
Secure Sharing Sensitive Data Based on Network
Coding and Attribute-Based Encryption

Zhiqiang Xu1(B), Bo Shen2, and Zhiyuan Zhang2

1 School of Electronic and Information Engineering,
Beijing Jiaotong University, Beijing 100044, China

18120155@bjtu.edu.com
2 Key Laboratory of Communication and Information Systems, Beijing Municipal Commission

of Education, Beijing, China
{bshen,zhangzhiyuan}@bjtu.edu.com

Abstract. The security of sharing sensitive information through a distributed
information storage and sharing platform is required strictly in many situations. In
this paper, we present a novel approach with the aim of increasing security of shar-
ing sensitive information. The model improves security by exploiting Attribute-
Based Encryption. In addition, we incorporate network coding to our model to
improve the efficiency of transmitting information.

Keywords: Distributed information storage · Attribute-based encryption ·
Network coding

1 Introduction

With the development of information technology, people can quickly obtain valuable
information from various types of data sources nowadays. We can easily facilitate cross-
domain data sharing by a lot of means, such as Internet, massively parallel process-
ing databases, distributed file systems, cloud computing platforms and scalable storage
systems. Information acquisition and sharing is the fundamental purpose of the devel-
opment of these communication and network technologies, and it is also an important
technical means to build various information systems. At the same time, the distributed,
cross-domain and dynamic transmission and sharing of information are also facing great
security threats, which put great challenges to the traditional security model.

The security of sharing sensitive information is through a distributed information
storage and sharing platform. Under the premise of ensuring information security, the
sharing provider can share the required sensitive information according to a certain
strategy, scope and target.

For the purpose of security, access control and data management are realized through
security isolation between multiple domains in general information systems. On the
other hand, cross-domain access is often required to maximize shared network and
data resource services which are contradict to each other. Because cross-domain access

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2021
Published by Springer Nature Switzerland AG 2021. All Rights Reserved
Y.-B. Lin and D.-J. Deng (Eds.): SGIoT 2020, LNICST 354, pp. 95–105, 2021.
https://doi.org/10.1007/978-3-030-69514-9_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-69514-9_9&domain=pdf
https://doi.org/10.1007/978-3-030-69514-9_9


96 Z. Xu et al.

makes the management of users with different security domains and different security
levels more and more complex, and various application layer protocol vulnerabilities
give hackers opportunity to attack the network. Therefore, it is very important to study
the security sharing theory and technology of sensitive data in view of the application
scenario of multi-level security cross-domain sharing of data, and realize flexible cross-
domain data access and improve the availability of data under the condition of protecting
sensitive data from leakage.

In this paper, we describe a secure approach to share sensitive information with
network coding and Attribute-Based Encryption in order to leverage the efficiency and
security of information transmission.

2 Related Work

Shamir [1] first proposed the concept of Identity-Based Encryption. They introduce a
novel cryptographic scheme, which enables any pair of users to communicate securely
and to verify each other’s signatures without exchanging private or public keys, without
keeping key directories, and without using the services of a third party. However, it
wasn’t until much later that Boneh and Franklin [2] proposed the first fully functional
Encryption scheme that was both practical and secure. Their solution made novel use
of groups for which there was an efficiently computable bilinear map. The scheme had
chosen ciphertext security in the random oracle model assuming an elliptic curve variant
of the computational Diffie-Hellman problem.

Canetti et al. [3] rigorously defined a notion of security for forward-secure public-key
encryption and also gave efficient constructions of schemes satisfying this notion. They
proved semantic security of one scheme in the standard model based on the decisional
version of the bilinear Diffie-Hellman assumption. Yao et al. [4] presented a scalable and
joining-time-oblivious forward-secure hierarchical identity-based encryption scheme
that allows keys to be updated autonomously. They also noted how their techniques for
resisting collusion attacks were useful in attribute-based encryption. However, the cost
of their scheme in terms of computation, private key size, and ciphertext size increased
exponentially with the number of attributes.

Sahai and Waters [5] propose a new type of Identity-Based Encryption called Fuzzy
Identity-Based Encryption as a new means for encrypted access control. In a Fuzzy
Identity-Based encryption system ciphertexts are not necessarily encrypted to one par-
ticular user as in traditional public key cryptography. Instead both users’ private keys
and ciphertexts will be associated with a set of descriptive attributes or a policy over
attributes. A user is able to decrypt a ciphertext if there is a “match” between his private
key and the ciphertext.

Bethencourt et al. [6] provided the first construction of a ciphertext-policy attribute-
based encryption (CP-ABE), and gave the first construction of such a scheme. In their
system, a user’s private key would be associated with an arbitrary number of attributes
expressed as strings. On the other hand, when a party encrypted a message in the system,
they specified an associated access structure over attributes. A user would only be able
to decrypt a cipher-text if that user’s attributes pass through the cipher-text’s access
structure. At a mathematical level, access structures in their system were described by a



Secure Sharing Sensitive Data Based on Network Coding 97

monotonic “access tree”,where nodes of the access structurewere composed of threshold
gates and the leaves describe attributes. They noted that AND gates could be constructed
as n-of-n threshold gates andORgates as 1-of-n threshold gates. Furthermore, they could
handlemore complex access controls such as numeric ranges by converting them to small
access trees.

Ahlswede et al. [7] proposed a new class of problems called network information
flow which is inspired by computer network applications. Consider a point-to-point
communication network on which a number of information sources are to be multicast
to certain sets of destinations. We assume that the information sources are mutually
independent. The problem is to characterize the admissible coding rate region. This
model subsumes all previously studiedmodels along the same line. In this paper,we study
the problemwith one information source, andwe have obtained a simple characterization
of the admissible coding rate region. Our result can be regarded as theMax-flowMin-cut
Theorem for network information flow. Contrary to one’s intuition, our work reveals that
it is in general not optimal to regard the information to be multicast as a “fluid” which
can simply be routed or replicated. Rather, by employing coding at the nodes, which we
refer to as network coding, bandwidth can in general be saved. This finding may have
significant impact on future design of switching systems.

3 Methodology

3.1 CP-ABE

First of all, we give the definitions of an access structure proposed by Bethencourt et al.
[6]. Thenwe introduce howdoes the ciphertext-policy attribute-based encryption scheme
work to guarantee the security of access control.

Definition (Access Structure): Let {P1,P2, . . . ,Pn} be a set of parties. A collec-
tion A ⊆ 2{P1,P2,...,Pn} is monotone if ∀B,C ifB ∈ A and B ⊆ C then C ⊆ A.
An access structure (respectively, monotone access structure) is a collection (respec-
tively, monotone collection) A of non-empty subsets of {P1,P2, . . . ,Pn}, i.e.,A ⊆
2{P1,P2,...,Pn}\empty set. The sets in A are called the authorized sets, and the sets no
in A are called the unauthorized sets.

Setup. The input of setup algorithm is the implicit security parameter and the output
are public parameters PK and a master key MK.

Encrypt(PK, M, A). The input of encryption algorithm are the public parameters PK,
a message M, and an access structure A over the universe of attributes. The algorithm
will encrypt the message M and output a ciphertext CT which contains A implicitly.
The ciphertext CT can only be decrypted rightly when a user have a set of attributes that
satisfy the access structure A.

Key Generation(MK, S). The input of key generation algorithm are the master key
MK and a set of attributes S which gives some descriptions of the key. And the output
of this algorithm is a private key SK which contains the set of attributes S implicitly.



98 Z. Xu et al.

Decrypt(PK, CT, SK). The input of decryption algorithm are the public parameters
PK, a ciphertext CT, and a private key SK. As discussed in the former algorithms, we
can see that the ciphertext CT contains access structure A implicitly and the private key
SK contains the set of attributes S implicitly. When the set S of attributes satisfies the
access structure A, the decrypt algorithm will decrypt the ciphertext rightly and output
a message M.

Delegate(SK, S’). The input of delegate algorithm is a secret key SK of set of attributes
S and a set S’⊆S. the output of this algorithm is a secret key S’K for the set of attributes
S’.

There are several steps when we want to use CP-ABE. First of all, we need a implicit
security parameter to generate the public parameters PK and amaster keyMK. Secondly,
when we want to encrypt a message M, Encrypt(PK, M, A) can output a ciphertext CT.
Then we should use Key Generation(MK,S) to generate private key SK for every users.
Finally, user can use his private key SK to get the message M through the function
Decrypt(PK, CT, SK) if the SK satisfies the access structure A.

3.2 Network Coding

Network coding is a novel technique proposed in 2000 which can improve throughput
and performance of network.Many people think it will be a critical technology for future
networks. With the appearance of network coding, a simple but important observation
was made that in communication networks, we can allow nodes to process as well as
forward the incoming independent information flows. When an intermediate node gets
some independent data, it can make binary addition before transport them. Handling
these independent data streams can greatly improve the efficiency of network information
transmission. It is the cheap computational power that network coding utilizes to greatly
increase network throughput. We will give a simple example to show how does the
network coding improve network throughput when multicasting.

Fig. 1. Sources S1 and S2 multicast data to receivers R1 and R2.

As we can see in Fig. 1, a communication network represented as a directed graph,
vertices represent terminals and edges represent channels. This communication network
is commonly known as the butterfly network in the network coding. Assume that we have



Secure Sharing Sensitive Data Based on Network Coding 99

slotted time, and that through each channel we can send one bit per time slot. We have
two data sources S1 and S2, and two data receivers R1 and R2. Each source produces
one bit per time slot. Data x1 is produced by S1 and x2 is produced by S2.

If receiver R1 uses all the network resources by itself, it could receive both sources.
As shown in Fig. 1(a), we can route the bit x1 from source S1 through the path {AD}
and the bit x2 from source S2 through the path {BC, CE, ED}. In the same way, if we
want the second receiver R2 with using all the network resources by itself, it could also
receive both sources. As shown in Fig. 1(b), we can route the bit x1 from source S1
through the path {AC, CE, EF}, and the bit x2 from source S2 through the path {BF}.

We consider a situation called multicasting that receivers R1 and R2 want to receive
the information from sources S1 and S2 at the same time. When comes to this situation,
receiver R1 can receive x1 from source S1 through the path {AD} and receiver R2
can receive x2 from source S2 through the path {BF}. But we want receiver R1 can
get x2 from source S2 and receiver R2 can get x1 from source S1 through the path
{CE} simultaneously. However, we can only send one bit per time slot and we want to
simultaneously send bit x1 to reach receiver R2 and bit x2 to reach receiver R1.

In the past, information flow was treated like fluid through pipes, and independent
information flows were kept separate. In this case we would have to make a decision at
edge CE: either use it to send bit x1, or use it to send bit x2. When we decide to send bit
x2 using edge CE, then receiver R2 will only receive x2, at the same time receiver R1
will receive both x1 and x2.

The simple but important observation made by Ahlswede et al. [7] is that we can
allow intermediate nodes in the network to process their incoming information streams
instead of just forward them. In particular, node C can take bits x1 and x2 and xor them
to create a third bit x3 = x1 + x2 which it can then send through edge CE (the xor
operation corresponds to addition over the binary field). R1 receives {x1, x1 + x2}, and
can solve this system of equations to retrieve x1 and x2. Similarly, R2 receives {x2, x1
+ x2}, and can solve this system of equations to retrieve x1 and x2.

This example shows that when multicasting we can improve throughput through
allowing intermediate node in the network to process information streams and receivers
exacting the information.

In addition to the improvement of throughput, the security of network coding also
has advantages. Instead of sending uncoded data, sending linear combinations of data
can offer a natural way to use advantage of multipath diversity for security against
wiretapping attacks. So we only need protection against other attacks with network
coding.

However, there are some challenges to deploy the network coding. First of all, the
complexity of employ network coding is high because the nodes in network need to
have some additional functionalities. As we discussed in Fig. 1, the intermediate nodes
C has additional memory and calculation requirements because instead of broadcasting
streams immediately, it needs to store and process streams. The receivers D and F should
be able to exact the information through what it receives. In fact, it is difficult to access
the complexity of network coding. Secondly, with the rapid development of network
technology, our demand for network security is becoming higher and higher. In our file
sharing scheme, security is an important part andwe need to guarantee protection against



100 Z. Xu et al.

sophisticated attacks. Network coding need intermediate nodes to perform operations on
the data. Thus, we should prevent intermediate nodes from maliciously tampering with
the data. Finally, as communication networks’ high speed development, a challenging
task is to incorporate the emerging technologies such as network coding, into the existing
network architecture. We want to profit from the network coding without incurring
dramatic changes in the existing equipment and software. A related open question is,
how could network coding be integrated in current networking protocols.

3.3 Model Description

We describe our model in this section. In our simulated file transfer system, we have
one controller server and seven file servers, and the connection topology is shown in the
Fig. 2. Each file server is connected to the controller server. These file servers are server
nodes in different networks, representing system nodes which are located in different
areas. Every server node stores a variety of encrypted files. In the initialization phase of
the system, all the file server nodes first establish a connection to the controller and then
transmit some information to it. The information is about all the local file directories
and the connections to other file server nodes. When the controller receives feedback
information from each node, it will summarize information. Through connections of
each node, the controller can get the whole file system nodes’ connection diagram. In
the sameway, after receiving every node’s local file directory, the controller can generate
a list of all the files existing in the system which consists of two parts. The first part is
a map of in which nodes each file locates, the second is the directory of every node. In
order to make our system has the ability of resisting some disasters, we follow the idea of
Hadoop’s mechanism which is making two copies of all files, that is to say for each file,
has two backups distributed in different nodes of the system. This approach has great
benefits for the system. Image a scene, if some special circumstances such as a node is
damaged happen suddenly, we can still use the backup files stored in other nodes for
file sharing and the recovery of damaged node. To achieve this, after the initialization
process, systemwill start to maintain the list of files regularly. During list’s maintenance,
the controller sends a request to each server node. After receiving the request, server
node will return the hash values of all the local files to the controller in the form of (file
name, 32-bit md5 value). When received the files’ hash values returned by each node,
the controller compares the 32-bit md5 values of the same file, and there will be three
different situations. In the first case, three backups of the same file have the same md5
value, which means that each file is right and no additional operations are required. The
second case, two backups’ md5 values are same, but are different from the last ones.
Two files of same md5 value are right and the file which it’s md5 value is different from
the other two backups is damaged. The controller will notify the corresponding node
stored damaged file to delete the damaged filed. Then it will randomly select a node
which has same backup without error to transmit this file to the error node. Then we can
ensure that there are two right backups of each file in our system all the time; Last case
is that three backups’ md5 value are different from each other which means at least two
files are destroyed. We have no idea to distinguish which one is right. In this situation,
the controller will notify the three server nodes to delete this file after which system will
update the list of all files. But in fact the last kind of circumstance rarely happens.



Secure Sharing Sensitive Data Based on Network Coding 101

Fig. 2. Connection topology of simulated file transfer system

Another important task in the system’s initialization phase is to assign private keys
of ABE to each server node. We need to be aware of every server node’s attributes due
to use of attribute-based encryption in our system. We set default property set as the
form of (node_id: id). For example, node 3 has attribute as a string of “node_id: 3”.
After determined attributes for each node, the controller generates private keys with the
corresponding attributes of each node through key generation algorithm in ABE and
then sends private keys to related server nodes.

When the controller assigns the private keys to server nodes, it is not allowed to send
plaintext directly. Our system uses SSL (Secure Socket Layer) to distribute private keys.
SSL is a protocol for the secure exchange of information between TCP connections
which provides two basic security services: authentication and confidentiality. To use
SSL for messaging, some preparations are needed on the controller side like installing
openssl. First of all, an application for root certificate is generated using the private key,
and root certificate will be produced using the self-signed method to sign the previous
application. Then the private key of the server’s authentication certificate is established.
We are supposed to generate the certificate application file, and the root certificate is
used to issue the server’s authentication certificate. Finally, the private key of client’s
authentication certificate is established and certificate application is generated. Client’s
authentication certificate is issued by root certificate. After generating all the certificates,
we assign the server-side certificate to the controller and the clients’ certificates to the
various file server nodes in the system. We can safely send the private keys of ABE to
each file server node through the controller with SSL methods after finish preparatory
work.

We will briefly make a explanation of ABE’s encryption and decryption strategy.
Suppose our attribute set is {student, teacher, male, female, school of electronic and



102 Z. Xu et al.

information engineering, school of economics and management, school of science}.
The first step is choosing some attributes from the set to form the policy of encryption
and decryption and the nodes which match chosen attributes can decrypt ciphertext
correctly. For example, if the policy is selected as {teacher, male}, as long as the user’s
attributes contains “teacher” and “male”, it can decrypt ciphertext correctly. If there is
a user whose attributes are {school of electronic and information engineering, teacher,
male}, he can decrypt correctly because his attributes match the policy. If another user’s
attributes are {school of electronic and information engineering, teacher, female} then
she cannot properly decrypt because her attributes do not satisfy attributes described in
the policy. Through this simple example, we can find out that in the ABE encryption
scheme, the private key of each user will do not change after generated. It is the policy
that changes all the time to satisfy different demands of encryption and decryption.

After the initialization of the system is completed, we can start file sharing. If user
needs a file, he needs to issue a request contains the desired file’s name to the closest
file server node to which he connects. When a server node receives request of file,
first it will research that file locally. If server node has this file, it sends to the user
directly. If this file is not available locally, the server node will send file request to the
controller in the form of desired file’s name. After receives a file request, the controller
will search through the list of all files according to desired file’s name to find where it
is stored. When it comes to multicast, first of all the controller calls the minimum cut
maximum flow algorithm of network coding to find out the path of transmission. Then
the weight matrix is calculated by the weight calculation function in the network coding.
In the following time, the configuration information will be sent to corresponding server
nodes according to the path. After receiving configuration information, these nodes
will prepare to receive and forward files as required. Controller can choose encryption
policy according to attributes of user who requests files. The policy will be sent to first
server node of the path. Starting node divide the file into some parts in setting size (for
example, we set the block size of 100 MB). Every part will be encrypted by ABE with
a header which recording the location of each part. UDP packet is used in the sending
process, but only after receiving the confirmed message from receiver, the sending side
can continue to send the next packet. Moreover, we have set up a simple verification
and retransmission mechanism to ensure the high transmission quality of files. When
get some bitstreams, receiver puts it into a queue and enables another thread to process
bitstreams according to the configuration information of network coding and forwards
it. Sending and receiving are separated. After receiving all the segmented parts, end
server node extract information with network coding algorithm. Then it will decrypt
segmented part using private key and recover complete file according to the header. This
is what happens when files are transmitted in our system of multicast. If it is unicast,
the controller finds the path according to the shortest path algorithm, and then sends
the configuration information to related nodes. When server node is prepared well, the
encryption policy is selected and sent to the starting node of path. The starting server node
divides the file into some parts, encrypts these with ABE according to the policy, and
then transmits the file. The intermediate node forwards the received bitstreams directly
without any processing. After receiving each file part, the end server node will finish
decryption and merge them into a complete file according to the header.



Secure Sharing Sensitive Data Based on Network Coding 103

4 Experiment

We describe the evaluation tasks and report the experimental results in this section. We
evaluate ABAE on two criteria:

1. Security
2. Effective of network coding

The system security of this paper mainly consists of two parts: the security of private
key distribution and the security of file sharing. For key distribution, SSL is used to
transmit private key securely because of its bidirectional authentication function. The
related certificates are distributed to the controller node and the server nodes so that
they can authenticate each other, and their communications will be encrypted when the
authentication is completed. We use network sniffer tool to monitor the traffic which is
found that all the data transmitted is garbled in the process of private key distribution.
Then we can guarantee the security of key distribution process.

In addition to the security of key distribution, it is also necessary to ensure the
security in process of sharing files. We use ABE to encrypt the transmitted content,
because as required in distributed system, the data can be accessed correctly only if the
user satisfies some particular attributes. However, there is a risk that the server node
will be attacked if files are stored on it. Then we use Ciphertext-Policy Attribute-Based
Encryption to ensure access control. The decryption policy is under the control of the
controller node, so that even if the server where files are stored is attacked, data can be
protected. [Ciphertext-Policy Attribute-Based Encryption] has proved that CP-ABE can
resist collusion attacks.

We want to verify the efficiency of network coding in multicast. In this regard, we
respectively transfer two different files from node 1 to node 3 and node 7 to record the
speed. Each node stores 50 to 100 files, ranging in size from 1 MB to 5000 MB. We
change size of the transferred files and recorded the time required for transferring two
files under the two methods of using network coding and not using network encoding
for comparison. The results are shown in the Table 1 when two files are in same size.
The results are shown in the Table 2 when one file is half the size of the another.

Table 1. The time of transferring files (two files are in same size) using and not using network
coding

The size of files (MB)

1 5 10 50 100 500 1000 5000

With network
coding (ms)

603 2912 5863 23829 52952 246922 508574 2297855

Without network
coding (ms)

605 3115 6322 27176 57835 275357 565632 2582117



104 Z. Xu et al.

Table 2. The time of transferring files (one file is half the size of the another) using and not using
network coding

The size of bigger file (MB)

1 5 10 50 100 500 1000 5000

With network
coding (ms)

449 2177 4510 18459 40998 193818 400105 1837972

Without network
coding (ms)

457 2298 4801 20082 44019 206509 424324 1948675

As we can see in the experiment, the transferable efficiency of using network coding
is higher than not using it by almost 11% when two files are in same size. But when
one file is half the size of another the efficiency improvement is decrease to almost 6%
because of the limitation of network coding which is that it is most efficient to transfer
files of the same size. We can get the conclusion that using network coding can improve
transferable efficiency in our system.

5 Conclusion

In this paper, we proposed a system for share sensitive data securely which was based on
attribute-based encryption and network coding. Our system uses a new type of encrypted
access control where user’s private keys are specified by a set of attributes and a party
encrypting data can specify a policy over these attributes specifying which users are
able to decrypt. We also use network coding in our system to improve the efficiency of
multicast.

One limitation of our system is that ABE is proved secure under the generic group
heuristic. So the security of our system is limited in some situations. But we believe
some more secure technologies which can be applied to our system would be proposed
in future.

Acknowledgements. This work is supported by the National Key R&D Program of China under
Grant 2018YFC0831300, China Postdoctoral Science Foundation under Grant 2018M641172, the
National Natural Science Foundation of China under Grant 61701019.

References

1. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R., Chaum,
D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985). https://
doi.org/10.1007/3-540-39568-7_5

2. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian, J. (ed.)
CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001). https://doi.org/
10.1007/3-540-44647-8_13

3. Biham, E. (ed.): EUROCRYPT 2003. LNCS, vol. 2656. Springer, Heidelberg (2003). https://
doi.org/10.1007/3-540-39200-9

https://doi.org/10.1007/3-540-39568-7_5
https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1007/3-540-39200-9


Secure Sharing Sensitive Data Based on Network Coding 105

4. Yao, D., Fazio, N., Dodis, Y., et al.: ID-based encryption for complex hierarchies with appli-
cations to forward security and broadcast encryption. In: ACM Conference on Computer &
Communications Security. ACM (2004)

5. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EUROCRYPT
2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). https://doi.org/10.1007/
11426639_27

6. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryption. In: IEEE
Symposium on Security and Privacy, 2007. SP ‘07. IEEE (2007)

7. Ahlswede, R., Cai, N., Li, S.Y.R., et al.: Network information flow. IEEE Trans. Inf. Theory
46(4), 1204–1216 (2000)

8. Fragouli, C., Soljanin, E.: Network coding fundamentals. Found. Trends Netw. 2(1), 1–133
(2007)

9. Gamal, A.A.E., Cover, T.M.: Achievable rates for multiple descriptions. IEEE Trans. Inf.
Theory 28(6), 851–857 (1982)

10. Roche, J.R., Yeung, R.W., Hau, K.P.: Symmetrical multilevel diversity coding. IEEE Trans.
Inf. Theory 43(3), 1059–1064 (1997)

11. Yeung, R.W., Zhang, Z.: Distributed source coding for satellite communications. IEEE Trans.
Inf. Theory 45(4), 1111–1120 (1999)

12. Agarwal, A., Charikar, M.: Manufacturing engineer - on the advantage of network coding
for improving network throughput. In: IEEE 2004 IEEE Information TheoryWorkshop - San
Antonio, TX, USA (24–29 Oct. 2004), pp. 247–249 (2004)

https://doi.org/10.1007/11426639_27

	Secure Sharing Sensitive Data Based on Network Coding and Attribute-Based Encryption
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 CP-ABE
	3.2 Network Coding
	3.3 Model Description

	4 Experiment
	5 Conclusion
	References




