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Abstract. Dynamic random access memory (DRAM) products are the key parts
in consumer products. To fulfill the current market’s strict specifications, various
customers have asked DRAM manufacturers to continue improving the quality
of DRAM products. The resistance of the Ti film directly affects the electrical
quality of DRAM products. At present, the DRAM products developed by the
case company have caused customer returns due to abnormal resistance value
of Ti film. Process engineers always adjust the engineering parameters based on
experience, which resulted in slow improvement and inability to determine the
setting of engineering parameters. Consequently, shipments of DRAM products
are delayed. This study adopts theTi film resistance ofDRAMproducts as themain
research object for improvement and applies the response surface method, neural
networks, and genetic algorithms to help process engineers analyze and improve
DRAM products. This work assists the case company in achieving a significant
improvement in Ti film resistance from 210.33 � (the origin made by the case
company) to 185.28 � (the improvement made by this work) where the specified
target value is 185�. The results are effective in shortening the improvement time
and reducing customer returns.

Keywords: DRAM · Response surface method · Neural networks · Genetic
algorithms

1 Introduction

Dynamic random accessmemory (DRAM) is typically used for the data or program code
needed by mobile computing devices, workstations, servers and more. Ti film resistance
is an important quality characteristic for the yield of DRAM products. An ideal Ti film
resistance target value is, e.g., 185 �. A case company makes effort to improve the
process to tune the Ti film resistance to the target value. If the Ti film resistance of a
DRAM product is more closed to the target value, the quality of the DRAM product is
better. If Ti film resistance is far from the target value, the quality of DRAM products
will be low as well as the yield.

This case study considers DRAM products developed by a semiconductor company
in Taiwan. During production, the DRAM products had an electrical abnormality, which
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was caused by product defects. Figure 1 shows the defect items of the DRAM products.
The Ti film resistance value is the primary defect of the DRAMproducts, and it accounts
for 46.7% of the total number of defects. Figure 2 shows a cross section of a DRAM
product. The upper layer is the subject Ti film. To achieve quality control, the case
company measured the Ti film resistance at 22 positions on each wafer. The measured
positions are shown inFig. 3. Figure 4 illustrates the daily average of theTi film resistance
of DRAM products in the case company during Jun. 1, 2019 and Aug. 28, 2019, where
the total average resistance is 210.33 �.

The Ti film resistance of DRAM products has different measurement data because
of different settings of engineering parameters. With the increase in the complexity
of the manufacturing process, multiple engineering parameters need to be considered
simultaneously when improving the quality of DRAM products. Using the experience
of process engineers to perform experiments in the improvement stage would consume
time and delay the product shipment schedule. Given the limited recourse of the case
company, the optimal setting of engineering parameters should be determined within a
short time. However, the case company cannot conduct numerous experiments. There-
fore, this study integrates the response surfacemethod (RSM), neural network (NN), and
genetic algorithm (GA) to improve the Ti film resistance of DRAM products to enhance
the electrical quality of the products.

The paper is organized as follows. Section 2 refers to related literature present-
ing fractional factorial design, response surface method, artificial neural network and
genetic algorithm. Section 3 outlines a proposed approach for improving DRAM prod-
ucts. Section 4 presents a case study, the proposed approach was used to improve the
resistance of DRAM products. Section 5 summarizes our conclusions.

Qty

Ti film TiN film Temp. issuesItem
Qty.

Top defects analysis

Fig. 1. The top defects in a DRAM product
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Ti film

Fig. 2. The cross section of a DRAM product

Fig. 3. The positions of the measured resistance for the quality control

2 Related Work

The design of experiment (DOE) methodology was developed to find the optimal engi-
neering parameters in an experiment by Fisher in the early 19th century [1]. Full factorial
design examines all of the engineering parameters in the experiment. As the number of
engineering parameters increases, the number of examinations and cost in a full facto-
rial design also increase. For example, for an experiment with seven 2-level parameters,
27 = 128 times of examinations should be performed to find the optimal engineering
parameters. The cost is also exponential growth. To solve this problem, Box and Hunter
proposed the fractional factorial design in 1961 [2]. Fractional factorial design is part of
the full factorial design experiment. The engineering parameters that are similar to those
of the full factorial design can be found but with the fewer number of examinations.
The main idea of the fractional factorial design is to select the important engineering
parameters with the major impact on the results of the experiment. If an experiment with
seven 2-level parameters has 5 important engineering parameters, the number of exam-
inations is reduced to 27–2 = 32 using the fractional factorial design. Therefore, the
fractional factorial design has great help in selecting important engineering parameters
and saving cost, and it has beenwidely used in various product and process improvement.
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Fig. 4. The trend chart of average resistance of Ti film

Arévalo et al. (2019) established a fractional factorial design concluded in a total of 28
experiments to determine the critical variables values in which the matrix tablets reach
the required quality [3]. Dias and Dias (2018) performed a fractional factorial design
(24 − 1) to evaluate the contrasts of the dealumination variables (temperature, humid-
ity, dealumination degree and washing) in each response (Si/Al ratio, number of acid
sites, catalytic conversion) [4]. Harborne et al. (2018) used fractional factorial design for
protein engineering to identify the most important residues involved in the interaction
between AcrB and nickel resin [5].

Box and Wilson [6] proposed an experimental design method called response sur-
face method (RSM) that provides a series of analysis steps to optimize the response of
products, processes, and systems. RSM integrates a statistical regression model to pre-
dict the response value under different engineering parameters [7]. The principle is to
construct the relationship between engineering parameters and response variables, and
determines the optimal engineering parameters of the system. In practical applications,
the RSM has been widely used in many enterprise improvement activities. Sharifi et al.
(2018) applied a response surface methodology to determine the optimum synthesis
parameters which are related to the paper sheets revealed that adding PANi decreases
the amounts of breaking length, and tear and burst factors [8]. Tuzen et al. (2018) They
adapted response surface methodology to combine both the high surface area and the
active sites to enhance adsorption of the dye [9]. Most of practical applications used the
second-order RSM model to construct the non-linear relationship of the input control
factors and response variable. To further improvement, we try to use an artificial neural
network to model the non-linear relationship of the input control factors and response
variable in the paper.

The implementation of RSM generally requires at least two continuous engineering
parameters to construct a response surface.
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If E
[
y
] = E[f(x1, x2, . . . xn) + ε], where ε is the error observed in response value y,

is used to present the expected response value, then the formed surfaces on E[y] under
different combinations of x1, x2,…xn are called response surface, and the point with the
best response value usually has the largest curvature.

The response surface can be used to estimate the response value, determine the best
setting of engineering parameters, and find the optimal solution value. For RSM, an
appropriate mathematical relationship should be established between the engineering
parameters and response variable, and this can be achieved by using low-order polyno-
mials of engineering parameters in certain region, such as a first-order model. However,
when the relationship in the system has curvature, it must be expressed by a higher-order
polynomial, such as a second-order model [10].

If the response value can be obtained as a linear function, the function is a first-order
model, as shown in the following formula.

y = β0 + β1x1 + β2x2 + . . . + βkxk + ε, (1)

where β0 represents the intercept of the response surface and β1, β2, . . . βk is the
coefficient of each control variable.

If the system requires a model with curvature to estimate the response value, then
a second-order model must be used. In addition to the items of the first-order mode,
the second-order mode has interaction term xixj and quadratic term x2i , as shown in the
following formula.

y = β0 +
k∑

i=1

βixi +
k∑

i=1

βiix
2
i +

∑ k∑

i<j

βijxixj + ε (2)

In RSM experimental design, a screen experiment (fractional factorial design) is
initially used to select the important engineering parameters that affect the response
value, and these important engineering parameters are utilized to construct the response
surface. Then, a first-order response surface is established to determine whether the
optimal solution falls within the current region of engineering parameters. To confirm
that the experimental region already contains the optimal solution value, we can use
the center-point experiment design and analysis of variance (ANOVA) to determine is
the significance of curvature in this experimental region. If the curvature is significant,
then the optimal solution value may be within this region, and we can continue to con-
struct the second-order response surface to determine the optimal setting of engineering
parameters. However, if the curvature is not significant, then the steepest path that can
increase or decrease the response value should be identified from the current experi-
mental region, and the path to the optimal solution value should be advanced. The most
common search method is the method of steepest descent or ascent, which is used to
find the new experimental region of engineering parameters that may contain the optimal
solution; then, the second-order response surface is constructed to determine the optimal
setting of engineering parameters.
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3 The Proposed Approach

This study initially uses the fractional factorial experimental design to assist the case
company in selecting important engineering parameters and then adopts the center-point
experimental design to confirm the presence of curvature within the region of engineer-
ing parameters. When curvature exists in the region of engineering parameters, the
RSM is used for modeling; when no curvature exists, the steepest descent method is
required to determine the new experimental region that may contain the optimal solu-
tion. Afterward, RSM is implemented for the region of engineering parameters where
the optimal solution may exist, and some applicable experimental data are collected by
RSM experiment. Artificial neural network (ANN) is modeled with RSM experimen-
tal data to establish the relationship between each engineering parameter and Ti film
resistance of DRAM products. Finally, genetic algorithm (GA) is used to find the global
optimal setting of engineering parameters. After finding the optimal setting of engineer-
ing parameters, confirmation experiments are required to verify the effectiveness of the
proposed approach. The flow of proposed approach is shown in Fig. 6.

ANN training involves adjusting the link value continuously [12, 13]. The link value
is a kind of weight; the larger the value is, the more likely the connected neuron is to
be excited (the more important it is to the output variable). When multiple neurons are
combined, they can create an ANN. Figure 5 shows an ANN composed of three layers of
neural-like units. The first layer is an input layer composed of input units (engineering
parameters). These input units are initially connected to the nodes of the hidden layer
and then connected to the output units of the output layer through adjustable weights.
Afterward, each output unit corresponds to a specific engineering feature.

A

B
:
:
:
:
:

Y

Input Hidden Output

:
:
:

Fig. 5. Structure of ANN

ANN must be trained repeatedly so that each input engineering parameter can cor-
rectly correspond to the required output variable. Before ANN training, a training dataset
must be prepared to offer a reference template for the network in the learning process.
The purpose of ANN training is to make the output value of ANN close to the target
value so that the error between the two becomes increasingly small [14]. When the error
between the two hardly changes, the ANN has reached convergence and completed
training. When the neural network is trained through the training samples, although the
output of the neural network is close to the required value, we do not know what output
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results will be obtained for inputs that are not generated by the training samples. There-
fore, another set of untrained samples must be used for the neural network to confirm
the error between the predicted value and the known feature value. This sample is called
the testing dataset.

The learning rate is a crucial parameter in an ANN training. The learning rate affects
the convergence speed of ANN. If the learning rate is large, then the convergence of
ANN will become fast. Conversely, a small learning rate makes the convergence of
ANN slow. Fausett [15] and Hagan et al. [16] demonstrated the process of selecting
appropriate ANN parameters.

Recent studies have used neural networks to elucidate the ability to learn the com-
plex relationships between the engineering parameters and response variable, usually
for process and quality control. Wang et al. (2019) used a two-layer neural network
and genetic algorithm to established a fast approach to cavitation optimization and a
parametric database for both hub and shroud blade angles for double suction centrifugal
pump optimization design [17]. Mukherjee and Rajanikanth (2019) applied an artificial
neural network to predict the variation of nitric oxide/nitrogen dioxide when the exhaust
is subjected to discharge plasma [18]. Hu et al. (2019) developed an artificial neural
network to predict polarization curves under different complex sea environments [19].

GA simulates the natural selection rule of the biological world, the natural elimina-
tion rule of the fittest, leaving only ethnic groups that best meet the living conditions.
GA differs from conventional search techniques that conduct a point-to-point search in
the solution space. GA is a robust adaptive-optimization technique that allows an effi-
cient probabilistic search in high-dimensional space [20]. Many experts and scholars
have invested in further exploration and research on the evolution of GA and confirmed
the feasibility of this algorithm. Hosseinabadi et al. (2019) investigated genetic algo-
rithms for solving Open-shop scheduling problem (OSSP), which could generate better
solutions compared to other developed algorithms in terms of objective values [21].
Alipour-Sarabi et al. (2019) used genetic algorithm to minimize total harmonic distor-
tion of the output signals, and consequently the estimated position error in concentrated
coil wound field resolvers [22].

GA treats each engineering parameters in the engineering problem as a biological
gene, transforms each variable in a binary encoding, and combines them into chromo-
somes. Each chromosome represents an independent population. GA generates the first
generation in a random manner as the initial condition of the algorithm search, and each
generation hasmultiple independent populations. The objective function of the engineer-
ing problem is then converted into a fitness function. The higher the fitness function value
of population is, the stronger its adaptive capacity is and the greater the probability of
producing offspring is. The evolution process of GA includes three major steps, namely,
reproduction, crossover, and mutation of chromosomes. The evolution process occurs
in the solution space of the engineering problem until the most adaptive solution (the
optimal solution) that meets all the constraints is obtained. The chromosome with the
highest fitness function value is determined after multiple generations of reproduction
(multiple iterations). This chromosome is the global optimal solution we wish to find
[23].
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Response surface method (RSM):
1. Selecting important engineering 

parameters by fractional factorial design.
2. Checking curvature by center-point 

experiment.
3. Finding a new experimental region of 

engineering parameters that may contain 
the optimal solution by steepest descent 
method.

4. Collecting data and finding the optimal 
solution by second-order RSM 
experiment.

Machine learning:
5. Constructing the fitness function by 

artificial neural network (ANN)
6. Determining the global optimal solution 

by genetic algorithm (GA)

7. Confirmation experiments

Releasing the global optimal solution

Fig. 6. Proposed approach

4 Case Study

Themanufacturing process that affects the Ti film resistance inDRAMproducts includes
five main processes, namely, via etch, Ti deposition, structure film deposition, CMP, and
etching, as shown in Fig. 7. Six engineering parameters were selected based on the
practical experience of process engineers; these six engineering parameters were AC
bias power, backside Ar flow, backside pressure, heater temperature, E-chuck voltage,
and composition time. The levels of the engineering parameters are shown in Table 1,
where Level (+1) represents a high level and Level (−1) represents a low level. Through
a fractional factorial design, 26−2 DOEwas selected as a screen experiment for selecting
important engineering parameters. The engineering parameters (A–F) are arranged in
the 26–2 DOE.

The experimental results of 26–2 are shown in Table 2. The factor response table,
factor response chart, and ANOVA results of the resistance analysis results are presented
in Table 3, Fig. 8, and Table 4, respectively. Table 3 shows that the contribution of each
engineering parameter from high to low is E(21.62) > A(8.76) > D(6.32) > F(2.40)
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Fig. 7. The manufacturing process of the Ti film of DRAM products

Table 1. Engineering parameters and their levels for the fractional factorial design

Factor Ac bias
power (W)

Backside
Ar flow
(sccm)

Backside
pressure
(mTorr)

Heater
temperature
(°C)

E-chuck
voltage (V)

Deposition
time (sec)

A B C D E F

Level (s−1) 350 2 4000 250 285 3

Level (+1) 450 6 6000 260 385 5

> C(0.64) > B (0.35). Table 4 shows that the p-value of engineering parameters B, C,
and F on Ti film resistance was not significant and can be ignored. In Fig. 8, a better
combination of the engineering parameters could be set at A = 350 W, D = 250 °C and
E = 300 V. In the next step, three important engineering parameters, namely, A (AC
bias power), D (heat temperature), and E (E-chuck voltage), were used to design the
center-point experiment for confirming whether the experimental region of engineering
parameters contains curvature, that is, whether the experimental region contains the
global optimal solution.

Due to check the better combination of the engineering parameters in previous fac-
torial experimental design (A = 350 W, D = 250 °C and E = 285 V). We re-arranged a
center-point experiment that contained full factorial experimental design and performed
experiments with center points. Through full factorial design, 23 DOE is selected as the
experimental arrangement for this step. Then, engineering parameters A, D, and E are
arranged in the 23 DOE, and five center points are planned.

Through the first-order mode (e.g., Formula (1)), response value also changes when
the level of engineering parameters changes. Each effect of engineering parameters
depends on its main effect coefficient, that is, β1, β2, . . . βk . To reduce the response
value effectively, we must find the direction that decreases response value the fastest and
proceed toward this path. This path is called the path of steepest descent. The procedure
of the sequential movement refers to the experiment in existing experiments of first-
order model, which is performed along the steepest descent path until the response value
no longer increases. The results of successive experiments can confirm that the optimal
point has been reached. If it has already been reached, the more accurate second-order
model is needed to obtain the optimal solution.
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Table 2. The 26–1 array and data for the fractional factorial design experiment

EXP Engineering parameters Resistance (�)

A B C D E F

1 −1 −1 −1 −1 −1 −1 176.56

2 1 −1 −1 −1 −1 1 190.71

3 −1 1 −1 −1 −1 1 176.61

4 1 1 −1 −1 −1 −1 189.92

5 −1 −1 1 −1 −1 1 182.63

6 1 −1 1 −1 −1 −1 187.83

7 −1 1 1 −1 −1 −1 187.22

8 1 1 1 −1 −1 1 185.99

9 −1 −1 −1 1 −1 1 182.69

10 1 −1 −1 1 −1 −1 200.07

11 −1 1 −1 1 −1 −1 183.10

12 1 1 −1 1 −1 1 198.77

13 −1 −1 1 1 −1 −1 189.00

14 1 −1 1 1 −1 1 190.56

15 −1 1 1 1 −1 1 191.36

16 1 1 1 1 −1 −1 197.73

17 −1 −1 −1 −1 1 1 205.97

18 1 −1 −1 −1 1 −1 212.90

19 −1 1 −1 −1 1 −1 200.35

20 1 1 −1 −1 1 1 211.85

21 −1 −1 1 −1 1 −1 199.79

22 1 −1 1 −1 1 1 206.40

23 −1 1 1 −1 1 1 201.85

24 1 1 1 −1 1 −1 216.53

25 −1 −1 −1 1 1 −1 213.42

26 1 −1 −1 1 1 1 213.90

27 −1 1 −1 1 1 1 205.04

28 1 1 −1 1 1 −1 216.76

29 −1 −1 1 1 1 1 207.37

30 1 −1 1 1 1 −1 221.09

31 −1 1 1 1 1 −1 210.63

32 1 1 1 1 1 1 212.80
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Table 3. Factor response table of average resistance of Ti film for the fractional factorial design
experiment

Level A B C D E F

Level (−1) 194.60 198.81 198.66 195.82 188.17 200.18

Level (+1) 203.36 199.16 199.30 202.14 209.79 197.78

Effect 8.76 0.35 0.64 6.32 21.62 2.40

Rank 2 6 5 3 1 4

Using the regressed equation in ANOVA Table, the first-order model as follows:

Resistance = 200.068 + 4.08A + 3.41D + 11.09E. (3)

Then, the steepest descent method is used to make the response estimate move
forward along the steepest descent path from the current center point (A = 0, D = 0, E
= 0) to obtain the optimal response value. The moving direction is determined by the
maximum value of the main effect coefficient because it makes the response value move
toward the optimal value at the highest speed. In the first-order model of this study, the
coefficient value of parameter E is 11.09, which is larger than the coefficients 4.08 of A
and 3.41 of D, indicating that parameter E is the main variable of the steepest descent
path. The experiment was executed, and the Ti film resistance obtained on this path was
measured until it increased progressively.

Figure 9 presents surface plot of the thickness variation for the second-order model
of RSM. The p values of RSM are all smaller than 0.05, which confirms the significance
in the second-order model experiment.

The first-order items (A, D, and E) and second-order items (A2, D2, and E2) are
significant engineering parameters. Simultaneously, Factor A is related to A2, factor B
is related to B2, and factor C is related to C2. Therefore, A2, D2, and E2 were adopted
as input variables for the neural network. The difference between the Ti film resistance
and the specified target value (185 �) was taken as the output variable (the smaller is
better).

Resistance = 8161 − 6.33A − 52.4D − 6.75E + 0.01029A ∗ A + 0.1079D ∗ D + 0.01779E ∗ E.

(4)

First, 80% of the data were randomly selected from the data set as the training dataset
for ANN. The other 20% of the data were used as the training dataset for the network.
The learning and momentum rates were set to 0.1 and 0.85, respectively. To determine
the number of nodes in the hidden layer, this study performed 1,000 modeling iterations
with neural structures, such as different numbers of nodes. Then, the ANN architecture
of 3-6-1 is used for modeling as shown in Fig. 10.

To confirm the optimal setting of the engineering parameters, we used a total of
five lots in this study, and five wafers were obtained from each lot for confirmation
experiments. The experimental measurement data are shown in Table 5. According
to the confirmation experiment, average resistance = 185.28 � is very close to the
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Table 4. The ANOVA of the resistance of Ti film

Source DF SS MS F-Value P-Value

A 1 614.43 614.43 46.61 0

B 1 0.99 0.99 0.07 0.787

C 1 3.23 3.23 0.24 0.625

D 1 319.92 319.92 24.27 0

E 1 3738.96 3738.96 283.64 0

F 1 46.08 46.08 3.5 0.073

Error 25 329.55 13.18

Total 31 5053.15

R-Sq R-Sq(adj)

93.48% 91.91%

Fig. 9. The surface plot of resistance for the second-order model experiment

A2

D2

E2

Y

(Ac bias power)2

(Heater temperature)2

(E-chuck voltage)2

Resistance 

Input Hidden Output

h1

h2

h3

h4

h5

h6

Fig. 10. The neural network structure of the Ti film production process

improvement target 185 �. Hence, we confirmed that the global optimal setting of
engineering parameters is a feasible combination.

After the DRAM products of the case company were further improved by the arti-
ficial neural network and genetic algorithm, we found that the resistance improved
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significantly. The average resistance of the Ti film improved by 98.88% from 210.33 �

to 185.28 �, as shown in Table 6.

Table 5. Confirmation experiments for the genetic algorithm

EXP Resistance Average resistance (�)

Wafer #1 Wafer #2 Wafer #3 Wafer #4 Wafer #5

Lot #1 184.97 184.80 184.81 186.14 185.52 185.25

Lot #2 185.23 185.09 185.67 184.80 185.94 185.35

Lot #3 185.23 185.92 185.63 185.76 185.09 185.53

Lot #4 185.12 185.75 184.25 185.25 184.99 185.07

Lot #5 185.05 185.20 185.07 184.75 186.05 185.22

185.28

Table 6. Comparison between the initial data and the proposed approach

Comparison Ac bias power
(W)

Heater
temperature
(°C)

E-chuck
voltage (V)

Average
resistance (�)

Resistance
difference(�)

A D E

Before
improvement

450 260 400 210.33 25.33

RSM 307.6 242.8 189.7 187.66 2.66

NN & GA 292.2 240.5 212.8 185.28 0.28

Improvement 98.88%

5 Conclusions

The case company always accrues high experimental costs due to trial and error and has
not effectively improved the Ti film resistance of DRAM products. Therefore, in this
study, several important engineering parameters that affect the Ti film were identified
through fractional factorial experiments. Three important engineering parameters (i.e.,
AC bias power, heat temperature, and E-chuck voltage) were determined in ANOVA
table. A center-point experiment was conducted, and the steepest descent method was
used to find the possible experimental region of engineering parameters containing the
optimal solution that falls aroundACbias power= 313.2W, hat temperature= 246.9 °C,
and E-chuck voltage = 200 V. For the second-order model experiment, the RSM exper-
iment design was implemented according to the above experimental region that may
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include the optimal value. The RSM experiment obtained the optimal setting of engi-
neering parameters of the second-order model, that is, AC bias power = 307.6 W, heat
temperature= 242.8 °C, and E-chuck voltage= 189.7 V. After verifying the optimal fac-
tor setting of this second-order model, the average resistancewas reduced from 210.33�

to 187.66 �, with an improvement of 89.5%. In addition, ANOVA of the RSM experi-
ment showed that the second order items of the second-order model (AC bias power)2,
(heat temperature)2, and (E-chuck voltage)2 had significant effect on the response val-
ues. ANN used the three second order items as the input variables to construct a 3-6-1
neural network. Then, the global optimal setting of engineering parameters found by
the genetic algorithm was AC bias power = 292.2 W, heat temperature = 240.5 °C,
and E-chuck voltage = 212.8 V. The average resistance improved from 210.33 � to
185.28 �, with an improvement of 98.88%. To release to the global optimal setting of
engineering parameters, the case company will conduct mass production stage to verify
the feasibility of the global optimal setting in the future.
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