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Abstract. Real-timemonitoring of large-scale solar farms is one important aspect
of reliable and secure deployment of 100% renewable energy-based grids. The
ability to observe sensors on solar panels using Internet of Things (IoT) tech-
nologies makes it possible to study the behavior of solar panels under various
conditions and to detect anomalous behaviors in real-time. Such technologies
make it possible for grid administrators to make informed decisions in reacting
to anomalies such as panel damage, electrical errors, monitoring hardware decay,
or malicious data injection attacks. Smart edge devices offer an opportunity to
reduce the cost of continuously sending data for anomaly detection by performing
analytics on local edge device within a given farm and sending only the result of
the analysis back to datacenters. This paper presents the design and evaluation
of a low-cost edge-based anomaly detection system for remote solar farms using
Raspberry Pi and deep learning. The design was implemented and tested using
real-life observations froma solarmonitoring systemunder soiling conditions. The
experiments showed that it is possible to run real-time anomaly detection algo-
rithms on edge devices with little overhead in terms of power consumption and
utilization of computational resources, making it an ideal system for large-scale
implementation.
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1 Introduction

Renewable energy holds the potential to replace carbon-based fossil fuels as the main
energy source for future cities. In the light of the recent rapid global urbanization, integra-
tion of clean renewable energy sources is more important than ever to reduce damage to
environmental resources and ensure reliable and sustainable population growth through
upcoming decades [1, 2]. As a result, the recent years have witnessed a massive increase
in renewable energy installations all over the world, including solar, wind, and geother-
mal energy facilities. The International Renewable Energy Agency (IRENA) reported a
total of over 2.35 TWof global installed capacity, with hydro, wind, and solar amounting
to 50%, 24%, and 20%, accordingly [3]. The numbers showcase a growth of 7.9% from
the previous year, with 55% of new capacity attributed to new solar installations alone,
of which 70% is attributed to new solar installations in Asia.
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Countries in the GCC with a desert climate such as the United Arab Emirates and
Saudi Arabia are some of the biggest investors in solar energy in the region [4]. With an
average daily sunshine hour of 10 h/day and a Global horizontal Irradiance index (GHI)
that can go as high as 2.12 MWh/m2/year, such countries hold the potential to generate
massive amounts of solar power which can eventually replace their current dependence
on carbon-based fossil fuels [5, 6]. Nonetheless, integration of solar energy sources into
main grids remains relatively low. In a country with a desert climate such as the United
Arab Emirates, for example, its 22.5 MW of installed solar capacity amounts to only
0.49% [4]. Despite the exponential growth in new solar installations exhibited in the
GCC over the past few years, a 100% renewable energy grid remains a distant reality.
This is mainly due to the challenges that solar installations face in desert climates such
as overheating and soiling [7, 8]. As a result, great research efforts have been dedicated
to increasing and optimizing the performance of solar modules in such environments.

One of the main challenges to solar energy integration is the intermittent stochastic
nature of the source [9]. The output of a solar module is a direct product of its environ-
ment, most notably solar irradiance and temperature. The intermittent nature of weather
conditions is reflected through fluctuations in power output which can propagate through
main girds, causing inconveniences to power planning at best, and damage to critical
assets at worst. Furthermore, solar modules are often located in remote and harsh envi-
ronments where they are susceptible to damage due to environmental conditions such
as overheating, surfaces scratching, and material decay. Such faults can cause serious
issues such as module mismatch or open circuit, thus significantly reducing the power
output of an installation. Furthermore, once a solar installation has been integrated into
the grid, it is vital that the state of the installation and its output at any given moment
is known to the system in order to ensure reliable power planning [10]. As a result,
faults must be detected and rectified with minimal delay in order to prevent fluctuations
from propagating through the grid and causing service interruptions or damage to crit-
ical assets [11]. Anomaly detection is a key component of operation and maintenance
(O&M) in automated systems. It is especially critical for IoT systemswhere autonomous
response to system failures such as hardware malfunction, software errors, or security
breaches is key to ensuring reliable operation.

Anomaly detection can be performed using supervised or unsupervised methods,
where the output can either be a label (“normal” or “anomaly”) or a score depicting
the likelihood a reading is an anomaly [12]. However, performing real-time anomaly
detection requires large amounts of real-time data to be transmitted from solar farms
over wireless networks back to central datacenters. For example, an edge device that
measures the performance of an individual solar panel generates a message which is
around 200 Bytes in size. Similarly, an edge device that monitors the environmental
conditions in a facility generates a message size of 1000 Bytes [13]. In an installation
where edge devices send data at a rate of 1 message/minute, two devices alone observing
over a period of 12 h can generate a network load of 864 kB/12 h. Given the scale of
recent solar installations such as the 2 GW Al Dhafra project in Abu Dhabi [14], the
amount of data required for real-time monitoring is likely to pose a challenge in terms of
data transportation. As a result, recent research in various IoT applications has shifted to
edge computing and fog computing as a way to perform analytics on edge devices local
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to the installation [15], thus reducing the requirements of wireless communication, as
well as data processing and storage at datacenters. However, this requires edge hardware
that is both low in cost and capable of running sophisticated neural networks in real time.

This paper presents and evaluates an edge analytics environment that uses Raspberry
Pi to detect anomalies in solar power in real time for large-scale distributed solar farms.

2 Anomaly Detection and Solar Power

2.1 Intermittency in Solar Energy

Solar energy is a product of its environment. The amount of energy generated by a solar
module depends not only on the amount of irradiance absorbed by the surfaces, but
also the module temperature. When solar modules are produced, the maximum power
is generated at standard testing conditions where irradiance is 1000 W/m2 and ambient
temperature is 25 °C. Any decrease of irradiance or change in ambient temperature can
reduce the amount of energy generated. In a real-life solar farm, numerous conditions
can influence the power output. Meteorological conditions such as shading [16–18],
haze, or fog [19], can significantly reduce the amount of irradiance that is absorbed by
the module. In high temperature weather regions, hot temperatures can result in module
overheating, which can shift the operating point of a module thus preventing it from
operating at maximum power. A complex environmental phenomenon that combines
several environmental elements including irradiance, temperature, humidity, and wind
level is soiling. Soiling is defined as the accumulation of particles such as dust, dirt, snow,
or bird droppings on the surface of a solar module, effectively reducing the amount of
solar irradiance that can be absorbed [20]. Soiling represents a major hindrance to solar
energy adoption in desert regions such as the GCC region. A study conducted in 2013
on solar energy generation in the smart city Masdar [21] reported a power loss of at least
40% due to regular dust storms [22].

However, while fluctuations inmeteorological conditions are key to solar power gen-
eration and can significantly influence the performance of large-scale remote solar instal-
lations, they seldom require immediate intervention. Instead, navigating solar power
generation through adversarial weather conditions can be done via proactive operation
andmaintenance. For example, overheating can be prevented usingmodule cooling [23].
Soiling loss, on the other hand, can be avoided in a cost-effective way by optimizing
cleaning methods and schedules, as shown in [24, 25]. As for factors that cannot be con-
trolled such as shading due to clouds and fog, mathematical models as well as machine
learning and deep learning methods are used to predict power fluctuation due to shading
[17, 26] and plan energy reserves accordingly, which can be applied to clean modules
as well as modules under soiling conditions [27].

2.2 Anomalies in Solar Energy Systems

While fluctuations in power can be severe depending on ambient conditions, in this work,
such fluctuations are not considered “anomalies” due to the fact they are an inherent part
of the energy source’s nature. Anomalies, instead, are faults that may occur within
modules or data that describes modules. Anomalies can be loosely divided into three
main categories: module faults, monitoring system faults, and cyberattacks.
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Array Anomalies. Array anomalies refers to faults that can occur to module bodies,
module interconnection, or internal electrical connections within the farm. The first type
of array anomalies is module damage and decay. Over time, PV modules can develop
localized overheating or “hot spots”, where amismatch between cells within onemodule
causes a cell or more to overheat [28]. The phenomenon can occur when parts of the
module are shaded by a clouds, soiling elements, or shadows from surrounding objects
such as buildings or other modules for prolonged periods of time [29]. The develop-
ment of hot spots can degrade the performance of the module, damage its integrity, and
cause irreversible malfunctions [30]. The same issue can occur at a higher level when
a mismatch occurs between several PV modules in a string [31–33], which in the long
run can accelerate module degradation. Furthermore, faults can occur within the internal
connections in the farm where a configuration error, short circuit, or open circuit can
bring down full strings of modules [29].

System Anomalies. The second type of anomalies is corrupted or missing readings.
This type of anomaly is common in monitoring systems where values can be lost or
corrupted during data collection or transmission [34]. Internet of Things systems are
prone to such anomalies partially due to their inherent low-resource naturewhichmakes it
difficult and costly to deploy sophisticated hardware and software components in remote
installations [35, 36]. Damage to sensors, hardware malfunctions, software exceptions,
and network disconnections can generate anomalous data that, if allowed to propagate
through the system, may cause disruptions or result in false decisionmaking. Distributed
solar farms represent a particularly challenging case in data reliability due to their remote
nature. In addition to standard IoT challenges, solar installations often exist in harsh
weather conditions [37] where sensors and processing hardware are prone to damage and
decay. In such cases, early detection of system faults, or anomalies, is key to preventing
false readings from propagating through grids and causing damage to assets.

Solar Power Data Security. The third type of anomalies is cyberattacks. Energy sys-
tems are some of the most critical assets in a given community. However, studies show
that 54% of cyberattacks on infrastructure are directed at energy systems [38]. Isolated
solar microgrids and grid-integrated solar installations are susceptible to such attacks.
Cyberattacks can target solar monitoring devices, the network through which data is
transmitted, or the data itself [39]. The more highly populated and further distributed
a solar energy system is, the harder it is to enforce appropriate security measures end-
to-end [40]. Furthermore, modern energy systems are highly heterogenous in terms of
type of hardware and data allowed within the system. Protecting such systems requires
sophisticated security suites to address all vulnerabilities at each point in the system.
It is therefore key to implement attack detection and prevention throughout the system.
While active attacks such as Denial-of-Service [40] can be immediately detected, mak-
ing it easier to rectify within a short time limit, passive attacks on data may go unnoticed.
“False data injection” refers to a type of attack where an intruder gains access to the sys-
tems network and proceeds to transmit false data disguised as legitimate readings [41].
In an energy system where meter readings and monitoring systems dictate the flow of
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power through the system [38], false information can result in damages that range from
energy theft, to inconvenient minor disruptions in services, and all the way to severe
damage to critical assets and drastic financial losses. Anomalies in this context refer to
illegitimate readings injected by a cyber attacker in order to disrupt system operations.
The ability to immediately detect and correctly classify cyberattack anomalies makes it
possible to contain the attack and prevent false information from propagating throughout
the system.

Anomaly Detection in Solar Power Systems. Existing anomaly detection methods
for solar monitoring generally follow one of two approaches [29, 42]: model-based
anomaly detection, and data-based anomaly detection. Model-based anomaly detection
uses information from the healthy module to build a virtual model of the healthy module
which operates in parallel with the real-life PVmodule. From that moment on, real-time
measured values are compared to predicted healthy values to look for deviations from
expected behavior. In a variation of this method, the model is built offline based on the
module’s characteristics and the environment. Using the virtual model, error threshold
values are then set for the voltage and the current. From that point on, real-time read-
ings are compared to the threshold, and any point beyond the minimum or maximum
expected performance is marked as an anomaly. Examples of existing work are shown
in Table 1.

In data-based approaches, on the other hand, machine learning (ML) and deep learn-
ing (DL) algorithms are trained and used to detect anomalies. In this approach, previous
knowledge of the domain theory is not required as analysis focuses on trends and patterns
in the dataset independent of domain-based assumptions. Furthermore, several works on
anomaly detection extend to using ML and DL in anomaly classification. The latter is
rather useful in determining the source of the anomaly, which is key for implementing
cost-effective countermeasures.

While existing work on anomaly detection in solar monitoring systems covers a
variety of anomalies and detection methodologies, they often assume data with a some-
what clear distinction between “valid” readings and anomalies. However, in operating
conditions where environmental elements such as soiling exist and skew performance,
detecting real anomalies from expected degradation becomes more complex. Further-
more, while solar panels in one location are expected to give a relatively-identical perfor-
mance, contextual elements such its surface temperature [48], short-term shading [17],
or aerosol particle concentration [49, 50] can vary based on its location and skew the
module’s “normal” behavior from identical behavior assumed at manufacturing and give
it a unique profile. In such cases, treating models for individual modules with unique
characteristics and behaviors makes it possible to detect slight changes in behavior that
may otherwise be neglected in generalized performance modeling.
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Table 1. Summary of some of key existing work on anomaly detection in solar power

Paper title year Input data Method Outputs

Hierarchical Anomaly
Detection and
Multimodal
Classification in
Large-Scale
Photovoltaic Systems
[42]

2019 SCADA data (current,
voltage) recorded
every minute

Detection: Local
Context-Aware
Anomaly Detection
using AutoGMM
Classification: SVM,
Bagging, XGBoost

Anomaly detection &
classification: Sensor
bias/aging, building
shading, hotspot/glass
breakage, grass
shading, surface
soiling

Anomaly Detection of
Solar Power
Generation Systems
Based on the
Normalization of the
Amount of Generated
Electricity [43]

2015 Electric current Offline comparison
with normal
distribution of
historical data

Anomaly detection

Online fault detection
in PV systems [44]

2015 Irradiance, module
temperature,

Predict max power of
healthy panel and
compare

Anomaly detection

What’s Wrong with my
Solar Panels: a
Data-Driven Approach
[45]

2015 Detection: Comparison
with expected output
Classification:
comparison with
coefficient of variation,
trees, SVM, KNN

Anomaly detection &
classification: partial
shading, full cover

Expected output
calculation based on
inverse distance
weighting and its
application in anomaly
detection of distributed
photovoltaic power
stations [46]

2020 Station power, grid
voltage, grid current

Reverse distance
weighting method

Anomaly detection &
classification: open
circuit, short circuit

Anomaly detection and
predictive maintenance
for photovoltaic
systems [47]

2018 Irradiance,
temperature, AC
power

Compares ANN
predicted output with
measured output

Anomaly detection for
predictive
maintenance

Shading prediction,
fault detection, and
consensus estimation
for solar array control
[26]

2018 Current, voltage Clustering through
Expectation
Maximization

Anomaly detection &
classification: arc
faults, ground faults
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3 Proposed Design

The design shown here is based on the study presented in [13] which evaluated the fea-
sibility of using low-cost IoT edge devices and long-range low-power wireless networks
to facilitate the real-time monitoring of large-scale and remote solar farms. As shown
in Fig. 1, each solar module in a string can be equipped with a low-cost microcontroller
such as ESP32 [51] which can interface with current, voltage, and surface temperature
sensors in order to observe the state of the module. Module observations can be sent
over a local WiFi network to a gateway which then forwards all readings to a datacenter
over a long-range network such as LoRaWAN [52]. Within the farm, Message Queue-
ing Telemetry Transport (MQTT) [53] is used by the devices to send information from
module observers to the RPi gateway. A lightweight MQTT broker such as Mosquitto
[54] can be hosted on the RPi, enabling it to receive observations from any module that
is added to the system in real-time and with little configuration overhead.

Fig. 1. Proposed edge architecture

At the datacenter, information can be processed and stored. However, as discussed
earlier, sending observations from all modules in real-time generates large amounts of
data which exponentially increases the network bandwidth requirements. Delegating
all data processing to datacenters also significantly increases the cost of running and
maintaining the datacenters and creates a single point of failure. Alternatively, utilizing
an edge computer such as the Raspberry Pi (RPi) [55] as a gateway for each string makes
it possible to pre-process and analyze observations from the modules locally. Not only is
the RPi capable of reading and processing data from several module observers in a string,
but the edge computer is able to run deep learning algorithms to predict performance
based on modules’ context and detect anomalies in performance. Furthermore, separate
neural network models can be created for each module and trained to its own unique
characteristics to be used to generate custom reports and detect anomalies that are specific
to its profile.
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4 Evaluation

4.1 Data Collection

Information describing the performance of two modules as well as their context was col-
lected over the period of three months. While one of the modules was cleaned on weekly
basis, the other module was left to experience soiling conditions. The two modules at
the end of the testing period are shown in Fig. 2. The goal was to experiment with and
compare anomaly detection in the case of clean modules as opposed to modules under
soiling conditions. Hourly maximum power measurements were recorded using the IV
tracing system described in [56]. Additionally, solar irradiance, and module temperature
were also observed. The number of days since the beginning of the experiment was also
used as a variable as it referred to the period of time for which the dusty panel has not
been cleaned. This was used as a variable to roughly express the level of dust on the
surface of the panel. The dataset was cleaned for invalid readings due to hardware faults.
The final dataset consisted of 3308 observations containing performance and context
information for each panel.

Fig. 2. The dusty and clean solar panels at the end of the testing period

4.2 Model Architecture

Observations collected over the period of the experiment were used to train a simple
regression neural network that predicts the output of a remote solar panel under soiling
conditions using the panel’s context and a reference clean panel. This is because while
real-time power can be measured in a remote solar farm, a single panel’s performance
is dependent on panels configuration in a string or an array. Alternatively, a better pre-
dictor of how much power a panel is able to produce in a given context is obtained
through performing IV tracing [57], where voltage sweep is applied to panel starting
from short-circuit to open-circuit in order to obtain short-circuit current, open-circuit
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voltage, as well as maximum power point and its corresponding voltage and current
values. However, IV tracing requires disconnecting the panel from the rest of the array
while tracing is performed. Such process is unfeasible in real-world operational condi-
tions. Alternatively, the model built here aims to enable prediction of maximum power
point using only maximum power from a reference clean model and the difference in
context between the two panels. This relationship has been previously explored and a
similar model was built in [58] (shown in Fig. 3). The same model can be used for
anomaly detection by recognizing deviation from expected behavior using operational
output power of a panel. The model can be trained to predict expected operational out-
put of a remote solar panel based on its context and a reference panel. Since operational
output of the remote panel can be measured in a real-world setting, comparing predicted
output and observed output provides means to detect anomalous behaviors in real-time.

Fig. 3. Neural network architecture [58]

The model was first trained on the RPi using 80–20 training-validation split, with
mean squared error (mse) and coefficient of determination (r2) as training metrics. The
formulas for mse and r2 are shown in Eqs. 1 and 2.

mse = 1

n

∑n

i=1

(
Yi − Ŷi

)2
(1)

r2 =
∑

i e
2
i∑

i(yi − y)2
(2)
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The result of training the model for 1000 epochs is shown in Fig. 4 and Fig. 5. Once
the model has been trained, an inference model was created to run on the RPi for real-
time maximum power prediction. A regular Tensorflow model and a TFlite model were
created to be implemented on the RPi.

Fig. 4. Training and validation Mean Squared Error

Fig. 5. Training and validation coefficient of determination
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4.3 Inference Model Performance Evaluation

Experimental Setup. While the model performed well in terms of power prediction,
the feasibility of running it on a RPi gateway in a solar farm depends on the amount
of resources required by the RPi, as well as the number of panels that a single RPi can
monitor and analyze. An experiment was designed to test the performance of the RPi
and the required resources for running the algorithm as the number of panels increases.
The experimental setup is shown in Fig. 6.

Fig. 6. Model inference performance evaluation experimental setup

As shown in Fig. 6, a python script running on a PC was used to simulate panels
publishing real-time observation via MQTT over WiFi. A python script running on the
RPi implements an MQTT subscriber which receives all observations from panels in its
string. When an observation is received, the script uses information from the panel as
well as a reference panel to combine the four inputs to themodel which are the irradiance,
number of days since the remote panel has been cleaned, difference in the two panels’
surface temperatures, and the power output of the clean panel. The script launces a thread
which uses the Tensorflow [59] model or TFLite [60] interpreter to predict the output
of the remote panel and compare it with measure output. The thread then returns with
an error code if deviation is detected. The error code can then be published to trigger
appropriate action. A Yocto-Amp [61] is used to measure the current consumption of
the RPi under a controlled voltage value of 5.0 V, while nmon [62] is used to monitor
the RPi’s internal resources such as CPU utilization. The number of clients, or modules
in one string, was varied in power of 2 starting from 1 client, all the way to 512 clients,
when possible. Each panel published at a frequency of 1 message/minute.
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Experimental Results. Power consumption values andCPU%utilizationwhile theRPi
was running the inference model using TF and TFLite are shown in Fig. 7 and Fig. 8. As
expected, there is a significant difference between running the inference by loading the
TFmodel as opposed to using a TFLite version of the model. Furthermore, the TFmodel
is only usable for up to 256 clients, at which point the system’s resources including CPU
and active memory get depleted, causing it to crash. A closer look into the RPI CPU
utilization while serving onemodule as opposed to serving 16modules is shown in Fig. 9
and Fig. 10. The cycles seen in the graph correspond to the publishing cycle of 1 batch of
messages every minute. As shown in Fig. 10, almost 100% of the CPU is utilized most
of the time. Furthermore, the busy state of the CPU extends for the full minute, causing
it to overlap with the new batch of messages, which then causes a huge overload to the
system’s resources.

On the other hand, using a TFLite model for inference proves to be highly feasible
as it consumes very little resources, where under 35 Wh are required to power the edge
device for 12 h. The power consumption was calculated for a maximum of 12 h because
that is the estimated max of sun hours in a day. As performing analysis during nighttime
is not useful, the edge device can be turned off or switched to lower-power mode. The
CPU utilization is also less than 40%, allowing the RPi enough free resources to run
other reliability tasks. As shown in Fig. 11, the active cycles of the inference are cleanly
separated and the CPU is able to complete the analysis task early enough so that it does
not overlap with the following batch of messages, as opposed to the case with using a
TF model.

Fig. 7. Power consumption by the RPi while running inference for 12 h
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Fig. 8. CPU% utilization of the RPi while running inference

Fig. 9. RPi CPU utilization % while experimenting with 1 client for 5 min - TF

Fig. 10. RPi CPU utilization % while experimenting with 256 clients for 5 min – TF
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Fig. 11. RPi CPU utilization % while experimenting with 512 clients for 5 min – TFLite

The experimental results indicate that it is possible to use a low-cost edge computing
device such as the RPi to perform real-time analytics within local solar farms and detect
and react to anomalous behaviors. The design can be further evolved by running TFLite
models on more constrained, cheaper devices such as ESP32 devices for monitoring the
modules, making the design more modular and further reducing the data communication
overhead.

5 Conclusion

Real-time solar monitoring and analysis holds the key to reliable and secure grid integra-
tion. It also pushes for the possibility for solar energy to completely replace fossil-based
fuels it the future. However, one key issue with solar power is its intermittency and
sensitivity to volatile environment elements such as shading and heat. Solar panels are
also prone to performance degradation due to natural phenomena such as soiling as well
as physical withering in harsh environments. The ability to detect such anomalies using
IoT and deep learning makes it possible to swiftly and appropriately react to various
issues in order to ensure reliable power generation. This paper has shown that it is pos-
sible to use data-driven real-time anomaly detection on the edge using deep learning in
conjunction with data from an IoT solar monitoring network. The experiments show that
it is possible to run a high number of power prediction and anomaly detection models
on an edge device such as the Raspberry Pi with little overhead in required resources.
The work can be further developed by evaluating the possibility of running even more
complex algorithms on various types of low-resource edge devices used in IoT systems
such as ESP32.
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