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Abstract. This paper introduces the concept of compressed sensing (CS) into
parameter estimation, and proposes a Multiple-input Multiple-output (MIMO)
radar parameter estimation algorithm based on the Orthogonal Matching Pursuit
(OMP) algorithm. In this algorithm, MIMO radar received signals are represented
by joint sparse representation by establishing a sparse base. Then we use the
random gaussian observation matrix and the OMP algorithm to reconstruct the
target space to finish the estimation of target parameters. Moreover, the algorithm
in this paper considers the radar signal model when array error exists, mainly
discusses the influence of array amplitude error and phase error on the parameter
estimation of MIMO radar based on OMP algorithm. Then the root mean square
error (RMSE) of OMP algorithm and Compressive Sampling Matching Pursuit
(COSAMP) algorithm are comparedwhen the array error exists. Simulation shows
that when the array amplitude and phase error exists, the estimation accuracy
of the target’s reflection amplitude and target parameters are reduced, and the
OMP algorithm has a lower mean square error than the COSAMP algorithm. In
conclusion, the proposed algorithm has high precision in parameter estimation.
Even when array error exists, the OMP algorithm still has better performance in
parameter estimation ofMIMO radar target’s reflection amplitude, azimuth Angle
and pitch Angle than the COSAMP algorithm.

Keywords: Parameter estimation · The OMP algorithm · Amplitude error and
phase error of array · MIMO radar

1 Introduction

The concept ofMIMO radar and its related signal processing technologies have attracted
more and more attention from scholars all over the world. Many scholars have studied
the parameter estimation performance of MIMO radar. In recent years, scholars in the
field of signal processing began to use the compressed sensing theory, by using the
existing classic method (such as transformation coding, optimization algorithm, etc.) to
solve the problem of high rate of analog to digital conversion [1–5]. When the sampling
frequency is much less than Nyquist sampling rate, it obtains the discrete samples of
the signal through random sampling, and then perfectly reconstructs the signal through
the non-linear reconstruction algorithm. Paper [6] is based on the sparsity of the target
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in the angle-doppler-range domain, by using the CS theory, the paper obtains the joint
estimation of the target angle-doppler-range information, so as to realize the super res-
olution of MIMO radar. Paper [7] utilizes the sparsity of the direction of arrival (DOA)
in angular space to estimate the super-resolution parameters of MIMO radar with CS at
a low sampling rate. Paper [8] establishes a target information perception model, uses
compressed sensing to sample the target echo at a rate lower than Nyquist sampling rate,
and extractes target scene information under noise background from a small amount of
sampled data.

Both the traditional algorithm and the target reconstruction method based on com-
pressed sensing are premised on the exact known array manifold. However, array errors
are often unavoidable in the actual situation, so it is of great practical significance to
discuss how to achieve robust target Angle estimation when array errors exist. Paper [9]
proves the influence of array model error on the resolution of subspace class algorithms.
Paper [10] proposed a global correction method, which comprehensively considered the
position, phase and gain errors of array elements, and realized the purpose of simulta-
neous correction of multiple error parameters, which was relatively consistent with the
actual application conditions.

This paper studies parameter estimation based on compressed sensing, mainly dis-
cusses the influence of amplitude and phase errors of array elements on the accuracy of
target reflection amplitude, azimuth Angle and pitch Angle estimation when using the
OMP reconstruction algorithm [11] to estimate the direction of arrival of the target, and
compares the estimation performance of parameters based on the OMP algorithm and
the COSAMP algorithm [12] when array error exists.

2 System Model

target

Fig. 1. Structural model of MIMO radar.

We establish a bistatic signal model, in which the transmitting and receiving antenna
arrays are equidistant linear arrays, and the transmitting and receiving arrays are remotely
separated. The radar system has M transmitting antennas and N receiving antennas. The
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space between transmitting and receiving antennas is dt and dr , respectively. To ensure
that the received signal of each receiving signal unit does not have resolution ambiguity,
the spacing of receiving array elements should meet the half wavelength condition, that
is, dr ≤ λ/2.Assume that the far field hasK objects, theK th object’s azimuth is (θk, ϕk),

and K < MN. θk is the direction of departure, and ϕk is the direction of arrival.
For bistatic MIMO radar, when there are multiple targets in space, and the MIMO

radar transceiving array contains amplitude-phase error, the received data can be
expressed as follows:

Xn−error = AMr−error(ϕk)ηA
T
Mt−error(θk)s + W (1)

AMt−error(θk) = �MtAMt(θk) and AMr−error(ϕk) = �MrAMr(ϕk) are the guid-
ance vector matrix with errors in the transmit and receive arrays respectively.

�Mr = diag[ρMr1ejφMr1, ρMr2ejφMr2 , . . . , ρMrnejφMrN ]T is diagonal matrix, which rep-
resents the amplitude and phase error of N receiving array elements. �Mt =
diag[ρMt1ejφMt1 , ρMr2ejφMt2 , . . . , ρMtne

jφMtM ]T represents the amplitude and phase error
of N Transmitting array elements. The ρMti and φMti are the ith a transmitting array
amplitude and phase errors respectively.

AMr(ϕk) and AMt(θk) are the ideal receiving guidance vector and emission guidance
vector matrix of K targets, respectively.

AMr(ϕk) = [aM1(ϕ1), aM2(ϕ2), . . . , aMr(ϕk)] (2)

AMt(θk) = [aM1(θ1), aM2(θ2), . . . , aMt(θk)] (3)

aMt(θk) = [1, ej2πdtsin θk
λ , . . . , ej2πdtsinθk (M−1)/λ]

T
(4)

aMr(ϕk) = [1, ej2πdrsin ϕk
λ , . . . , ej2πdrsinϕk (N−1)/λ]T (5)

η = [η1,η2, . . . ,ηk]T is the amplitude of k target reflected signals. S is M orthogonal
independent waveforms transmitted by the system. W ∈ CN×L is the complex white
gaussian noise.

3 Parameter Estimation Principle Based on the OMP Algorithm
When Array Error Exists

We discrete each target angle space into P1 ×P2 directions. Define α as angle P1 of the
signal’s direction of departure space. Define β as angle P2 of the signal’s direction of
arrival space. α = [α1, α2, . . . , αP1 ]T , β = [β1, β2, . . . , βP2 ]T .

When the k th goal exists in
(
αP1 , βP2

)
, then σP1P2 = ηk . When

(
αP1, βP2

)
have no

target, then
(
αP1 , βP2

) = 0.
Then the received signal of bistatic uniform linear array MIMO radar when array

error exists can be expressed as:

Xn−error =
P2∑

P2=1

P1∑

P1=1

AMr−error(βP2)σP1P2A
T
Mt−error

(
αP1

)
s + W (6)
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Yes
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No

Fig. 2. Flowchart of the algorithm.

Suppose:
ψn = [AMr−error(β1)STAMt−error(α1), . . .AMr−error

(
βP2

)
STAMt−error(α1), . . .

AMr−error(β1)S
TAMt−error

(
αP1

)
, . . . ,AMr−error

(
βP2

)
STAMt−error (7)

And:

σ = [σ11, . . . , σP21, . . . , σP2P1, . . . , σP2P2 ]T (8)

Then:

X
′
n = (ψnσ)T (9)
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The transformation basis matrix ψn(n = 1,2,…L) has been determined. It is the sparse
basis containing the phase information of the array element, σ is the sparse vector of
the signal on the sparse basis. The position of the non-zero element P2P1 indicates the
target Angle, and its value is the target’s reflection amplitude. There are a total of n
received signals, and the two-dimensional angle of the target determines the common
coefficient structure of these signals. The number of the target is sparsity, and the target’s
reflection amplitude is the non-zero coefficient of each received signal in the transfor-
mation domain. Then take a smooth random gaussianM× L observation matrix φn (n=
1,2,…M), it is uncorrelated with transformation basis matrixψn, and M< L. Therefore,
the projection vector of the received signal X

′
n (n= 1,2,…L) of the nth receiving antenna

on the observation matrix φn is:

yn = φnX
′
n
T = φnψnσ = nσ (10)

n(n = 1,2,…M) is Perception matrix.
The basic steps of the parameters of the OMP algorithm are as follows:
The input of the OMP algorithm are perception matrix , measurement vector yn,

signal sparsity k and error threshold ε。
The output of the OMP algorithm are residual component r = yn(n = 1, 2 . . .N ),

index set � = φ, number of iterations k = 1, estimation of signal sparse coefficient x
∧

and support domain �
∧

。

(1) Select the index λk corresponding to the column with the greatest correlation with
r from , λk = argmax(n

H r)(1 � n � N), n represents the nth column of the
;

(2) Update index set � = �
⋃

λk;
(3) Obtain the approximate solution by least square estimation: x

∧

k =
argmin|

∣∣∣y − �X
′
n

∣∣∣|
2
, where x

∧

k is the least squares approximate solution of the

Kth iteration, � is a matrix consisting of columns indicated by � in ;
(4) Update margin r = yn − � − x

∧

k;
(5) Judge whether the iteration satisfies the stopping condition: k = K or ||r||2 � ε. If

it is satisfied, then stop the iteration, output x
∧ = x

∧

k and �
∧

= �. Otherwise, let k
= K + 1, and then turn back to the first step.

The index set � is determined by the iteration of the OMP algorithm, and � rep-
resents the position of K non-zero elements, and the values of these elements corre-
spond to the projection coefficient x

∧

k (k = 1, 2, …, K) at this time. The projection
coefficients of subspaces formed by observation signal yn(n = 1, 2 . . .N ) for K atoms
correspond to non-zero elements in X

′
n(n = 1, 2 . . . L). Therefore, the sparse signal X

′
n

to be reconstructed can be determined.
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4 Simulation

Bistatic MIMO radar, dt = dr ≤ λ/2, M = 6, N = 6. Transmitted signal’s coding length
is 128 L and the received signal’s SNR is 5 dB. DOA and DOD’s observation intervals
are all [−90, 90]. The discrete interval is 5° when constructing sparse base. We assume
that there are three targets in radar observation space, DOD and DOA are (−60, −30),
(0, 0), (20, 50), the reflection amplitudes are 5, 2 and 3, respectively. Random values of
the amplitude error of the transmitting element is 2 (1, M), the phase error is −1 + 2 (1,
M), the amplitude error of the receiving element is 2 (1, N), and the phase error is −1
+ 2 (1, N).

According to Table 1, on the basis of joint sparse representation of received signals,
the weighted OMP algorithm can overcome array noise and achieve accurate estimation
of the target’s reflection amplitude. When array amplitude and phase errors exist, the
accuracy of the algorithm is reduced.

Table 1. Estimation of target reflection amplitude

Reflection amplitude estimation
without Array error

Reflection amplitude estimation
with Array error

(DOD,DOA) (−60,−30) (0, 0) (50, 30) (−60, 30) (0, 0) (50, 30)

r = 1 4.8970 1.8171 2.5170 4.1655 1.7932 3.3294

r = 2 4.8620 1.7851 2.9863 4.2377 1.8326 3.0418

r = 3 4.9603 1.9087 3.2583 3.2743 1.6751 2.6201

r = 4 5.1219 1.9012 2.9426 5.5902 1.4689 2.7151

r = 5 4.8165 1.7412 2.8379 4.2156 1.2983 2.8145

r = 6 4.9714 1.8892 3.2550 4.2846 1.9976 2.6601

Average 4.9381 1.8404 2.9751 4.2945 1.6776 2.6968

Real 5 2 3 5 2 3

As shown in Fig. 1,when SNR= 5 dB, the real position of the target and the estimated
position are highly coincident. When the array error exists, the estimation accuracy of
the target angle is reduced, and the estimation position of the target is biased.

Figure 2 shows the relationship between the target angle estimation and the signal-
to-noise ratio by using the OMP reconstruction algorithm when amplitude and phase
error exists or not. The root mean squard error of the target angle estimate used here for
comparison takes the average of 3 targets.
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It can be more intuitive to see from the Fig. 3, the angle estimation performance
curve of the target with the amplitude and phase error is obviously inferior to the angle
estimation performance curve when the array has no phase and amplitude error, and the
error of the target estimation is large, the estimation accuracy is significantly reduced.
When the SNR is increased from 0 to 25 dB at 5 dB intervals, as the signal-to-noise
ratio increases, the estimation accuracy becomes higher and higher. The estimated gain
performance of the algorithm is obvious between 0 and 10 dB. Continued increase of
the signal-to-noise ratio has a lower and lower gain effect on the MIMO radar target
parameter estimation. The root mean squard error of the OMP algorithm with array
error exists is lower than the root mean squard error of the COSAMP algorithm with
array error exists, which indicates that theOMP algorithm used in this paper is better than
the COSAMP algorithm in estimating the parameters when array error exists (Fig. 4).

Fig. 3. Comparison of real angle, ideal estimated angle and estimated angle when array error
exists
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Fig. 4. Relationships between the mean square error of the angle and the signal to noise ratio

5 Conclusion

In this paper, a parameter estimation algorithm for MIMO radar based on the OMP
algorithm is proposed. The effects of the array error on the parameter estimation based
on the OMP algorithm are studied. Through the above simulations, it is found that the
amplitude and phase error of the array error affects the MIMO radar received signal
model. At this time, when the parameters are estimated by the OMP algorithm, the
accuracy of the estimation is reduced both in the reflection amplitude of the target and in
the parameters of the target. But in this case, the OMP algorithm is still better than the
COSAMP algorithm in parameter estimation. In summary, the proposed algorithm has
high accuracy in parameter estimation. Even when array error exists, the performance
of the OMP algorithm in estimating the parameters of MIMO radar target’s reflection
amplitude, azimuth and elevation angle is better than that of the COSAMP algorithm.
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