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Abstract. Comparedwith the SC decoder, BP decoder provides a higher through-
put and lower decoding latency for its inherent parallel nature. However, the func-
tional units of existing BP decoders are not fully utilized. In this paper, we propose
a new update scheduling scheme and hardware optimization design to improve
the hardware efficiency of BP decoder. First, a pipelined decoder architecture
is proposed to reduce the consumption of functional units. Then, a new update
scheduling scheme is proposed, when updating the messages, both new-value and
old-value approaches are used to improve the utilization of functional units and
reduce the decoding latency. The analysis and synthesis results have shown that,
compared with the existing methods, the proposed decoder suffers from a slight
the decoding performance degradation, but the utilization rate of basic computa-
tional blocks (BCB) can be increased to 50.58%. The storage resource dissipation
can be reduced by 20.1%–34.09% .

Keywords: Polar code · Belief propagation (BP) · VLSI · Pipelined
architecture · Hardware efficiency

1 Introduction

Polar code has been proved theoretically to be able to achieve the Shannon capacity
over binary-input discrete memoryless channels (B-DMCs), and the codec has a lower
algorithm complexity [1]. It is a major breakthrough in the history of channel coding and
a research hotspot in the field of coding. There exist mainly two decoding algorithms:
successive cancellation (SC) decoding [1] and belief propagation (BP) decoding algo-
rithms [2]. The SC algorithmhas lowdecoding complexity and excellent error-correction
performance, but the decoding latency is very high, which limits the system throughput
and hinders the wide applications of polar codes, especially for high-speed applications.

Unlike SC decoding algorithm, BP decoding is an iterative algorithm that is highly
parallel, which provides high throughput and low decoding latency [3, 4]. In 2013, B.
Yuan and K. K. Parhi proposed an improved architecture of polar BP decoder in order
to improve throughput and efficiency [5]. The following year, they also utilized early
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stopping techniques to reduce energy consumption and decoding latency [6]. Subse-
quently, several architecture transformation techniques are given to further improve the
hardware performance [7]. Jin Sha et al. exploited a stage-combined decoding scheme
to advance the memory efficiency of BP decoder [8]. S. Sun and Z. Zhang [9] proposed
an architecture and optimization of BP decoder that eliminates data dependencies by
using forward flood scheduling to improve the error correction performance, throughput
and reduce the decoding delay. Junmei Yang et al. [10] presented both feed-forward
(FFD) and feed-back (FBK) pipelined architecture for BP decoder to achieve a balance
between performance, throughput, latency, area, and utilization. However, owing to the
underutilization of the functional units, the hardware performance of the decoder is still
not competitive.

Assume that the message that has been updated in current iteration is referred to new
value (NV). Otherwise, if the message that has been not updated in current iteration,
namely, it is still the value in last iteration, which is defined as old value (OV). In con-
ventional BP decoding, the decoder needs to wait when the new value is not valid, which
brings in large decoding latency and costs more memories to store internal messages. To
improve hardware efficiency, this paper presents an update scheduling scheme. During
the iterations. it updates and calculates the messages with old values directly does with-
out waiting old value. Based on it, a pipelined architecture with new and old value (NOV)
based on folding technology is presented. The utilization rate of BCB (basic computa-
tional block) can be improved to 100%. Simulations show that the proposed scheme can
obtain similar decoding performance as other schemes. Meanwhile, it consumes less
hardware resources.

The remainder of this paper is organized as follows. Section 2 briefly reviews polar
codes and BP decoding algorithm. In Sect. 3, we present a novel update scheduling
scheme and hardware architecture of BP decoder. Section 4 compares the performance
among different decoders. Conclusions are drawn in Sect. 5.

2 Conventional BP Decoding of Polar Code

2.1 Polar Codes

Polar codes can be defined by a parameter vector (N ,K,A, uAc), where N = 2n denotes
the codeword length, K denotes the number of information bits, A and Ac represents
the set of information bits’ indices and its complement, uAc represents frozen bits. The
source vector uN1 = (u1, u2, · · ·, un) can be obtained by mixing K information bits and
N − K frozen bits. The codeword vector xN1 = (x1, x2, · · ·, xn) is generated as follows.
Subsequent paragraphs, however, are indented.

xN1 = uN1 GN = uN1 BNF
⊗n (1)

Where GN is a generator matrix, F⊗n is the n-th Kronecker power of F=
[
10

11

]
, and

BN is a bit-reversal permutation matrix.



578 X. Zhang et al.

2.2 Polar BP Decoding Algorithm

The BP algorithm can be illustrated through factor graph. Figure 1 depicts the factor
graph of an (8, 4) polar code, which consists of n = log2 N stages and N (n+ 1) nodes.
Each stage containsN/2 2×2 BCBs [8], which has two inputs and two outputs as shown
in Fig. 2.
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Fig. 1. Factor graph of (8, 4) polar code.
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Fig. 2. Factor graph of 2×2 BCB.

The node (i, j) represents the i-th input bit of the j-th column, which is associated
with two types of messages: left-to-right messages Ri,j and right-to-left messages Li,j.
During the decoding iterations, these soft messages are updated and propagated among
adjacent nodes. The decoder can be initialized as follows.

Li,n+1 = ln

(
p(yi|xi = 0)

p(yi|xi = 1)

)
(2)

Ri,1 =
{
0, if i ∈ A
∞, if i ∈ Ac (3)



Pipelined BP Polar Decoder with a Novel Updated Scheme 579

In BP decoding, messages are passed iteratively from left to right and then from
right to left through the factor graph. In each iteration, the BCB calculates Ri,j and Li,j
messages according to (4).

Li,j = f
(
L2i−1,j+1,L2i.j+1 + Ri+N/2,j

)
Li+N/2,j = f

(
L2i−1,j+1,Ri,j

) + L2i,j+1

R2i−1,j+1 = f
(
Ri,j,Ri+N/2,j + L2i,j+1

)
R2i,j+1 = f

(
Ri,j,L2i−1,j+1

) + Ri+N/2,j (4)

Where f (x, y) can be further simplified to (5) by using the min-sum approximation
[11], and the scaling factor is set to 0.9375.

f (x, y) ≈ 0.9375 · sign(x)sign(y)min(|x|, |y|) (5)

After the BP decoder reaches the preset maximum number of iterations Imax, ûN1
can be determined by calculating the LLR values of the leftmost node according to (6).

ûi =
{
0, if Li,1 ≥ 0
1, else

(6)

3 Proposed Nov Update Scheme and Hardware Architecture

3.1 Existing Pipelined BP Decoder

When designing the hardware architecture of the decoder, each stage needs N /2 BCBs
for anN-bit fully parallel BP polar decoder. The direction of messages update iteratively
is from 1-th stage (RS1) right to (n-1)-th stage (RSn−1), and then from n-th stage (LSn)
left to the 2-th stage (LS2). After updating messages (Ri,j) messages or Li,j messages) of
each stage takes only one clock cycle, and each iteration takes a total of 2(n − 1) clock
cycles.

Different from the design of the fully parallel BP polar decoder, the whole decoder
needs 2(n − 1) BCBs when using a BCB at each stage [10]. Based on (4) and the FFD
pipelined architecture, each BCB updates one pair of messages (or Li,j messages) every
clock cycle. When the messages generated by each Ri,j BCB update can not consumed
immediately in the next cycle, the generatedmessages should be delayed. For each BCB,
if the required input messages is not generated in time during this cycle, it needs to wait
for those messages to arrive before it is activated. FFD architecture uses one BCB at
each stage, for the N-bit BP polar decoder, the total number of BCBs is

QBCB = 2(log2 N − 1) (7)

The decoding latency can be evaluated by

Dlatency = (

log2 N−1∑
i=1

2i + 2(log2 N − 1))I + N/2 (8)
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The BCB utilization is given by

UBCB = N/2∑log2 N−1
i=1 2i + 2(log2 N − 1)

(9)

3.2 Proposed NOV Updating Scheme

In the FFD pipelined architecture, since the ability of one BCB to update messages
is insufficient at each stage, the generated messages need to be delayed if it cannot
be immediately consumed. Accordingly, the corresponding register resource will be
increased. When BCB updates the messages, it will wait until the required messages is
arrived. Subsequently, the overall decoding delay will be increased and the utilization
of BCB will also be declined.

For the aforementioned analysis, a novel update scheduling scheme is proposed to
overcome those flaws based on the overlapped scheduling method used in the iteration
level and codeword level [6]. During the current iteration, the updated messages are
called NVs, and the messages that are not updated are called OVs. The OV is essentially
the result of last iteration. Similarly, only one pair of Li,j messages (or Ri,j messages)
can be updated for each BCB in one clock cycle. If the NV that is generated cannot
be immediately consumed in the next cycle, it needs to be delayed. However, when the
BCB of each stage is updated, if the required messages do not arrive yet, it does not have
to wait until those messages are the NV, instead of dealing with the corresponding OV.
The BCB of each stage is activated by rotation in the above manner until the preset Imax
is reached. In the above decoding process, since two kinds of messages, NV and OV,
are always involved, this method is called NOV update scheduling scheme. By adopting
this scheme, without considering whether all messages is updated or not. Thus the idle
cycle of BCB can be greatly reduced, and the cycles of one iteration will be significantly
reduced. On the other hand, themessages that needs to be delayed will be avoided, which
can reduce the memories. Similarly, this scheme can also be adopted in the multi-level
pipeline architecture.

To further illustrate the NOV scheduling process, an 8-bit polar decoder is shown in
Fig. 3. The red dotted line represents the boundary of adjacent iterations, with the first
iteration on the left and the second iteration on the right. For RS1 stage, BCB will be
activated in the first cycle to produce right messages: R1,2 and R5,2, that is NV. Then,
R1,2 will be consumed by BCB of RS2 stage in the second cycle, while R5,2 is not the
right messages required by RS2 stage in this cycle, so it needs to be delayed. For RS2
stage, BCB will be activated in the second cycle, and right messages it needs is R1,2 and
R3,2, while R3,2 is updated in the third cycle of the first iteration. At this point, instead
of waiting for R3,2 to be NV, BCB is activated by replacing R3,2 with corresponding
OV. Each BCB is activated as described above until Imax is reached and decoding is
terminated.

3.3 Hardware Architecture

According to (4), assume that the 4-input ports and the 2-output ports of BCB are a, b,
c, d, and out1, out2, respectively. Then (4) can be further simplified to (10). The logical
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Fig. 3. NOV updating schedule of 8-bit polar code. (Color figure online)

architecture of BCB is illustrated in Fig. 4, and its hardware architecture is shown in
Fig. 5. Here T2Cmodule converses sign-magnitude (SM) to 2’s complement, and C2T is
inversely converted. Moreover, SU module performs the scaling function, MIN module
can get the minimum value. The BCB updates the Ri,j (or Li,j) messages from left to
right (or right to left) as shown in Fig. 6. Obviously, the BCB is a bidirectional update
function.

+

f

+

f
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d

b

out1

out2

Fig. 4. Architecture of BCB.

out1 = f (a, b + d), out2 = f (a, c) + b (10)

An N-bit pipelined BP decoder architecture with the NOV update scheme is shown
in Fig. 6. The switch module has 4-input ports and 4-output ports, which updates Li,j
messages of the LS1 from right to left for the last iteration and is controlled by the signal
I, when I = Imax, the switch module is activated. The same BCB can be used with
the assistance of the switch module because of RS1 and LS1 just update the messages
in different directions. The hard decision module is composed of the sign module and
the reorder module, which determines the codeword estimation value û, and is also
activated when I = Imax. The sign module is used to gain the sign bit of the LLR.
The reorder module is employed to perform bit reversal operation. The MRn and MLn
modules are utilized to deposit Ri,j and Li,j messages of the n-th stage generated by the
BCB respectively, but they are not pure memories, as shown in Fig. 8. Here switch acts
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Fig. 5. Hardware architecture of BCB.
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Fig. 7. N-bit pipeline BP decoder architecture with the NOV update scheme.

as a commutator, FIFO is used to store NVs that needs to be delayed, RAM is used to
store part of OVs, where the corresponding OVs will be overwritten by the result of the
next iteration.

For an 8-bit pipelined BP decoder architecture with the NOV update scheme, one
BCB is adopted for each stage, and a total of 4 BCBs is required. Each iteration takes
4 clock cycles. Moreover, BCB takes 4 clock cycles just to update the messages of this
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Fig. 8. Memory module.

stage during that time, thus the utilization rate of BCB is 100%. If the decoding result is
outputted, it also takes 4 clock cycles, and the decoding latency is 4I + 4 clock cycles.

In Fig. 7, the total number of BCBs is

QBCB = 2(log2 N − 1) (11)

The decoding latency is calculated by

Dlatency=N

2
I + N/2 (12)

The BCB utilization is

UBCB = N/2

N/2
(13)

4 Implementation and Comparison

In this section, we analyze and compare the decoding performance and hardware perfor-
mance under different polarBPdecoder architectures, in order to illustrate the advantages
of the proposed architecture with the NOV scheduling scheme.

To evaluate the decoding performance of the proposed scheme, A (1024, 512)
polar code is simulated under AWGN (Additive White Gaussian Noise) channel with
BPSK(Binary Phase Shift Keying) modulation. Simulation results are depicted in Figs. 9
and 10. Compared with the conventional BP decoding, the proposed has a slight decod-
ing performance degradation in the low SNR regions. This is mainly because we used
some old values during iterative process, which lowers the convergence rate of decoding.
But it is very close to the performance of the conventional BP decoding in high SNR
regions. When Imax = 80, the proposed scheme is very close to the conventional one.

Table 1 lists the comparison of BCB number, BCB utilization and decoding latency
of FFD and the proposed NOV at different code lengths. From the table, it can be shown
that the number of BCB required that of the proposed in this paper is the same as the
FFD. Under different code lengths, the BCB is always in active state for the duration of
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Fig. 9. BER performance for (1024, 512) polar codes with different Imax.

Fig. 10. FER performance for (1024, 512) polar codes with different Imax.

iteration with the NOV scheduling strategy. Accordingly, under different code lengths,
one iteration and without decoding results, the decoding latency can be reduced by
50.7%, and the utilization ratio of BCB can be increased to 50.6%.

Table 2 shows the comparison of the decoding latency between the proposed NOV
andFFDwith the average number of iterationswith twoearly stopping schemes (minLLR
and G-matrix [8]), when Imax = 40 at SNR = 3.5 dB. According to Table 2, compared
with FFD, the average number of iterations of NOV increases about three times with
two early stopping schemes, this is also caused by using some old values. Furthermore,
the decoding latency is increased by 40.7% with the average number of iterations, but
the decoding latency can be reduced by 50.2% with the same iteration number.
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Table 1. Comparison of decoding latency, BCB number, and BCB utilization for different code
lengths

Code length (bit) Decoding latency Number of BCB BCB utilization

FFD [10] NOV FFD [10] NOV FFD [10] NOV

512 782 512 16 16 48.67% 100%

1024 1552 1024 18 18 49.23% 100%

2048 3090 2048 20 20 49.56% 100%

4096 6164 4096 22 22 49.76% 100%

8192 12310 8192 24 24 49.87% 100%

Table 2. Comparison of the decoding delay under the average number of iterations

Design SNR (dB) Average number of
iterations

Decoding latency

FFD [10] NOV FFD [10] NOV

Proposed without stopping criteria 3 40 40 42112 20992

3.5 40 40 42112 20992

Proposed with minLLR 3 6.70 19.53 7480 10511.3

3.5 5.53 16.45 6263.2 8934.4

Proposed with G-matrix 3 6.20 17.85 6960 9651.2

3.5 5.12 15.04 5836.8 8212.4

The synthesis results of BP polar decoder with different decoding schemes are shown
in Table 3. Let (Qs, Qi, Qf ) denote the quantization scheme, where Qs presents the
quantization bits of sign bit, Qi and Qf denotes the integer bits and fractional bits
respectively. The quantization scheme (1, 8, 3) is adopted to quantize the LLRs of BP
decoders. From Table 3, it can be seen that compared with FFD and FBK architectures
under the 12-bit quantization scheme, NOV architecture can reduce the consumption of
register and block memory by 25.8% to 38.9%, respectively, and the frequency can be
increased by 1.9 to 2.1 times.



586 X. Zhang et al.

Table 3. Synthesis and simulation results under different methods

Hardware overheads Existing methods NOV

FFD [10] FBK [10]

Logic unit 2,738 2,942 212,408

Storage resource 225,099 185,674 148,364

Throughput (Mbps) 17.28 10.82 10.74

Frequency (MHz) 105.69 96.02 93.75

5 Conclusion

In this paper, we propose a new update scheduling scheme and an optimized hardware
architecture to improve the hardware efficiency of polar BP decoder. This research
have been implemented and verified at FPGA platform. Synthesis results show that
the proposed architecture can significantly improve the hardware utilization, and lower
memory consumption compared with the existing methods.
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