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Abstract. To deal with the problem of de-noising and enhancement of radar
signal time-frequency images, a method of secondary generating time-frequency
images by generative adversarial network is proposed. Firstly, time-frequency
analysis is used to generate the time-frequency image of the radar signal as the
original data set 1. Then, after learning the data set 1 by using the generative
adversarial network, a new data set 2 is generated, and the data set 2 has de-
noising and enhancement effects relative to data set 1. Finally, the validity of the
data set 2 generated by the time-frequency image singular value feature is
checked. Experiments on the time-frequency images of five common radar
signals are carried out. The results show that the method is effective in time-
frequency image de-noising and increasing sample diversity.

Keywords: Radar emitter identification - Time-frequency image + GAN -
Sample diversity - SVD

1 Introduction

Radar emitter identification refers to the process of analyzing radar system, usage and
working status from the radar signal characteristic parameters obtained by processing,
and is the key link of radar reconnaissance. The traditional radar emitter identification
extracts the inter-pulse five parameters of the radar signal: pulse width (PW), carrier
frequency (CF), pulse amplitude (PA), time of arrival (TOA), angle of arrival
(AOA) forms the identified feature vector. However, with the increasing complexity of
the electromagnetic environment and the continuous development of radar technology,
various new radars with complex systems have emerged, such as multi-function phased
array radars with functions of search, tracking, guidance, etc. As a result, traditional
methods relying on inter-pulse parameter identification fail [1], and more and more
researchers are turning their attention to the extraction of intra-pulse features of radar
emitter signals. As a carrier of intra-pulse features, time-frequency images have more
abundant radar information and robustness than inter-pulse features [2].
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Preprocessing the time-frequency image can reduce the interference and redundant
information and enhance the signal characteristics, which is of great significance for
improving the recognition rate of the back-end classifier. The traditional method of
preprocessing the time-frequency image is to use image pre-processing methods such
as grayscale, standardization, binarization, cropping [3] to achieve the effect of
denoising and weakening the cross-term interference of time-frequency distribution,
and the processing process is cumbersome. At the same time, due to the extremely
short interception time of the radar signal on the battlefield, it will result in: (1) the
number of reconnaissance samples is limited enough to support the training of the radar
emitter identification model; (2) the insufficient diversity of reconnaissance samples
leads to the radar emitter identification model. Poor ability or training is easy to over-
fit. Some commonly used digital image data enhancement methods, such as rotation,
translation, etc. will destroy the time-frequency relationship of radar radiation source
signals. Obviously, these methods are poorly processed for time-frequency images. In
recent years, the generative adversarial network (GAN) has been successfully used in
the image field because it can learn the true distribution of samples [4], eliminate
interference, generate diverse samples. Therefore, this paper proposes a time-frequency
image generation method based on generating an anti-network, which is effective in
denoising time-frequency images [5], reducing cross-term interference, and increasing
sample diversity.

2 Time-Frequency Analysis Generates Time-Frequency
Images

Time-frequency analysis is a powerful tool for dealing with non-stationary signals such
as radar signals. It is essentially a combination of a two-dimensional joint function of
time and frequency. For the radar signal x(t), the mathematical expression of the bord-
jondan time-frequency distribution is as follows:

Cut,f) = / / ot — 1, 1)x' (t’ - %)x(/ + %)e-ﬂ“ffdﬂdr (1)
< @)

Among them, ¢(t, 7) is a kernel function [6]. Because it has better time-frequency
aggregation while suppressing cross-term interference, this paper chooses bord-jondan
distribution as the time-frequency analysis method of radar signal for five classics. The
radar signal is simulated. As shown in Fig. 1, it can be seen that under the condition of
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—5 dB SNR, the time-frequency diagrams of the five radar signals have certain identi-
fiable time-frequency structural characteristics, but the signal-to-noise ratio is too low.
And the bord-jondan distribution does not suppress the cross term incompletely, and still
causes abnormal disturbances such as burrs, edge characteristics, and structural fractures
in the time-frequency diagram of the radar signal, especially when the time-frequency
structure characteristics of the radar signal are prominent. The influence of interference
will also increase. Conversely, weakening the influence of interference will also obscure
the time-frequency structure characteristics of the signal. When the signal-to-noise ratio is
reduced to —10 dB (Fig. 2), the signal time-frequency structure has versely, weakening
the influence of interference will also obscure the time-frequency structure characteristics
of the signal. When the signal-to-noise ratio is reduced to -10 dB (Fig. 2), the signal time-
frequency structure has been completely destroyed by noise and cannot be recognized by
the naked eye.

(a) BPSK's BID (b) LFM's BID (¢) FSK's BID

(d) NLFM's BID (e) CW's BID

Fig. 1. Bord-Jondan time-frequency distribution of five radar signals (SNR = —5 dB)



92 W. Zhu et al.

(a) BPSK's BJD (b) LFM's BID (¢) FSK's BJD

(d) NLFM's BID (e) CW's BID

Fig. 2. Bord-Jondan time-frequency distribution of five radar signals (SNR = —5 dB)

3 Generative Adversarial Network Secondary Generation
Time-Frequency Image

The principle of generating a time-frequency image of a radar signal by using an anti-
network is as follows:

The GAN consists of two neural networks [7], which are the generation model
(G) and the discriminant model (D). G is responsible for generating the radar signal
time-frequency image. D is responsible for judging the time-frequency image and
feeding the result back to G to continuously improve the quality of generating image.
The objective function is defined as follows:

V(D, G) = Ex~ py, (9 [IMD(X)] + Bz~ p, () [In(1 — D(G(2)))] 3)

The function Py, (x)InD(x) + Pg(x)In(1 — D(x)) in the integral term of the above
formula is derived to be equal to 0, and the final expression of D is obtained as:

V(D, G) =Ex~ pyy(v)[IND(X)] + Ez . p, (2)[In(1 — D(G(2)))]
= EX . Pyya () IND(X)] + Ext ~ py () [In(1 — D(x))] 4)
= [[Pdara(x)InD(x) + P (x)In(1 — D(x))]dx

The function Py, (x)InD(x) 4+ Pg(x)In(1 — D(x)) in the integral term of the above
formula is derived to be equal to 0, and the final expression of D is obtained as:
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Next, substitute the obtained D into V(D, G) and continue to find the expression of

G with the smallest V(D, G):
P
V(D,G) = / Paaa(x)1 6(x)
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Compare the Jensen-Shannon divergence formula:

p(x) q(x)
bt [awm a0

The expression of V(D, G) is written as:

JSD(P | ©) = / p(x)in

V(D,G) = —In(4) +2 X JSD(Puau(x) || Pc(x)) (8)

Since the JS divergence is non-negative, in order to minimize V(D, G), when
Piaa(x) = Pg(x), the minimum is obtained, that is, the distribution of the time-
frequency image of the final G-generated Pg(x) and the real time-frequency The dis-
tribution of images Pu,(x) is consistent.

In the actual situation, the distribution of the radar signal P, (x) is unknown, and
only the limited time-frequency image X of the sample is obtained, and the noise
distribution Pz(Z) is known, so that the existing limited time-frequency image can be
passed. The training of X on GAN causes G to map the known noise Z to the unknown
X, expand the degree of freedom of generating time-frequency images, increase the
diversity of the generated time-frequency images and suppress the image noise that
does not belong to the P, (x) distribution (unknown The generation of noise). The
original GAN has the defects of unstable training and slow convergence [8, 9]. The
Deep Convolutional Generative Adversarial Network (DCGAN) [10] has been
improved on GAN and has a significant effect on high quality image generation.

4 Validity Test Using Singular Values

Singular Value Decomposition (SVD) is an extension of the feature decomposition of the
matrix matrix and is widely used in the field of image and signal processing [11]. Since the
singular value can well characterize the image features, this paper extracts the singular
value feature of the time-frequency image as the criterion for verifying the validity of the
time-frequency image generated by DCGAN. The SVD is defined as follows:

The matrix A € R™*", if there is an orthogonal matrix U = [uy, us, . . ., u,] € R™™,
V = [vi,Va,...,Va] € R, let A =UZVT, ¥ = diag [01, 02, .. a,,], p = min(m, n),
012022>...20,>0, then say A = UZVT is the singular value decomposition of A,
01,02, ...,0, is the singular value of A, and is the square root of AA” or AT A eigen-
values 1, o, . .., Ay, Thatis, o; = /4.
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The change of singular value can represent the change of time-frequency image. The
diversity of singular value can represent the diversity of samples. The change of position
of time-frequency image cannot increase the diversity of time-frequency image samples.
Only by using DCGAN to learn the true distribution of samples, it is possible to generate
more time-frequency images with different characteristics. At the same time, the singular
value can reflect the composition of the time-frequency image energy. The closer to the
front, the singular value reflects the energy of the signal [12, 13], and the closer the
singular value reflects the energy of the noise. Therefore, the distribution of singular
values can be used to judge the denoising ability of DCGAN for time-frequency images.

5 Experiment and Analysis

In order to verify the validity of the method for generating time-frequency images, five
kinds of radar signals are used in the experiment: binary phase shift keying (BPSK),
linear frequency modulation (LFM), frequency shift keying (FSK), nonlinear frequency
modulation (NLFM) and conventional radar (CW). Among them, BPSK uses 7-bit
Barker code, LFM bandwidth is 17 MHz, pulse width is 10 ps, NLFM uses sine wave
frequency modulation, CW carrier frequency is 25 MHz, sampling frequency is
100 MHz, and Gaussian white noise is added. A time-frequency analysis method is
generated every 1 dB between the signal-to-noise ratio of =10 dB to —5 dB, and a total
of 600 time-frequency images are used as the training set of DCGAN.

Simulation 1: Time-frequency image generation experiment based on DCGAN.

The experimental software environment: operating system Winl0 64-bit, based on
the open source deep learning framework Tensorflowl.5-GPU build model,
VS2015 + CUDAS + CUDNN?7 provides support for GPU computing and improves
the speed of graphics parallel computing. Hardware environment: CPU: Intel i7-7700K
@ 4.20 GHz, GPU: GTX TITAN X. Training parameters: Mini-Batch is trained by 64
random gradient descent algorithm, and the Adam optimizer performs hyper parameter
tuning with a learning rate of 0.0002, momentum f; of 0.5, and Epoch of 200. The
experimental results are shown in Fig. 3 (only one generated sample is listed for each
radar signal).

It can be seen from Fig. 3 that compared with the original image (Fig. 1), the
generated time-frequency image has better time-frequency aggregation, and the phe-
nomena such as burr, edge characteristic blur and structural fracture are all relieved to
some extent, especially for the lower signal-to-noise ratio (Fig. 2). This effect is more
obvious, and the ability to reconstruct the characteristics of the radar signal is stronger.
However, DCGAN also has a common problem in the GAN model, namely the col-
lapse mode. After a certain training phase, the generated model loses the ability to learn
new features of the sample, and the discriminant model will only judge with the same
standard, the repeated samples are continuously generated, and the sample features
learned are incomplete. As shown in Fig. 4, DCGAN believes that the importance of
the background is greater than the importance of the sample, so the background contour
is more prominent, and the time-frequency structural features of the sample are diluted,
losing the ability to generate new samples.
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(a) BPSK (b) LEM (c) FSK

(d) NLFM (e) CW

Fig. 3. Five kinds of radar signal time-frequency images generated by DCGAN

..

(a) BPSK (b) LFM (c) FSK
(d) NLFM (e) CW

Fig. 4. Collapse mode
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Simulation 2: Validity test based on singular value feature

In the experiment, the five kinds of radar signals with signal-to-noise ratios of
—10 dB and —5 dB are taken from the average of the first 10 singular values of the 10
time-frequency images, and the time-frequency images of the five kinds of radar signals
generated by DCGAN are also taken. Comparing the average singular values of the five
radar signals for —10 dB, —5 dB, and DCGAN conditions, which can eliminate random
interference and make the result more credible. The experimental results are shown in
Fig. 5.

It can be seen from Fig. 5 that since the time-frequency images of the BPSK signal
and the CW signal themselves have great similarities, their singular value line graphs
have similar similarities. The time-frequency image singular value line graph generated
by DCGAN is roughly the same as the —5 dB time-frequency image singular value
trend, indicating that the time-frequency image generated by DCGAN does represent
such a signal, which is effective, but at the same time, the two fold lines are not
complete. Coincidence, there are differences, indicating that DCGAN has produced a
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Fig. 5. Singular value line graph of five radar signals (singular value takes normalized value)
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new sample after learning the true distribution of the original sample, expanding the
diversity of training samples. Among the singular values, the large value reflects the
signal energy, and the small value reflects the noise energy. Therefore, the suppression
effect of DCGAN on the noise is reflected in the singular value line graph.
The DCGAN of the first half of the X-axis is slightly closer. Above, the DCGAN’s fold
line in the second half of the X-axis is slightly below, that is, the signal has more
energy and less noise.

6 Conclusion

Based on the in-depth analysis of the radar signal time-frequency image and the
generative adversarial network, this paper proposes a method for denoising and
enhancing the radar signal time-frequency image by generating the time-frequency
image with generative adversarial network and using the image singular value feature
to verify the validity. Different from traditional time-frequency image de-noising and
enhancement methods, the generative adversarial network can learn the real distribu-
tion of samples and generate new effective samples, expand the freedom of generating
samples, increase the diversity of original samples. Simulation experiments prove the
effectiveness of the proposed method, but how to solve the problem of collapse mode,
finding more robust time-frequency image feature representation methods and using the
time-frequency image generated by this method for radar emitter signal recognition
experiments One step that needs to be studied.
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