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Abstract. In wireless sensor networks, the classification of uncertain data
reported by sensor nodes is an open issue because the given attribute informa-
tion can be insufficient for making a correct specific classification of the objects.
Although the traditional Evidential k-Nearest Neighbor (EkNN) algorithm can
effectively model the uncertainty, it is easy to misjudge the target data to the
incorrect class when the observed sample data is located in the feature overlap-
ping region of training samples of different classes. In this paper, a novel Evidential
k-Nearest Neighbor (NEkNN) algorithm is proposed based on the evidential edit-
ing method. The main idea of NEkNN algorithm is to consider the expected value
and standard deviation of various training sample data sets, and use normalized
Euclidean distance to assign class labels with basic belief assignment (BBA) struc-
ture to each training sample, so that training samples in overlapping region can
offer more abundant and diverse class information. Further, EkNN classification
of the observation sample data is carried out in the training sample sets of various
classes, and mass functions of the target to be tested under this class are obtained,
and Redistribute ConflictingMass Proportionally Rule 5 (PCR5) combination rule
is used to conduct global fusion, thus obtaining the global fusion results of the
targets. The experimental results show that this algorithm has better performance
than other classification methods based on k-nearest neighbor.

Keywords: Evidence theory · Uncertain data · Target classification ·
Combination rule

1 Introduction

When using the sensor’s observation data to carry out the local classification of targets,
the sensor’s observation data contains a lot of imprecise information due to various
interferences [1]. For example, some sample data comes from different categories of
targets but they are very similar, that is, the sample data of different categories may
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partially overlap, which brings great challenges to traditional target classification tasks
[2]. In the classification task with supervision, the sensor’s observation data may be
in the overlapping area of different categories of training samples, it is difficult for
the traditional voting kNN classifier to accurately classify the target at this time. For
this reason, many scholars have fully considered the distance relationship between the
target and its neighbors, and proposed the fuzzy kNN (Fuzzy kNN, FkNN) classification
algorithm [3]. This algorithm allows the target to belong to different categories with
different fuzzy membership degrees, which obtains the better classification effect than
voting kNN [4].

Dempster-Shafer evidence theory, also referred as evidential reasoning or belief func-
tions theory, has been proved to be valuable as a solution for dealing with uncertain and
inaccurate data [5], and it has been widely applied in sorts of applications, for example,
state estimation [6], target recognition [7], data classification [2], and information fusion
[8], and etc. As the extension of probability theory, evidence theory provides a series of
functions and operations defined on the power set of the identification framework, which
can effectively reason and model the uncertainty, and can provide more abundant cate-
gory information than fuzzy membership [9]. Therefore, many scholars have combined
evidence theory with traditional classification algorithms with supervision and devel-
oped a series of evidence classification algorithms. Among them, themost representative
is the evidential kNN (Evidential k-Nearest Neighbor, EkNN) algorithm proposed by
Scholars such as Denoeux, et al. [10, 11]. This algorithm is simple and direct with low
error rate, so it is very suitable for the target classification task of sensor nodes. However,
the EkNN algorithm only considers the factor of the distance between the target and the
training samples, and does not treat all training samples differently [12]. It is assumed
that the target sample is in the overlapping area of the training set, and the target data
is far from the sample points of the same category, and closer to the sample points of
other categories, if the EkNN algorithm is used at this time, the evidence formed by the
sample points that are closer to the target will be given a large mass value, then when
making the decision after the evidence is fused, it is easy to misjudge the target data into
other categories. In [13], it is further pointed out that since the EkNN algorithm treats
imprecise training samples from overlapping regions as training samples that truly rep-
resent the distribution of the target category, it will have a greater negative impact on the
final classification effect. In order to solve this problem, it is necessary to preprocess the
original training samples with the evidence editing method based on EkNN, and replace
the category labels of the original training samples with basic belief assignment, it can
better characterize the inaccuracy of the overlapping regions of categories. However, in
[13], it is proposed that the evidence editing method will make the edited evidence have
a higher correlation. When subsequently fusing the evidence constructed by the target’s
neighbors, it is necessary to evaluate the correlation between the evidences, and to search
for the corresponding fusion rules according to the degree of correlation between the
evidences. Therefore, this method has the problems of high algorithm complexity and
excessive calculation, which is not suitable for sensor nodes with limited energy. In
addition to the evidence editing method, in [14], it is pointed out that if a target falls in
the overlapping area of the training set, to first consider using EkNN to classify the target
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in the training set of each category and then perform the evidence fusion of the classi-
fication results can also suppress the influence of other categories of training samples
in the overlapping area on the fusion result. The improved EkNN algorithm (Improved
Evidential k-Nearest Neighbor, IEkNN) was also proposed to improve the performance
of the EkNN algorithm [15], however, IEkNN does not edit the samples, while directly
uses the original training samples for classification [16].

In order to effectively model and reason about imprecise data, this paper proposes
a NEkNN (New Evidential k-Nearest Neighbor, NEkNN) algorithm. The NEkNN algo-
rithm proposes a simple evidence preprocessing method under the framework of evi-
dence theory. This method only considers the expected value and standard deviation of
the training sample sets of each category, thereby avoiding the evidence correlation that
may be caused by the original evidence editing method. On this basis, by fusing the
classification results of the target to be tested in the training sample set of each category,
the EkNN obtain a more accurate identification and judgment of the target.

The other parts of this paper are arranged as follows. Section 2 fundamentally intro-
duces the basis of evidence theory. Section 3 focuses on the original training data pre-
processing method, and design the NEkNN classification algorithm after preprocessing.
Section 4 comprehensively evaluates and analyzes the classification performance of the
proposed NEkNN algorithm based on simulation data, and finally summarize the work
of this paper in Sect. 5.

2 Basics of Belief Functions Theory

The Dempster–Shafer evidence theory introduced by Shafer is also known as belief
functions theory [17]. In this theory, the frame of discernment � is a finite
set, whose elements are exhaustive and mutually exclusive, and it is denoted as
� = {w1,w2, . . . ,wi, . . . ,wc}. 2� is the power set of the frame of discern-
ment, which represents the set of all possible subsets of �, indicated by 2� =
{φ, {w1}, . . . {wn}, {w1,w2}, . . . , {w1,w2, . . . ,wi}, . . . , �}. Given an object X , it can
be classified as any singleton element and any sets of elements in 2� with a basic belief
assignment (BBA). The BBA is also known as the mass function, which is a mapping
m : 2� → [0, 1] satisfying

∑
A∈2� m(A) = 1,m(φ) = 0. The function m(A) is used to

quantify the degree of belief that is exactly assigned to the subsets A of �. If m(A) > 0,
the subset A can be called the focal elements of the mass functionm(·). The mass values
assigned to compound elements can reflect the imprecise observation of object X .

The mass function m(·) is always associated with three main functions, including
the belief function Bel(·), the plausibility function Pl(·) and the pignistic probability
function BetP(·), which are defined as follows, respectively:

Bel(B) =
∑

A⊆B
m(A) (1)

Pl(B) =
∑

A∩B �=∅ m(A) (2)

BetP(w) =
∑

w∈A,A⊆�

1

|A|m(A) (3)
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wherem(·) is the focal elements on�, and |A| denotes the cardinality of focal elementsA.
All three functions can be employed to make a decision on an unknown object according
to a few rules, such as selecting the class with maximum BetP.

Assuming that there are two pieces of evidence denoted by m1 and m2, the popular
Dempster’s combination rule can be used to combine them as follows:

m⊕(A) = m1(B) ⊕ m2(C) =
{

0, B ∩ C = φ∑
B∩C=A, ∀B, C⊆�m1(B)×m2(C)

1−∑
B∩C=φ, ∀B, C⊆�m1(B)×m2(C)

B ∩ C �= φ
(4)

where
∑

B ∩ C = φ, ∀B, C ⊆ �m1(B) × m2(C) represents the conflict between m1
andm2,which is used to redistribute the conflictingmass values.Dempster’s combination
rule is commutative and associative. It provides a simple and flexible solution for data
fusion problems.

3 The New Evidential k-Nearest Neighbor Algorithm

In order to overcome the limitations of EkNN, a new EkNN classification algorithm is
proposed in this section. The algorithm uses the method of preprocessing training sam-
ples to replace the category labels of the original samples with the basic belief assign-
ment, so as to better describe the uncertainty of the training samples in the overlapping
regions of the categories. In order to avoid the pre-processed evidence from generating
greater correlation, the newly obtained category labels with the basic belief assignment
structure for each sample are constructed based on the Mahalanobis distance from the
evidence to the center of the corresponding category. In the subsequent classification of
the target, it is first to find the k nearest neighbors of the input sample in each category
of training sample set, construct k nearest neighbor evidence describing the respective
classification information, and perform fusion to obtain the mass function under this cat-
egory of condition, then the global fusion of evidence between categories is performed
based on the mass function generated by each category, and the final classification result
is obtained.

3.1 Preprocessing of Training Samples

In order to avoid evidence-related problems, this section focuses on the preprocessing
method of training samples based onMahalanobis distance. The concept ofMahalanobis
distance belongs to the theory of multivariate statistical analysis [18]. It is a discriminant
method that uses the distance between the sample to be judged and each population as the
measurement scale to judge the attribution of the sample. When processing numerical
data in wireless sensor networks, Mahalanobis distance comprehensively considers the
two statistical characteristics of the expected value and standard deviation of each cate-
gory in the true distribution. It avoids discussing the correlation caused by the specific
distribution of sample data. At the same time, compared with Euclidean distance, Maha-
lanobis distance can also eliminate the interference of the correlation between attribute
variables, which is more reasonable. The Mahalanobis distance used in this section can
also be called the normalized Euclidean distance.
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To consider aM-class problem, where the object may belong toM different classes,
and� = {w1, . . . ,wM } is the set of all classes. It is supposed that the training sample set
is Y = {

y1, . . . , yg
}
. First, the attribute information of each category of training sample

can be used to calculate the center vector of the category. The center of ci(i = 1, . . . ,M )

can be expressed as:

ci = 1

si

∑

yj∈wi
yj (5)

where si is the number of training samples of class wi.
For each training sample yh(h = 1, . . . , g), sample preprocessing is performed

according to the distance from it to the center. The distance requires to fully consider
the degree of dispersion of each category of sample distribution, that is, the size of the
standard deviation. Therefore, the Mahalanobis distance is used as the measurement
scale of distance here, which is:

dwi
h =

√
√
√
√

p∑

k=1

(
yh(k) − ci(k)

δi(k)

)2

(6)

where δi(k) is the standard deviation of the training data set of class wi, yh(k) and ci(k)
are the values of the attribute vector yh and center ci on the k-th dimension respectively,
and p is the number of dimensions.

The smaller the distance dwi
h is, the more likely the training sample yh belongs to

the category wi. If yh is farther from the center ci, the less likely it is that yh belongs to
category wi. Therefore, the support of yh belonging to category wi is:

sh(Wi) = e−dhwi (7)

The BBA mh should correspond to the normalized sh(wi), formally defined by:

mh = sh(wi)
∑M

l=1 sh(wl)
(8)

The above mass functionmh provides more powerful information to characterize the
uncertainty for training sample yh than the original class label wi ∈ �, and it can be
consider as a new soft class label of the sample yh. As a consequence, the new training
sample set with soft class labels Y ′ = {

y1, . . . , yg
}
is adopted for the target classification

task in this paper.

3.2 Classification with Preprocessed Training Samples

After preprocessing, the next problem to be solved is how to classify the newly observed
unknown target x ∈ RP based on the preprocessed training samples. Different from the
general classification problem, the category of training sample used here is represented
by the structure of basic trust distribution, so it is necessary to improve the original
evidence kNN classification algorithm accordingly to enable it to classify x reasonably
using the category label of this structure. For the target� = {w1, . . . ,wM } of categories
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M, it is to first establish training sample sets for each category based on the total training
samples, and then refer to the EkNN classification algorithm to generate evidence that
can be combined in various training sets based on the training samples and the feature
data of the target to be tested. The entire classification process can be divided into the
construction and fusion of mass functions under each category, and the global fusion of
the fusion results between categories, which will be introduced separately below.

The Construction and Fusion of Mass Functions
To consider the k nearest neighbor samples of the target x to be tested in the training
samples of category wi(i = 1, . . . ,M ), if one of the training samples is very close to
the sample x to be tested, the training sample provides a more reliable evidence for the
classification of the sample to be tested. Conversely, if the distance is far, the reliability
of the evidence provided by the training sample is relatively small. According to the
evidence kNN algorithm, it is to choose Euclidean distance as the measurement scale to
calculate the distance between the target and the training sample. It is assumed that the set
of k nearest neighbor samples of target x in category wi is, �i = {(y1, d1), . . . , (yk , dk)},
dj(j = 1, . . . , k) is the Euclidean distance between neighbor yj and target x, mj is the
category label of yj, βj is the reliability of classifying x based on sample yj, then the
evidential mass function m

′
j provided by yj for the classification of target x can be

expressed as:

{
m

′
j(wi) = βjmj(wi), i = 1, . . . ,M

m
′
j(�) = βjmj(�) + (

1 − βj
) (9)

where the reliability βj is determined by the Euclidean distance dj between yj and the
target x. The greater the distance between the two, the lower the corresponding reliability,
that is, the reliability βj and dj show a decreasing relationship, which can be expressed
as:

βj = e
−

(
dj

/

d
i
)

(10)

where d
i
is the average distance between all training samples in category wi.

In order to classify the unknown target x, the k mass functions constructed by the k
nearest neighbor samples yj(j = 1, . . . , k) in the category wi need to be fused to obtain
the classification result of the target by the training samples of the category wi. In the
fusion process, considering that the mass functions provided by the same category of
training samples have high consistency, the Dempster combination rule can be used
directly for the fusion operation, it an be expressed as:

mi = m
′
1 ⊕ m

′
2 ⊕ · · · ⊕ m

′
j (11)

where ⊕ is Dempster combination operation.
Considering that there are a total of M categories of targets, a set of M nearest

neighbor samples of the target can be generated, namely. According to Eq. (11), the
mass function set � = m1, . . . ,mM under categories M can be obtained.
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The Global Fusion of the Fusion Results Between Classes
For the mass function set of categories M targets, the mass value constructed by the
samples of category wi is mainly assigned to the corresponding focal element, that is
mi(wi). Therefore, it can be considered that the distribution of mass values of different
categories is different, and there will be certain conflicts between the mass functions
obtained by Eq. (11). At this time, if the Dempster combination rule is used for global
fusion, a fusion result that contradicts the facts may be obtained. Therefore, when fusing
between categories, this paper uses PCR5 (Redistribute ConflictingMass Proportionally
Rule 5, PCR5) combination rules to accurately and reasonably allocate conflict infor-
mation. The PCR5 rule is an evidence fusion rule proposed by Desert and Smarandache
for conflicting data. This rule can accurately distribute the conflict information propor-
tionally according to the mass values of the two parties in the conflict, which is very
suitable for combining high conflict evidence. While compared with the Dempster rule,
it is a more conservative combination method, and the convergence speed of the fusion
result is relatively slow. Assuming that B and C are two independent evidences to be
combined, the corresponding focal elements are Bj and Cj, and the mass functions are
m1 and m2 respectively, then the PCR5 rule can be expressed as [19]:

m(x) =
∑

Bi,Cj ∈ 2�

Bi ∩ Cj = x

m1(Bi)m2
(
Cj

) +
∑

y ∈ 2�

x ∩ y = ∅

[
m1(x)

2 m2(y)

m1(x) m2(y)
+ m2(x)

2 m1(y)

m2(x) m1(y)

]

(12)

where x and y are two focal elements of evidence body B and C with conflicting
information.

Example 1: Theevidencebodym1 confirms that themass valueof that the target belongs
to category w1 is 0.9, and the mass value of that the target belongs to category w3 is 0.1.
The evidence bodym2 confirms that the mass value of that the target belongs to category
w2 is 0.9, and the mass value of that the target belongs to category w3 is 0.1.

After combining m1 and m2 by the Dempster combination rule, it can be obtained
that:

mDempster(w1) = 0,mDempster(w2) = 0,mDempster(w3) = 1.

After combining m1 and m2 by the PCR5 combination rule, it can be obtained that:

mPCR5(w1) = 0.486,mPCR5(w2) = 0.486,mPCR5(w3) = 0.028.

It can be seen that the original two evidences respectively believe that the target
belongs to w1 and w2, And the reliability values provided are all 0.9. The Dempster rule
offers a fusion result contrary to m1 and m2, which is obviously not reasonable. While
PCR5 believes that the mass values of that the target belongs to m1 and m2 are still the
same and are much higher than the mass value of that the target belongs to w3. The
fusion result is more reasonable and credible than the result of Dempster’s rule.

Therefore, considering the inconsistency of evidence between categories, for the
mass function set of the categoriesM observation target, it is necessary to use the PCR5
combination rule for fusion, and it can be obtained that:

m = m1
PCR5⊕ m2

PCR5⊕ · · · PCR5⊕ mM (13)
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where
PCR5⊕ represents PCR5 combination operation.

The final fusion result m can be calculated according to Eq. (13). According to the
mass value of each category assigned to it, the final recognition result can be made on
the target x, that is, the unknown target x is assigned to the category with the maximum
mass value.

4 Experimental Results

This section is to use simulation analysis to compare theNEkNNclassification algorithm
mentioned in this paper with voting kNN, EkNN, IEkNN, and to illustrate the effective-
ness of NEkNN. In the experiment, the parameters in EkNN are optimized according to
the existing method [20]. The experiment utilizes simulation data to compare and ana-
lyze the misclassification rate of the proposed method and other classification methods
based on k-nearest neighbors.

In this target recognition simulation experiment, a classification problem of 3-class
target � = {w1,w2,w3} is considered. After the sensor’s observation data is prepro-
cessed by data association and feature extraction, the training database is used to classify
the feature data containing these three categories of targets. Assuming that the feature
data is a three-dimensional vector, and the observation data and training data are gener-
ated from three three-dimensional data sets that obey the Gaussian distribution, then its
mean and standard deviation have the following characteristics:

Table 1. 3-class data set with 3D Gaussian distributions.

Label μ1 μ2 μ3 Standard deviation

w1 1 1 1 1

w2 −1 1 0 1

w3 0 -1 1 2

In Table 1, the three characteristics of each category of data have the same standard
deviation. For example, the probability density functions of the three attribute data of
category w2 are: x1|w2 ∼ N (−1, 1), x2|w2 ∼ N (1, 1), x3|w2 ∼ N (0, 1) , their standard
deviation is the same as 1, and it randomly generates 3 × 100 test samples and 3 × 200
training samples. It is to select kNN,EkNN, IEkNN to compare and analyzewithNEkNN
proposed in this paper, take the value of the adjacent number k from 5 to 15, and take the
average of 10 simulation results as the error rate of the test data set. The classification
results are shown in Table 2.

It can be seen from Table 2 that the EkNN and IEkNN methods are better than
the traditional voting kNN and can effectively improve the classification accuracy. The
NEkNN algorithm proposed in this paper can better characterize the imprecision of the
sample data in the overlapping area of the category and improve the classification accu-
racy of the data by using the basic belief assignment to replace the original category



Classification of Uncertain Data Based on Evidence Theory 167

Table 2. 3-class data set with 3D Gaussian distributions.

k kNN EkNN IEkNN NEkNN

k = 5 32.73 29.12 25.12 23.60

k = 6 32.68 28.33 25.19 23.97

k = 7 31.19 27.87 25.38 24.06

k = 8 33.62 27.61 24.67 24.11

k = 9 31.44 27.59 24.71 23.86

k = 10 32.25 27.55 25.09 24.03

k = 11 31.28 27.43 25.02 23.79

k = 12 31.42 26.96 24.91 23.45

k = 13 30.99 26.93 24.47 23.52

k = 14 32.94 26.86 24.52 23.35

k = 15 32.17 26.98 24.59 23.35

k = 16 32.73 29.12 25.12 23.60

label. Therefore, compared with the EkNN and IEkNN algorithms, it has a smaller clas-
sification error rate, especially when the number of neighbors is small, the performance
improvement is more significant. In addition, it can be found that compared with other
classification methods based on k-nearest neighbors, NEkNNmethod is less sensitive to
the value of k-nearest neighbor.

5 Conclusion

In order to effectively express and reason about imprecise data, this paper proposes an
evidence editing classification method based on EkNN. Before identifying and classify-
ing the sample to be tested, this method uses a class label with a basic belief assignment
structure to replace the original numerical category of the training sample, so that the
training sample in the class overlapping area can providemore abundant andmore diverse
category information. And lay a better foundation for the follow-up kNN classification
process. From the comparative analysis of related experiments, it can be found that
for imprecise sample data, the NEkNN algorithm can obtain better classification per-
formance than other classification algorithms based on k-nearest neighbors. Our future
work mainly involves the following two aspects: (1) finding a more efficient strategy
to estimate the mass values to improve the classification accuracy; (2) designing more
credible combination rules to deal with the uncertain data in IOT environment.
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