) in 7 for P iterations
9 Sbest best solution obtained in T
10 if S2°' s better than S"*** then
11 ‘ Sbest - SEESt
12 end
13 end
14 foreach 7 in I' do
15 ‘ Execute thread-crossover technique
16 end
17 t—t+ P
18 end
19 Return S%¢*t
20 end

In Fig. 2 we see how Algorithm 2 works. K threads of the GWO algorithm are
executed; each one improves its solution S;. When the threads reach iteration P,
and each one returns its best solution. For example, in iteration P, suppose that
the best solution was obtained by thread 3 (box red), then in generation P + 1
all the wires continue to run based on the initial solution obtained by thread 3
and it is constructed using one of the four crossover methods explained above.

As seen in Fig. 2, the execution of the threads continues until the generations
reach the next 2P value cut, and for example in this case, the best result is
reached by thread 2. Then the process of the solution combination is repeated
and the algorithm continues until the last generation M.

MTGWA: A Multithreaded Gray Wolf Algorithm with Strategies 163

T, T, Ty T,

0 Sio || S

o | Generation 0

k

Sip Syp Syp o |*f S

p | Generation P

p | Generation P+1

3, 3, 3, 3,

SltZP Sz.,gp 53.,21» oo Sktzp Generation 2P

Sy 0p Szyzp Sz.gp oo S;2p Generation 2P+1
Sim Sont 83.,1\1 ees| S,y |Final generation M

Fig. 2. Operation of the multithreaded implementation of the Gray Wolves algorithm.
k is the number og threads, M is the maximum number of iterations and P is the cutoff
value. (Color figure online)

3 Experiments

In this section, different experiments are carried out to tune the parameters
used in Algorithm 2. The parameters we need to tune are the value of the cut
generation P and the number of threads that will be used. We will use the same
functions as Mirjalili et al. to compare our results with those previously obtained
[18]. The benchmark function used for the experiments is shown in Tables 3, 4, 5,
and 6 obtained from [14]. For all the experiments, we used a swarm with 30 gray
wolves. All experiments were executed in a Dell Inspiron 7472 laptop, with Intel
Core i7-8550U, with Microsoft’s Windows 10 Home OS, and 16 GB of RAM.
The algorithm was developed in C#.

To tune the algorithm parameters, we will execute it 30 times with each
of the 13 selected multimodal and unimodal functions. In Table 1, we can see
the results of the algorithm for different cut-off values P. With these results
and taking into account the cut-off value with which our algorithm obtained the
lowest value of the objective function, we can select P = 100 (making an average
weighted of the P values for which the lowest optimization value was obtained).

Now with the value of P = 100, we will execute the algorithm modifying
the number of threads that are used. Table 2 shows the results of the algorithm
executions with 2 threads up to 10 threads.

164

F. Martinez-Rios et al.

With the results obtained and shown in Table 2, we performed a check with
the Wilcoxon test [23] between the results obtained with the original algorithm
and each of the results obtained with our MTGWA algorithm. This analysis
showed that from 6 threads, our algorithm achieved better results than the
original. We also observed that the average execution time was 5 s for each of
the functions, but from 9 threads the execution time increased by 20%. With
the previous results, we will execute the four crossover variants for 6, 7, and 8

threads.

Table 1. Results of experiments to tune the cut-off value P. The best value obtained

for each function appears in bold.
Id [GWO |50 100 150 200 250 300 350 400 450
f1 |6.59E-28 | 9.93E-29 | 1.06E-28 | 1.62E-28 | 1.86E-28 | 3.93E-28 | 5.04E-28 | 2.08E-28 | 6.28E-28 | 6.04E-28
£2 |7.18E-17 | 2.40E-17 | 3.19E-17 | 5.06E-17 | 5.73E-17 | 3.87E-17 | 4.13E-17 | 5.01E-17 | 5.73E-17 | 3.96E-17
£3 |3.29E-06 | 1.10E-26 | 5.15E-26 | 3.83E-26 | 3.96E-26 | 2.75E-26 | 5.37E-26 | 1.90E-26 | 7.67TE-26 | 6.74E-26
f4 |5.61E-07 | 1.16E-08 | 1.52E-08 | 1.90E-08 | 2.80E-08 | 2.35E-08 | 3.14E-08 | 2.58E-08 | 2.95E-08 | 2.51E-08
5 [26.81 |26.48 26.61 |26.26 |26.77175|26.33 |26.67 |26.76 |26.60 | 26.47
6 [0.816 |0 0 0 0 0 0 0 0 0
7 0.00221 |0.00103 |0.00102 |0.00145 [0.00148 |0.00158 |0.00113 |0.00127 |0.00140 |0.00179
f8 |—6123 | —3341 | —3955 |-—4339 |—4542 |-5028 |—5066 |—5196 |—5281 |—5201
f9 |0.310 |0.480 0.342 |1.33 0.432 |0.225 |0.794 |0.704 |0.552 | 0.799
£10 | 1.06E-13 | 1.07E-14 | 7.39E-14 | 7.96E-14 | 7.36E-14 | 7.39E-14 | 8.39E-14 | 8.25E-14 | 7.93E-14 | 2.28E-14
£11/0.00448 |0.00115 |0.00270 |0.00122 [0.00121 |0 0 0 0 0
£12/0.0534 |0.0418 |0.0402 |0.0244 [0.0280 [0.0334 [0.0356 |0.0415 |0.0286 |0.0266
£13|0.654464 | 0.430 0.431 [0.480 [0.429 [0.421 [0.557 |0.440 |0.480 |0.606

Table 2. Results of

executions with P = 100 and the number of threads between 2

and 10.
Id |GWO 2 3 4 5 6 7 8 9 10
f1 |6.59E-28 | 1.08E-28 | 5.67E-29 | 2.56E-29 | 5.46E-29 | 2.62E-29 | 1.97E-29 | 1.76 E-29 | 1.08E-29 | 1.02E-29
f2 |7.18E-17|3.21E-17|1.68E-17 | 1.86E-17 | 1.67E-17 | 8.87E-18 | 1.08E-17 | 1.41E-17 | 1.25E-17 | 9.77TE-18
f3 |3.29E-06 | 1.53E-26 | 1.48E-26 | 9.59E-27 | 5.28 E-27 | 4.68E-27 | 2.94E-27 | 1.37E-27 | 2.13E-27 | 1.68E-27
f4 |5.61E-07|2.34E-08 | 1.68E-08 | 1.38E-08 | 6.76E-09 | 5.66E-09 | 4.63E-09 | 4.31E-09 | 4.34E-09 | 3.38E-09
f5 |26.81 26.87 26.57 26.40 26.62 26.13 26.34 26.08 26.09 26.51
f6 |0.81658 |0 0 0 0 0 0 0 0 0
7 [0.00221 |0.00154 |0.00064 |0 0 0 0 0 0 0
f8 | —6123 —3837 —4376 —4293 —4381 —4423 —4394 —4543 —4521 —4444
f9 |3.11E-01|5.06E-01|6.04E-15|4.26E-15| 3.55E-16 | 0 0 0 0 3.55E-16
10| 1.06E-13 | 5.48E-14 | 6.26E-14 | 6.05E-14 | 4.31E-14 | 4.49E-14 | 2.50E-14 | 4.81E-14 | 4.13E-14 | 2.82E-14
£11/0.00449 |0.00088 |0 0 0 0 0 0 0 0
£12/0.05344 |0.03485 |0.01971 |0.02850 |0.02111 |0.01842 |0.02185 |0.01538 |0.01905 |0.01377
£13]0.65446 |0.45689 |0.47354 |0.46292 |0.37474 |0.32217 |0.31358 |0.34517 |0.21400 |0.30800

MTGWA: A Multithreaded Gray Wolf Algorithm with Strategies 165

Table 3. Unimodal benchmark functions.

/| Function Mathematical Equation Dimensions | Search space Minimum

f1|Sphere f(x) = Z‘j:lz? 30 zi€[—100,100] | f(z) =0

f2 | Schwefel 2.22 flz)= im\ + ﬁ[l |zs| 30 zie[—10,10] flz)y=0

/3| Rotated Hyperellipsoid | f(z) = il <i11]> 30 € [—100,100] | f(z) =0

f4 | Schwefel 2.21 flx) = Z}}a]_\zl\ 30 zie[—10,10] f@)=0

5| Rosenbrock f@) = i:l [100 (i1 —a2)? + (i — 1)2} 30 z:€[-30,30] | f(z) =0

f6| Step 2 flz) = fl li +0.5]% 30 x;€[—100,100] | oo and f(z) =

7| Quartic with noise flz) = Xd:lzx? + random [0, 1] 30 xi€[—1.28,1.28] | f(x) = 0+ random [0,1]

Table 4. Multimodal benchmark functions.

f | Function Mathematical Equation Dimensions | Search space | Minimum

18 | Schwefel flz) = 418.9829d — i 2 sin (\/W) 30 2:€[~500,500] | f(z) =0

J9 | Rastrigin fla) = é [#7 — 10cos (2ma;) + 10] 30 zie[~5.12,5.12] | f(x) =0

10| Ackley 1 flz) = —20exp (—u.z i Z:zf) — exp (5 écos (ant)) + 20+ exp (1) 30 xic[—32,32] flz)y=0

11| Griewank f@) = i) = ﬁcos (7) T1 30 2:6[~600,600] | f(z) =0
=z {1051112 (7y1) + 47 (i = 1) [1+ 10sin® (7yit1)] + (yn — 1)2}

i
+3 ulwi,a, km), where
&

f12| Generalized Penalized 1 K@—-a" m>a 30 2ie[-50,50] | f(x) =0
yi=1+1(@i+1),u(@iakm)=10 —a<z<a
k(—zi—a)" @< -a
a=10,k=100,m =4
=1 ; ;
fl@)=01 {sm’ (3mz1) + Y (i — 1)* [1 +sin? (3rzis1)] + (za — 1) [1 + sin® (wad)]}
=
d
+ 3 u(wi,a,k,m) , where
=
f13 | Generalized Penalized 2 K@w—a™ =>a 30 xi€[—50,50] f@)=0
(wi,a,kym) = {0 —a<zi<a
k(~zi—a)" wi<-a

a=>5k=100,m=4

Tables 4 shows the results of the final experiments of our algorithm. For
unimodal functions, we see that better results were obtained in all functions,
even in functions f6 and f7, the exact minimum 0 was obtained. Experiments
with multimodal functions also showed better results for our algorithm, although
the expected minimum value was not reached in function f8. For multimodal
functions of fixed dimension, the results reached the minimum expected values
except in three functions f20, f21 and f23. The executions with the composite
functions showed that our algorithm was better in 4 functions of the 6 tested
(Tables 7, 8 and 9).

166

F. Martinez-Rios et al.

Table 5. Multimodal fixed-dimension benchmark functions.

Function

Mathematical Equation

Dimensions

Search space Minimum

Shekel’s Foxhole

f@)= |5+ > ————| where
o f= s é(n—nz.,J)ﬁ

—32-16 0 16 32 —32 0 16 32
@i
! —32 —32 —32 —32 —32 —16 ... 32 32 32

i€ [~65.536,65.536] | f(x) = 0.9980038377

f15

Kowalik

1) = 35 [os - B2 were

a = [0.1957,0.1947,0.1735, 0.16, 0.0844, 0.0627, 0.0456, 0.0342, 0.0323, 0.0235, 0.0246]

IS

b=[4,2,1,0.5,0.25,1/6,0.125,0.1,1/12, 1/14,0.0625]

zie[~5,5] () = 0.00030748610

116

Six Hump Camel

f(z) = (47 2107 + L;L) 2%+ wiwe + (—4 + 423) 23

€[5, 5] x) = —1.0316285
[-5,5] f(x)

7

Branin No. 1

@) = (2= B+ 22 6) 410 (1 =) cos (o) + 10

wie[-5,5] f(w) = 0397887

18

Goldstein Price

f@) = [1+ (21 + 22+ 1) (19 — 141 + 327 — 1422 + 62122 + 323)]
[30 + (221 — 32)” (18 — 3221 + 1227 + 48z — 36z125 + 2723)]

zie[-2,2] flx

f19

Hartmann 3D

J@) = - 3 avexp (- 35 A (o ﬂm) where
= =

a=(1.0,12,3.0,3.2)"
3.0 10 30 3680 1170 2673
1110 37 4699 4387 74
A | 011085 | | 4699 4387 7470
3.0 10 30 1091 8732 5547
0.11035 381 5743 8828

zie[0,1] f(z) = —3.86

S

12

Hartmann 6D

F@) == 3 avexp (— S A (o ow) where

a=(1.0,12,3.0,3.2)"

10 3 17 3.501.7 8 1312 1696 5569 124 8283 5886

5 2329 4135 8307 3736 999
A= 0.0510 17 0.1 8 14 P—10- 2329 4135 8307 3736 1004 9991

3 35 1.7 10 17 8 2348 1451 3522 2883 3047 6650

17 8 0.05 10 0.1 14 4047 8828 8732 5743 1091 381
=T

e [0,1] fla) =332

12

Shekel 4.5

f@) =% (é (@~ CiP + 8| where

B=4(1,224463755)"
4.0 1.08.0 6.0 3.0 2.0 5.0 8.0 6.0 7.0
4.01.08.0 6.0 7.0 9.0 5.0 1.0 2.0 3.6
4.0 1.0 8.0 6.0 3.0 2.0 3.0 8.0 6.0 7.0

4.01.08.06.07.09.03.01.0 2.0 3.6
T

25¢(0,10] f(z) = —10.1532

2

12

@)

M-
L
™M=

(2 — Ci)* + /},) ,where
1=

B=1(1,224,463,755"

Shekel 4.7

4.0 1.0 8.0 6.0 3.0 2.0 5.0 8.0 6.0 7.0
4.01.08.06.07.09.05.0 1.0 2.0 3.6
4.01.08.06.03.02.03.08.06.07.0
4.01.0 8.0 6.0 7.0 9.0 3.0 1.0 2.0 3.6

2:¢[0,10] f(z) = —10.403

&

f2

=3 (i (23— C3 w) where

=

B=1(1,224463.755)"

Shekel 4.10

4.0 1.0 8.0 6.0 3.0 2.0 5.0 8.0 6.0 7.0
4.01.08.06.07.09.05.0 1.0 2.0 3.6
4.01.08.06.03.02.03.08.06.07.0
4.01.08.0 6.0 7.0 9.0 3.0 1.0 2.0 3.6

Cc=

i€ [0,10] f(z) = —10.5364

Table 6. Composite benchmark functions.

f | Function | Mathematical Equation Dimensions | Search space | Minimum
f1, f2y ..., f1o = Sphere Function

f24 | CF1 [01,62,...,010] = [1,1,1,...,1] 30 zi€[—5, 5] 0
[A1, Az, ..., A1o] = [5/100,5/100, ..., 5/100]
f1, f2, ..., fio = Griewank Function

f25|CF2 [61,02, ..., 010 = [1,1,1, ..., 1] 30 xi€[—5, 5] 0

[A1, A2, .., Aso] = [5/100,5/100, ..., 5/100]

(continued)

MTGWA: A Multithreaded Gray Wolf Algorithm with Strategies 167

Table 6. (continued)

f | Function

Mathematical Equation

Dimensions | Search space | Minimum

£26 CF3

f1, f2, ..., fro = Griewank Function
[61, 62, ..., 610) = [1,1,1,...,1]
A1, X2, A0) = [1,1,1,..,1]

30 zi€[—5,5] 0

f27| CF4

1, f2 = Ackley Function
f3, fa = Rastrigin Function

5, fe = Weierstrass Function

[z, fs = Griewank Function

fo, fio = Sphere Function
[01,02, ..., 010] = [1, 1,1, ..., 1]
[A1, A2, . Awo] = [5/32,5/32, 1, 1,5/0.5, 5/0.5, 5/100,5/100, 5/100, 5,/100]

30 zie[-5,5) |0

128 CF5

f1, f2 = Rastrigin Function

f3, fa = Weierstrass Function

f5, fo = Griewank Function

[fr, fs = Ackley Function

fo, fio = Sphere Function

(61,02, 010] = (L1, 1, . 1]

(M, A2y Aro] = [5/32,5/32,1,1,5/0.5,5/0.5,5/100,5/100, 5/100,5,/100]

30 zie[—5,5] 0

£29 CF6

f1, f2 = Rastrigin Function

f3, fa = Weierstrass Function

fs, fo = Griewank Function

7, fs = Ackley Function

fo, fio = Sphere Function

(01,62, .., 610 = [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9, 1]

(A1, A2, s Aso) = [0.1% 1/5,0.2 % 1/5,0.3 5/0.5,0.4 5/0.5,

0.5 5/100, 0.6 * 5/100, 0.7 + 5/32,0.8 % 5/32,0.9 * 5/100, 1 5/100]

30 zi€[—5,5] 0

4 Conclusion

In this paper, we show a multi-threaded implementation of the gray wolf algo-
rithm. Several threads of gray wolf algorithms are executed in this new algorithm
and the results are combined with four different strategies every 100 generations.
The experiments with twenty-nine benchmark functions showed that our pro-
posal was better in 17 functions and in 6 of the functions the same results were
obtained as the original algorithm that is equal to the minimum reported.

Table 7. MTGWA with six threads final experiments.

Id GWO TB ATB GTB

AGTB

f1 |6.590E-28 | 2.991E-29 |6.827E-29 |6.151E-29 | 1.041E-28

f2 | 7.180E-17 |1.240E-17 |2.326E-17 | 2.170E-17 | 2.665E-17

3 | 3.290E-06 |4.847E-27 | 1.033E-26 | 9.350E-27 | 1.287E-26

f4 1 5.610E-07 |4.866E-09 |9.915E-09 | 7.925E-09 | 1.176E-08

5 126.8126 26.5574 26.4353 26.0196 | 26.2580
6 | 8.1658E-01 | O 0 0 0
7 1 2.2130E-03 | 1.9221E-05 | O 0 0

(continued)

168

F. Martinez-Rios et al.

Table 7. (continued)

Id |GWO TB ATB GTB AGTB
f8 | —6123 —8199 —7217 —7955 —8201
f9 | 3.105E-01 8.882E-16 |5.921E-17 |2.961E-16 1.066E-15
f10 | 1.060E-13 4.296E-14 | 5.504E-14 | 3.147E-14 5.930E-14
f11 | 4.4850E-03 |0 0 0 0
f12 | 5.3438E-02 | 2.5081E-02 | 2.3753E-02 | 1.8494E-02 | 2.3009E-02
f13|6.5446E-01 | 3.3783E-01 | 3.1999E-01 | 2.2355E-01 | 2.7501E-01
f14 | 4.0425 1.3948 1.2297 1.0973 1.3952
f15 | 3.3700E-05 |3.0750E-04 | 3.0764E-04 | 3.0783E-04 | 3.0890E-04
f16 | —1.0316 —1.0316 —1.0316 —1.0316 —1.0316
f1710.3979 0.3979 0.3979 0.3979 0.3979
f18 3 3 3 3 3
f19 | —3.8626 —3.8628 —3.8628 —3.8628 —3.8628
20 | —3.2865 —3.3224 —3.3224 —3.3224 —3.3224
f21 | —10.1514 —10.1531 | —10.1531 | —10.1531 —10.1531
22| —10.4015 —10.4028 | —10.4028 | —10.4028 —10.4028
f23 | —10.5343 —10.5363 | —10.5363 | —10.5363 —10.5363
24 | 4.384E+01 | 1.759E-31 |4.902E-31 | 4.652E-31 1.277E-30
25| 9.180E+01 |1.528E-15 |6.200E-16 | 4.248E-16 4.847E-16
26 | 6.144E+01 |6.300E-15 |2.866E-15 |2.558E-15 1.598E-15
f271123.124 432.319 335.355 483.908 559.494
f28 | 1.0214E+02 | 9.092E-17 | 6.666E-17 | 3.052E-17 5.828E-17
29 | 43.143 821.745 860.151 811.769 837.791
Table 8. MTGWA with seven threads final experiments.

Id GWO TB ATB GTB AGTB

f1 | 6.590E-28 | 1.557TE-29 | 4.644E-29 |5.045E-29 | 7.605E-29

f2 | 7.180E-17 | 1.135E-17 |2.131E-17 |1.892E-17 | 2.837E-17

f3 1 3.290E-06 |3.952E-27 |8.333E-27 |5.157E-27 | 1.658E-26

f4 | 5.610E-07 |5.252E-09 | 9.2246E-09 | 8.558 E-09 | 1.183E-08

5 | 26.8126 26.5158 26.2442 26.5281 26.1631

f6 | 8.1658E-01 | 0 0 0 0

{7 | 2.2130E-03 | 4.8910E-06 | O 0 0

f8 | —6123 —8150 —T7125 —7851 —8190

f9 | 3.105E-01 |1.184E-16 |7.224E-15 |0 2.901E-15

(continued)

MTGWA: A Multithreaded Gray Wolf Algorithm with Strategies

Table 8. (continued)

Id | GWO TB ATB GTB AGTB
f10 | 1.060E-13 | 4.343E-14 | 4.923E-14 2.839E-14 | 5.267E-14
f11 | 4.4850E-03 |0 0 0 0
f12 | 5.3438E-02 | 1.8182E-02 | 2.4452E-02 | 1.7096E-02 | 2.4125E-02
f13 | 6.5446E-01 | 2.8916E-01 | 2.9516E-01 | 2.3428E-01 | 3.6272E-01
f14 |1 4.0425 1.1624 1.0641 1.0641 1.4285
f15 | 3.3700E-05 | 3.0749E-04 | 3.0769E-04 | 3.0751E-04 | 3.0808E-04
f16 | —1.0316 —1.0316 —1.0316 —1.0316 —1.0316
f1710.3979 0.3979 0.3979 0.3979 0.3979
f18 |3 3 3 3 3
f19 | —3.8626 —3.8628 —3.8628 —3.8628 —3.8628
f20 | —3.2865 —3.3224 —3.3224 —3.3224 —3.3224
21| —-10.1514 —0.9832 —10.1531 —10.1531 | —10.1531
22 | —10.4015 —10.4028 | —10.4028 —10.4028 | —10.4028
23 | —10.5343 —10.5363 | —10.5363 —10.5363 | —10.5363
24 | 4.384E+01 |1.182E-31 | 3.268E-31 4.351E-31 | 1.053E-30
25 9.180E4-01 | 1.783E-15 | 5.091E-16 2.509E-16 | 8.106E-17
26 | 6.144E4+01 | 6.196E-15 | 1.296E-15 1.550E-15 | 6.232E-16
f271123.124 527.919 348.933 439.759 385.945
28 | 1.0214E+402 | 9.29E-17 8.356E-17 2.134E-17 | 7.27T4E-17
29 | 43.143 909.596 770.303 821.229 859.656
Table 9. MTGWA with eight threads final experiments.
Id | GWO TB ATB GTB AGTB
f1 |6.590E-28 |1.849E-29 |4.920E-29 |3.111E-29 | 7.364E-29
f2 | 7.180E-17 |1.085E-17|1.833E-17|1.770E-17 |2.670E-17
f3 | 3.290E-06 |2.215E-27 |5.244E-27 | 8.742E-27 | 1.367E-26
f4 |5.610E-07 |4.316E-09 7.917E-09 | 7.891E-09 |9.706E-09
f5 | 26.8126 26.4452 26.3718 26.2147 26.1552
f6 | 8.1658E-01 |0 0 0 0
f7 | 2.2130E-03 | 1.8666E-05 | O 0 0
f8 | —6123 —7918 —6878 —7810 —8079
f9 |3.105E-01 |5.921E-17 | 5.921E-17|3.553E-16 |4.145E-16
f10 | 1.060E-13 | 4.047E-14 | 3.869E-14 | 2.792E-14 | 5.835E-14
f11 | 4.4850E-03 | O 0 0 0

(continued)

169

170

F. Martinez-Rios et al.

Table 9. (continued)

Id |GWO TB ATB GTB AGTB
f12 1 5.3438E-02 | 1.8677E-02 | 1.9437E-02 | 1.2636E-02 | 1.8983E-02
f13 |1 6.5446E-01 | 2.6864E-01 | 2.8205E-01 | 2.3913E-01 | 3.1093E-01

f14 | 4.0425 1.0643 1.0973 0.9980 1.2297
15| 3.3700E-05 |3.1171E-04 | 3.0753E-04 | 3.0750E-04 | 3.0764E-04
f16 | —1.0316 —1.0316 —1.0316 —1.0316 —1.0316
f1710.3979 0.3979 0.3979 0.3979 0.3979
f18|3 3 3 3 3

f19 | —3.8626 —3.8628 —3.8628 —3.8628 —3.8628
f20 | —3.2865 —3.3224 —3.3224 —3.3224 —3.3224
21| —-10.1514 —10.1531 | —-10.1531 |—10.1531 —10.1531
f22 | —10.4015 —10.4028 | —10.4028 | —10.4028 —10.4028
23 | —10.5343 —10.5363 | —10.5363 |—10.5363 —10.5363

f24 | 4.384E4-01 | 1.256E-31 |3.870E-31 | 3.026E-31 1.013E-30
f259.180E4-01 | 7.095E-16 |5.730E-16 |1.674E-16 8.484E-17
26 | 6.144E+01 |6.320E-15 |9.230E-16 |1.317E-15 6.220E-16
f271123.124 445.452 297.489 542.278 476.529
28 | 1.0214E+4-02 | 1.323E-16 | 6.588E-17 |1.589E-17 |5.394E-17
29 1 43.143 859.377 878.409 796.441 815.896

References

. Akhtar, S., Ahmad, A.R., Abdel-Rahman, E.M.: A metaheuristic bat-inspired algo-

rithm for full body human pose estimation. In: 2012 9th Conference on Computer
and Robot Vision, pp. 369-375 (2012)

Bertsimas, D., Tsitsiklis, J.: Simulated annealing. Stat. Sci. 8, 10-15 (1993)
Patle, B.K., Parhi, D.R., Jagadeesh, A., Kashyap, S.K.: On firefly algorithm: opti-
mization and application in mobile robot navigation. World J. Eng. 14(1), 65-76
(2017). https://doi.org/10.1108/WJE-11-2016-0133

Dorigo, M., Blum, C.: Ant colony optimization theory: a survey. Theor. Comput.
Sci. 344(2), 243-278 (2005)

Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: Pro-
ceedings of the 6th International Symposium on Micro Machine and Human Sci-
ence, 1995. MHS 1995, pp. 3943, October 1995

Henderson, D., Jacobson, S., Johnson, A.: The Theory and Practice of Simulated
Annealing, pp. 287-319. Springer, Boston, April 2006. https://doi.org/10.1007/0-
306-48056-5-10

Ingber, L.: Simulated annealing: practice versus theory. Math. Comput. Model.
18(11), 29-57 (1993)

https://doi.org/10.1108/WJE-11-2016-0133
https://doi.org/10.1007/0-306-48056-5_10
https://doi.org/10.1007/0-306-48056-5_10

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

MTGWA: A Multithreaded Gray Wolf Algorithm with Strategies 171

Jiang, Y., Hu, T., Huang, C., Wu, X.: An improved particle swarm optimization
algorithm. Appl. Math. Comput. 193(1), 231-239 (2007). https://doi.org/10.1016/
j.amc.2007.03.047. http://www.sciencedirect.com/science/article/pii/S009630030-
700392X

Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical func-
tion optimization: artificial bee colony (ABC) algorithm. J. Global Optim. 39(3),
459-471 (2007)

Karaboga, D., Gorkemli, B., Ozturk, C., Karaboga, N.: A comprehensive survey:
artificial bee colony (ABC) algorithm and applications. Artif. Intell. Rev. 42(1),
21-57 (2014)

Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing.
Science 220(4598), 671-680 (1983). https://doi.org/10.1126/science.220.4598.671.
https://science.sciencemag.org/content/220/4598 /671

Kouba, N.E.L.Y., Boudour, M.: A brief review and comparative study of nature-
inspired optimization algorithms applied to power system control. In: Li, X.,
Wong, K.-C. (eds.) Natural Computing for Unsupervised Learning. USL, pp. 35—
49. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-98566-4_2
Koulamas, C., Antony, S., Jaen, R.: A survey of simulated annealing applications
to operations research problems. Omega 22(1), 41-56 (1994). https://doi.org/10.
1016,/0305-0483(94)90006-X. http://www.sciencedirect.com/science/article/pii/
030504839490006X

Liang, J.J., Suganthan, P.N., Deb, K.: Novel composition test functions for numeri-
cal global optimization. In: Proceedings 2005 IEEE Swarm Intelligence Symposium,
SIS 2005, vol. 2005, pp. 68-75, June 2005

Martinez-Rios, F., Murillo-Suarez, A.: A new swarm algorithm for global optimiza-
tion of multimodal functions over multi-threading architecture hybridized with
simulating annealing. Procedia Comput. Sci. 135, 449-456 (2018). https://doi.
org/10.1016/j.procs.2018.08.196, http://www.sciencedirect.com/science/article/
pii/S1877050918314868, The 3rd International Conference on Computer Science
and Computational Intelligence (ICCSCI 2018) : Empowering Smart Technology
in Digital Era for a Better Life

Martinez-Rios, F., Murillo-Suarez, A.: Packing algorithm inspired by gravitational
and electromagnetic effects. Wireless Netw. 26(8), 5631-5644 (2019). https://doi.
org/10.1007/s11276-019-02011-9

Memari, A., Ahmad, R., Akbari Jokar, M.R., Abdul Rahim, A.R.: A new modified
firefly algorithm for optimizing a supply chain network problem. Appl. Sci. 9(1),
p. 7 (2019). https://doi.org/10.3390/app9010007

Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Softw.
69, 4661 (2014). https://doi.org/10.1016/j.advengsoft.2013.12.007. http://www.
sciencedirect.com/science/article/pii/S0965997813001853

Mishra, S., Shaw, K., Mishra, D.: A new meta-heuristic bat inspired classification
approach for microarray data. Procedia Technology 4, 802-806 (2012). https://doi.
org/10.1016/j.protcy.2012.05.131, http://www.sciencedirect.com/science/article/
pii/S2212017312004100, 2nd International Conference on Computer, Communi-
cation, Control and Information Technology(C3IT-2012) on February 25 - 26,
2012

Muro, C., Escobedo, R., Spector, L., Coppinger, R.: Wolf-pack (canis lupus) hunt-
ing strategies emerge from simple rules in computational simulations. Behav.
Process. 88(3), 192-197 (2011). https://doi.org/10.1016/j.beproc.2011.09.006.
http://www.sciencedirect.com/science/article/pii/S0376635711001884

https://doi.org/10.1016/j.amc.2007.03.047
https://doi.org/10.1016/j.amc.2007.03.047
http://www.sciencedirect.com/science/article/pii/S009630030-700392X
http://www.sciencedirect.com/science/article/pii/S009630030-700392X
https://doi.org/10.1126/science.220.4598.671
https://science.sciencemag.org/content/220/4598/671
https://doi.org/10.1007/978-3-319-98566-4_2
https://doi.org/10.1016/0305-0483(94)90006-X
https://doi.org/10.1016/0305-0483(94)90006-X
http://www.sciencedirect.com/science/article/pii/030504839490006X
http://www.sciencedirect.com/science/article/pii/030504839490006X
https://doi.org/10.1016/j.procs.2018.08.196
https://doi.org/10.1016/j.procs.2018.08.196
http://www.sciencedirect.com/science/article/pii/S1877050918314868
http://www.sciencedirect.com/science/article/pii/S1877050918314868
https://doi.org/10.1007/s11276-019-02011-9
https://doi.org/10.1007/s11276-019-02011-9
https://doi.org/10.3390/app9010007
https://doi.org/10.1016/j.advengsoft.2013.12.007
http://www.sciencedirect.com/science/article/pii/S0965997813001853
http://www.sciencedirect.com/science/article/pii/S0965997813001853
https://doi.org/10.1016/j.protcy.2012.05.131
https://doi.org/10.1016/j.protcy.2012.05.131
http://www.sciencedirect.com/science/article/pii/S2212017312004100
http://www.sciencedirect.com/science/article/pii/S2212017312004100
https://doi.org/10.1016/j.beproc.2011.09.006
http://www.sciencedirect.com/science/article/pii/S0376635711001884

172

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

F. Martinez-Rios et al.

Olorunda, O., Engelbrecht, A.P.: Measuring exploration/exploitation in particle
swarms using swarm diversity. In: 2008 IEEE Congress on Evolutionary Computa-
tion (IEEE World Congress on Computational Intelligence), pp. 1128-1134, June
2008. https://doi.org/10.1109/CEC.2008.4630938

Ouyang, Z., Liu, Y., Ruan, S.J., Jiang, T.: An improved particle swarm
optimization algorithm for reliability-redundancy allocation problem with
mixed redundancy strategy and heterogeneous components. Reliab. Eng.
Syst. Saf. 181, 62-74 (2019). https://doi.org/10.1016/j.ress.2018.09.005.
http://www.sciencedirect.com/science/article/pii/S0951832018304125

Rey, D., Neuhduser, M.: Wilcoxon-signed-rank test. In: International Encyclopedia
of Statistical Science, pp. 1658-1659, January 2011. https://doi.org/10.1007/978-
3-642-04898-2_616

Socha, K., Blum, C.: An ant colony optimization algorithm for continuous opti-
mization: application to feed-forward neural network training. Neural Comput.
Appl. 16(3), 235247 (2007). https://doi.org/10.1007/s00521-007-0084-z
Tirkolaee, E.B., Alinaghian, M., Hosseinabadi, A.A.R., Sasi, M.B., Sangaiah,
A.K.: An improved ant colony optimization for the multi-trip capacitated arc
routing problem. Comput. Electr. Eng. 77, 457470 (2019). https://doi.org/10.
1016/j.compeleceng.2018.01.040. http://www.sciencedirect.com/science/article/
pii/S0045790617330501

Wang, G.G., Guo, L., Duan, H., Wang, H.: A new improved firefly algorithm for
global numerical optimization. J. Comput. Theor. Nanosci. 11, 477-485 (2014).
https://doi.org/10.1166/jctn.2014.3383

Wang, J.S., Li, S.X.: An improved grey wolf optimizer based on differential evolu-
tion and elimination mechanism. Sci. Rep. 9(1), 1-21 (2019). https://doi.org/10.
1038/s41598-019-43546-3

Long, W., Xu, S.: A novel grey wolf optimizer for global optimization problems.
In: 2016 IEEE Advanced Information Management, Communicates, Electronic and
Automation Control Conference (IMCEC), pp. 1266-1270 (2016)

Yang, X.S.: A new metaheuristic bat-inspired algorithm. In: Gonzalez, J.R., Pelta,
D.A., Cruz, C., Terrazas G., Krasnogor N. (eds.) Nature Inspired Cooperative
Strategies for Optimization (NICSO 2010), pp. 65-74. Springer, Berlin Heidelberg
(2010). https://doi.org/10.1007/978-3-642-12538-6_6

Yang, X.-S., He, X.: Nature-inspired optimization algorithms in engineering:
overview and applications. In: Yang, X.-S. (ed.) Nature-Inspired Computation in
Engineering. SCI, vol. 637, pp. 1-20. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-30235-5_1

Zhou, J., et al.: An individual dependent multi-colony artificial bee colony algorithm.
Inf. Sci. 485, 114-140 (2019). https://doi.org/10.1016/j.ins.2019.02.014. http://
www.sciencedirect.com/science/article/pii/S0020025519301239 http://www.scien-
cedirect.com/science/article/pii/S0020025519301239

https://doi.org/10.1109/CEC.2008.4630938
https://doi.org/10.1016/j.ress.2018.09.005
http://www.sciencedirect.com/science/article/pii/S0951832018304125
https://doi.org/10.1007/978-3-642-04898-2_616
https://doi.org/10.1007/978-3-642-04898-2_616
https://doi.org/10.1007/s00521-007-0084-z
https://doi.org/10.1016/j.compeleceng.2018.01.040
https://doi.org/10.1016/j.compeleceng.2018.01.040
http://www.sciencedirect.com/science/article/pii/S0045790617330501
http://www.sciencedirect.com/science/article/pii/S0045790617330501
https://doi.org/10.1166/jctn.2014.3383
https://doi.org/10.1038/s41598-019-43546-3
https://doi.org/10.1038/s41598-019-43546-3
https://doi.org/10.1007/978-3-642-12538-6_6
https://doi.org/10.1007/978-3-319-30235-5_1
https://doi.org/10.1007/978-3-319-30235-5_1
https://doi.org/10.1016/j.ins.2019.02.014
http://www.sciencedirect.com/science/article/pii/S0020025519301239
http://www.sciencedirect.com/science/article/pii/S0020025519301239
http://www.scien-cedirect.com/science/article/pii/S0020025519301239
http://www.scien-cedirect.com/science/article/pii/S0020025519301239

	MTGWA: A Multithreaded Gray Wolf Algorithm with Strategies Based on Simulated Annealing and Genetic Algorithms
	1 Introduction
	2 Gray Wolf Algorithm
	3 Experiments
	4 Conclusion
	References

