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Abstract. The increasing scale of the IOT poses challenges to the energy con-
sumption, transmission bandwidth and processing delay of centralized cloud com-
puting data centers. The cloud computing data centers is moving from the center
of the network to edge nodes with lower latency, namely, edge computing. Mean-
while, it can meet the needs of users for real-time services. In the field of edge
computing, offloading decision and resource scheduling are the hot-spot issues. As
for offloading decision and resource scheduling problems of single-cell multi-user
partial offloading, the system model is also firstly established from four aspects:
network architecture, application type, local computing and offloading comput-
ing. Based on the system model, the optimization problem of resource scheduling
is modeled, where the solution is hard to be found. Thus, the deep reinforcement
learning method based on policy gradient is selected to establish the SPBDDPG
algorithm that can solve the problem. Then, in order to solve the practical prob-
lems, the SPBDDPG algorithm is set up with the state and action for iteration,
as well as the environment for generating new state and feedback reward value.
Finally, an appropriate iteration step is written for the edge computing resource
scheduling problem by combining with the original deep reinforcement learning
algorithm. We also evaluate the proposed approaches by relevant experiments.
The complexity and effectiveness of the results are validated.
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1 Introduction

Since the concept of edge computing was proposed, many optimization algorithms on
energy consumption and delay have been proposed for edge computing offloading deci-
sion and resource scheduling. In order to improve network performance, some studies
(e.g. [1–4]) focus on completing offloading strategy to minimize latency or energy con-
sumption. Partial offloading is more suitable for applications with more stringent latency
requirements than full offloading because it takes advantage of the parallelism between
smart mobile devices and the cloud. In addition, since wireless networks have limited
bandwidth, it makes more sense to migrate some applications rather than all.

Therefore, much work (e.g. [5–9]) has been devoted to partial offloading. Munoz
et al. [5] reduced the energy consumption of intelligent mobile devices to the maximum
by jointly optimizing the uplink time, downlink time and data size of intelligent mobile
devices and the cloud. Huang et al. [6] proposed a dynamic offloading algorithm based
on Lyapunov optimization to achieve energy saving. Lorenzo et al. [7] jointly optimized
the transmission power and modulation mode to minimize the energy consumption of
intelligent mobile devices under delay constraints. Yang et al. [8] jointly studied the
division of computing and scheduling of offloading computing on cloud resources to
achieve the minimum average completion time of all users. Cao et al. [9] proposed a
framework for partitioning and executing data-flow applications to achieve maximum
speed.

The combination of dynamic voltage regulation technology and computational
offloading provides more flexibility for strategy design. Kilper et al. [10] considered the
computing speed of intelligent mobile devices and the optimization of the transmission
rate under the Gilbert-Elliott channel to make offloading decision between local execu-
tion and full offloading. In order to adapt the environment dynamics more intelligently,
many researches will apply deep reinforcement learning to optimize the offloading deci-
sion. Chen et al. [11] studied a decentralized dynamic computing loading strategy based
on deep reinforcement learning and established an extensible mobile edge computing
system with limited feedback. Zeng et al. [12] introduced a model-free method of deep
reinforcement learning to effectively manage resources on the edge of the network and
followed the design principles of deep reinforcement learning, then designed and imple-
mented a mobile aware data processing service offloading management agent. Based on
the additive structure of utility functions and combined the Q function decomposition
technique with double DQN, Chen et al. [13] proposed a new learning algorithm for
solving the calculation of random loads.

In addition to this, there is a survey in which the computation task models considered
in existing research work are divided into deterministic and stochastic [14]. By using
Lyapunov optimization method, a solution considering general wireless network and
optimizing energy consumption is given in [15]. In [16], a perturbed Lyapunov function
is designed to maximize the network utility, balance the throughput and fairness, and
solve the knapsack problem on each slot to obtain the optimal unloading plan. On the
other hand, the previous research based on Markov decision process model is mainly
limited to single userMEC system [17, 18]. And in [19], the paper focuses on the problem
of offloading and resource allocation under deterministic task model, in which each user
needs to process a fixed number of tasks locally or offloaded to the edge server.
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In this paper, wemainly focus on the followingworks: In the next section, combining
the application scenario of deep reinforcement learning and edge computing, a new
architecture is proposed. Section 3 introduces an optimization scheme based on deep
reinforcement learning. Then, a single-cell multi-user partial-offloading based on deep
deterministic policy gradient algorithm is proposed in Sect. 4, followed by simulation
and performance analysis in Sect. 5. Concluding remarks and the research prospect are
illustrated at the end.

2 System Architecture

Since cellular networks can only manage the communications and not computing, a new
computational control entity is required for the computational offloading architecture
known as Small Cell Manager (SCM) under project TROPIC proposed on EU FP7 [20].

SCM consists of threemodules: operationmodule, optimizationmodule and offload-
ing module. Based on the offloading of mobile computing architecture, the multiple user
equipment (UE) through the calculation of base station, mobile edge server and SCM
are linked together in a single-cell multi-user scenario. Base stations use TDMA mode
to enable communication and the time is divided into several time slots. Suppose the
maximum delay that users can tolerate is set to constraint Lmax, and the set of devices
that the user connects to base station k is as follows:

K = {1, 2, . . . , k, . . . ,K}
When UE has a compute-intensive application to process, it sends resource request

to the SCM through base station (BS). Afterwards, SCM makes smart decision about
whether to migrate an application, and which parts need to be migrated to the edges.
Once the SCM has decided to migrate, three phases need to be performed in sequence.

a. UE sends data to BS via uplink channel.
b. MEC receives the calculated offloading data of UE from BS.
c. the results are sent back to UE through the downlink channel.

The specific system architecture is shown in Fig. 1:
The rate at which user device K uploads data to the base station is as follows:

Rk = Blog2(1 + Pt,khk
2/N0) (1)

Where B is the bandwidth of the complex Gaussian white noise channel, N0 is the
variance of the complex Gaussian white noise channel, Pt,k is the transmitting power of
the user device K, and hk is the channel gain of the user device K.
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Fig. 1. Single-Cell Multi-User Complete Offloading System Architecture

3 Deep Reinforcement Learning Optimization Scheme

In a single-cell multi-user edge computation offloading scenario, suppose that all user
equipment between the base station and the same channel. The application is abstract to
a two-parameter profile (Ik, Ck), where Ik represents the number of input data bits that
user device K computes, and Ck represents the number of CPU cycles required for each
bit of input data. The ratio of the calculated offloading data of user device K to the total
input data is defined as λk (0 ≤ λk ≤ 1). Therefore, the calculated offloading ratio of all
user devices in the cell constitutes the decision vector:

Λ = [λ1, λ2, . . . , λk , . . . , λK ]

The Local Model
Assuming that the local CPU computing capacity of user’s device K is Fk(bits/s) and
the local energy consumption per CPU cycle is Pk , so user’s device needs to meet:

(1 − λk)Ik/Fk ≤ Lmax (2)

Therefore, the energy consumption calculated locally by user device K as follows:

El,k = (1 − λk)IkCkPk (3)

The Offloading Model
The time of device K calculates offloading data is tk , and the total time of all devices
in the same time slot needs to less than Lmax. And the energy consumption by the user
device K offloading is as follows:

Eo,k = N0(2
λk Ik /tk

B − 1)

hk
2 tk (4)

Cost Model
Considering the parallelization of local and offloading computing, the total energy
consumption cost is:

Ek(λk , tk) = El,k + Eo,k = (1 − λk)IkCkPk + f (λk Ik/tk)tk (5)
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As a result, the formulation of edge computing resource offloading scheduling
problem can be deduced by changing the decision vector � = [λ1, λ2, . . . , λK ] and
T = [t1, t2, . . . , tK ] to minimize the total energy consumption

∑K
k=1 Ek(λk , tk). The

optimization problem can be mathematically formalized as:

min
λk ,tk

∑K

k=1
[(1 − λk)IkCkPk + f

(
λk Ik
tk

)

tk ] (6)

s.t.C1 :
∑K

k=1
λk IkCk ≤ Fc,

C2 : max{0,
(

1 − LmaxFk

Ik

)

} ≤ λk ≤ 1,

C3 :
K∑

k=1

tk ≤ Lmax.

3.1 Parameter Setting

Reinforcement learning is often used tomake decisions. It always observes the surround-
ing environment state and can perform an action to reach another state according to the
decision rules, then get a feedback reward.

State
After each scheduling, the total cost of energy consumption is respectively:

Ek(λk , tk) =
∑K

k=1
[(1 − λk)IkCkPk +

tk f
(

λk Ik
tk

)

hk
2 ] (7)

And the edge server computing capacity required by the actual scheduling scheme:

Pn =
∑K

k=1
λk IkCk (8)

The state s(s1, s2) can be calculated after each action. The system can judge whether
each scheduling scheme is to minimize the energy consumption according to s1. The
size of s2 is used to determine whether the server is fully utilized.

Action
The offloading decision vector Λ = [λ1, λ2, . . . , λK ] with the base station assigning to
the user equipment used to upload data time slot decision vector T = [t1, t2, . . . , tK ] as
a deep reinforcement learning action for each turn.

Reward
In reinforcement learning, reward is the feedback of state and action, which reflects the
impact of the current decision on the result. Therefore, reward is crucial to the outcome
of training.
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4 SPBDDPG Algorithm

Based on the deep reinforcement learning approach, this chapter further proposes a
Single-cell multi-user Partial-offloading Based on Deep Deterministic Policy Gradient
(SPBDDPG) algorithm superior to the traditional policy gradient REINFORCE algo-
rithm, which is specifically designed to solve the optimization of user device partial
migration in the single-cell multi-user scenario.

4.1 The Principle of Policy Gradient Algorithm

In the strategy gradient based approach, the action is finally executed according to the
probability distribution. The strategy is related to the current state, that is, for each
states, the strategy gives π(a|s), the probability distribution of an action a, and because
the strategy needs to be optimized, it parameterizes it by giving the parameter vector,
which is denoted as π(a|s, θ).In order to solve the strategy gradient, the introduction of
sampling Trajectory τ = (s0, a0, s1, a1, . . . , sT−1, aT−1, sT ), represents the sequence
of states and actions.Make p(τ |θ) denote the probability of the whole trajectory in the
case of parameter vector, and the total benefit of the whole trajectory is:

R(τ ) =
T−1∑

t=0

rt (9)

In the practical application, because the expected value cannot be calculated, a
large number of samples must be collected, and the approximate expected value can
be obtained by taking the mean value:

∇θEτ [R(τ )] = 1

N

∑N

n=1

∑T−1

t=0
R
(
τ n

)∇θ logπ(ant |snt , θ) (10)

4.2 Improved SPBDDPG Algorithm

The actor-critic algorithm, as its name suggests, has two parts: Actor and Critic.
The critic network uses the deep intensive learning algorithm based on value func-

tions, which can output the corresponding Qπ (ant , s
n
t ) and V

π (snt ) according to the state
st and action at , while the random variable Aθ (at, st) can be expressed as:

Qπ
(
ant , s

n
t

) − V π (snt )

But it is inconvenient to construct two networks for output Qπ (ant , s
n
t ) and V π (snt ),

respectively, and:

Qπ
(
ant , s

n
t

) = E[rnt + V π (snt+1)] (11)

Therefore, Aθ (at, st) can be approximately expressed as:

rnt + V π (snt+1) − V π (snt )

At this point, the critic network can provide actor network with Aθ (at, st) weight
function for gradient rise and update.
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The specific flow of the algorithm is as follows:

a. Expanding scope of action to explore the noise distribution of N and making the
neural network output value into the scope of the actual scheduling problem in first
initialization.;

b. Then initialize the Actor Evaluate network with the parameter of θπ , and select the
action by the strategy gradient; and the Critic Evaluate network with parameters of
θQ to output the Q value corresponding to state actions through DQN;

c. The parameters of the two estimated networks were passed to the target network
(Actor Target and Critic Target), and the two groups with same parameters constitute
differential action network and evaluation network respectively;

d. Generate action a1 according to initial state s1 and action estimation network. Then
generate the next state s2 and value r1 according to environmental feedback. Take
{s1, a1, r1, s2} as a set of data, and store them in memory bank R;

e. Take s2 as the next initial state and repeat step d;
f. When thememory bank R is full, cover storage is carried out. And after each network

output, a large amount of data is randomly sampled from the memory bank R to start
training and update the two estimation networks;

g. Generate estimated value q1 according to s1, a1 and evaluate real network; action
a2 is generated according to the next state s2 and action real network. Then the real
value q2 is generated from s2, a2 and evaluation real network. r1 + γ q2 is taken as
the comparison real value q1′, the mean square deviation of estimated value q1 and
real value q1′ is minimized by training the network parameter θQ:

TD_error = 1

N

∑

N

(
q

′
1 − q1

)2
(12)

h. The negative number of the estimated value q1 is defined as the loss function, then
update the network parameter θπ through the gradient increase to minimize the loss
function. Make the network select the highest probability of Q action;

i. Start the loop from Step c.

5 Simulation and Performance Analysis

This section is based on the Python edge structures in the network environment simu-
lation to achieve the edge computing resource scheduling and tack-offloading system
network architecture. In the simulation model, SPBDDPG algorithm is used to optimize
the results. For comparison, the REINFORCE algorithm and the minimum offloading
scenario are chosen as baselines. Specific simulation parameters are shown in Table 1.

5.1 Complexity

The size of simulation setup memory database is 5000. During the training process, the
maximum iteration step is 1000 per round and the number of iterations is 30 rounds. And
the sixth round began using memory data to train neural networks, then the new data will
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Table 1. Simulation parameters

Parameters Description Value

Lmax A delay constraint that can be tolerated 100 ms

Fc Upper limit for edge computing servers 6 × 109 cycles/slot

K Total number of user devices 30

B Bandwidth of a complex Gaussian white noise
channel

10 MHz

N0 Variance of complex Gaussian white noise
channel

10−9 W

hk Channel gain for user device K 10−3

Fk Local CPU capacity of user device K ∼ U [0.1, 1.0] GHz

Pk Local CPU cycle power consumption of user
device K

∼ U
[
0, 20 × 10−11

]
J/cycles

Ik Input data for user device K ∼ U [100, 500] KB

Ck Number of cycles required to compute data for
user device K

∼ U [500, 1500] cycles/bit

cover the original database. According to Fig. 2, the reward value curve began to change
since the 16th round and the algorithm completed convergence when it comes to the
19th round. In a word, SPBDDPG algorithm has good training effect and convergence
rate is rapid.

Fig. 2. The convergence of the algorithm

5.2 Effectiveness

With the increase of cell user equipment, the computing power of edge server is limited,
and many tasks need to be calculated locally. According to Fig. 3(a), the total energy
consumption of the scheduling scheme based on SPBDDPG algorithm is lower than the
other two schemes.
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As the maximum of time delay that all users can tolerate increases, many tasks can
be calculated by offloading tasks to the edge server. As a result, local computing energy
consumption will be reduced. According to Fig. 3(b), compared with the optimization
scheme based on REINFORCE algorithm and implement minimum offloading scheme,
the total energy consumption of the scheme proposed in this paper is lower.

(a) Impact of user number             (b) Impact of time slot duration

(c) Impact of cloud computation capacity

Fig. 3. The comparison of 5.2 effectiveness between different algorithms

With the increase of the edge server computing capacity limit, many tasks can be
offloaded to the edge server for computing, so the total energy consumption of user
equipment will be reduced. According to Fig. 3(c), the total energy consumption of the
scheduling scheme based on SPBDDPG algorithm is lower than the other two schemes.
In addition, the total energy consumption almost stops decreasing and tends to be stable
when the edge computing server’s upper limit of computing capacity exceeds a certain
threshold (about 6× 10ˆ9 cycles/slot). It indicates that the upper limit of edge computing
server’s computing capacity has a certain threshold value. If the edge server’s computing
capacity exceeds the threshold value, the energy consumption of user equipment will
not be reduced.
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6 Conclusion

In this paper, an offloading decision and resource scheduling optimization algorithm
based on deep reinforcement learning is proposed, which can reduce the energy con-
sumption in traditional edge computing problems and improve the resource utilization.
Meanwhile, the conventional REINFORCE algorithm combined with DQN was used
to model the actual scene of edge computing through SPBDDPG algorithm, and the
problem is optimized and solved. Besides, its computational accuracy and complexity
are improved compared with other methods. Finally, the advantages of our method are
proved by the experimental simulation and services preloading scheme is proved to be
effective.

On the other hand,we admit that there are some limitations in this paper. For example,
optimization is mainly based on energy consumption and is not applicable to scenarios
that are more time-sensitive or integrated. We will concentrate on it in the future. At the
same time, some factors should also be considered, such as other deep reinforcement
learning algorithms, and it is an important research direction.
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