
An Improved Generation Method
of Adversarial Example to Deceive NLP Deep

Learning Classifiers

Fangzhou Yuan1,2, Tianyi Zhang1, Xin Liang1,2, Peihang Li1,2,
Hongzheng Wang1,2, and Mingfeng Lu1,2(&)

1 School of Information and Electronics, Beijing Institute of Technology,
Beijing 100081, China

yuanfz_shaddock@foxmail.com, lumingfeng@bit.edu.cn
2 Beijing Key Laboratory of Fractional Signals and Systems,

Beijing 100081, China

Abstract. Deep learning has been developed rapidly and widely used over the
last decade. However, the concepts of adversarial example and adversarial attack
are proposed, that is, adding some perturbations to the input of a deep learning
model could easily change the prediction result. Deep learning-based NLP
(natural language processing) classification algorithms also have this vulnera-
bility. DeepWordBug algorithm is an advanced algorithm for generating
adversarial examples, which can effectively deceive common NLP classification
models. However, this algorithm needs to modify too many words to cheat NLP
classification models, which limits its applications. In response to the short-
comings of DeepWordBug algorithm, this paper proposes an improving method
to improve DeepWordBug. Drawing on the idea of Textfooler algorithm, the
improved DeepWordBug adopts the method of dynamically adjusting the
number of modified words, limits the maximum number of modified words. The
new algorithm greatly reduces the number of words that need to be modified
while ensuring the accuracy of NLP classification models as around 30%. It also
ensures better practicality while maintaining transferability.

Keywords: Adversarial example � Deep learning � NLP � DeepWordBug
algorithm

1 Introduction

Deep learning has been developed rapidly in the past ten years. It has promoted the
breakthroughs in many fields, such as computer vision, natural language processing
(NLP), and speech processing. Accordingly, more and more deep learning models have
been put into practical applications. However, there are serious vulnerabilities in these
models, which bring great risks to the practical application of various deep learning
technologies.

In 2014, Szegedy et al. [1] found that after adding some disturbances to the input of
the deep learning model, the prediction results of the model can be easily changed.
Subsequent studies name this type of disturbance as adversarial perturbation, and the

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2021
Published by Springer Nature Switzerland AG 2021. All Rights Reserved
S. Shi et al. (Eds.): AICON 2020, LNICST 356, pp. 51–62, 2021.
https://doi.org/10.1007/978-3-030-69066-3_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-69066-3_5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-69066-3_5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-69066-3_5&domain=pdf
https://doi.org/10.1007/978-3-030-69066-3_5

input after the disturbance is called adversarial examples, the process of inputting the
adversarial examples to mislead the model is called adversarial attack.

Goodfellow et al. [2] attributed this vulnerability to the linear characteristics of the
deep learning model. Even if the deep network is not a linear network, some non-linear
activation functions and network structures, such as ReLU activation functions, LSTM
network structures, etc., are deliberately used in a nearly linear manner to make the
model easy to optimize, otherwise a lot of time will be spent on model debugging when
training the network. Equation (1) uses a dot product operation to simulate this situ-
ation: under linear condition, when a small disturbance g is added to the model input
X, after the disturbance input X

0
is input to the model, the change of model output WTg

will be produced, where W represents a weight vector. In the deep learning model, the
dimensionality of W is very high, so its output change WTg will also be large. This
leads the model to make a false judgment.

WTX
0 ¼ WTX þWTg ð1Þ

Since the concept of adversarial examples was proposed, some white box attack
methods [3–5] based on FGSM (Fast Gradient Sign Method) [2] were proposed. After
that, researchers have shifted their interest to black box attack, some black box attack
methods [6–10]were proposed.

NLP is an important research direction in the field of deep learning and artificial
intelligence. The aim of the research is making use of computers to process and
understand human languages to achieve effective communication between humans and
computers. NLP is mainly used for question-answering systems, sentiment analysis,
machine translation, etc. NLP classification algorithms based on deep learning are
currently used in many fields such as spam classification, public opinion monitoring,
product analysis, etc. Correspondingly, the generation method of adversarial example
used to attack the NLP classifiers can also be used in many aspects. For example, the
processing of advertising mail can deceive the spam classification system, and the
processing of current affairs news can deceive the public opinion monitoring system.

DeepWordBug [6] is a black box adversarial attack algorithm, which is proposed
by Gao et al. A scoring function is used for the first time to rank the importance of each
word in the input, and then the most important words are selected to make letter-level
modification. The extent of this change is controlled by the edit distance before and
after the modification, so that the modification is not easily noticed by human obser-
vers. But when the number of modified words is too large, human observers will still
perceive that this adversarial example is a modified text.

Then a new algorithm, Textfooler [7], appeared in 2019, which makes word-level
changes. In this algorithm, a strategy of dynamically changing the number of words
that needs to be modified is applied, and good results have been achieved.

This paper focuses on the weakness of the DeepWordBug algorithm that is not
practical, the strategy of Textfooler is added in, and an improved method is proposed.
Improved DeepWordBug could dynamically change the number of modified words,
and limit the maximum number of modified words, and it has better practicality.

52 F. Yuan et al.

2 Performance and Problem Analysis of DeepWordBug
Adversarial Example Generation Algorithm

2.1 Introduction of DeepWordBug

DeepWordBug is a black box attack algorithm using character-level changes, which
can be carried out in a scene without model information. The following are the specific
implementation steps of DeepWordBug algorithm.

Step 1: The first step of DeepWordBug algorithm is to calculate the importance score
for each word xi in the text example X, and rank the words in X in descending order
according to the importance score. The scoring function in DeepWordBug uses
Combined Score (CS), which is composed of the weighted sum of Temporal Head
Score (THS) and Temporal Tail Score (TTS). The calculation formula is shown in
formula (2) to formula (4).

THS xið Þ ¼ Fy x1; x2; . . .; xi�1; xið Þ � Fy x1; x2; . . .; xi�1ð Þ ð2Þ

TTS xið Þ ¼ Fy xi; xiþ 1; . . .; xnð Þ � Fy xiþ 1; xiþ 2; . . .; xnð Þ ð3Þ

CS xið Þ ¼ THS xið Þþ k TTS xið Þð Þ ð4Þ

THS is the difference between the output confidence after inputting from the first
word to the i-th word, and the output confidence after inputting from the first word to
the I − 1th word, shown in formula (2). The larger the result of this scoring function is,
the more the output confidence reduced after xi is removed. It means xi is more
important to the classification result. However, this scoring function does not consider
the contribution of the words after the i-th word to the classification result, so TTS is
added.

TTS is the difference between the output confidence after inputting from the i-th
word to the last word, and the output confidence after inputting from the i + 1-th word
to the last word, shown in formula (3).The larger the result of this scoring function is,
the more the output confidence reduced after xi is removed. It means xi is more
important to the classification result. Opposite to THS above, this scoring function does
not consider the contribution of the words before the i-th word to the classification
result.

THS and TTS only consider part of the input, while ignoring the impact of the other
part on the classification results. CS adds the results of the two scoring functions, both
including the influence of the i-th word and the words before the i-th word in THS, and
the influence of the i-th word and the words after the i-th word in TTS, shown in
formula (4), k is a hyperparameter. Some experiment results have shown that using CS
is better than using THS or TTS.

Step 2: Important words will be modified in this step. The first m words in the ranked
word sequence are selected to make character-level changes, where m is a hyperpa-
rameter. The modification method is also a hyperparameter, and the available methods
include insert, delete, swap, and substitute.

An Improved Generation Method of Adversarial Example 53

The insert method is to randomly select a position first, and then insert a random letter
at that position. The delete method is to delete a letter in a random position. The swap
method is to select two random letters in the word to swap. The substitute method is to
select a random position in the word, delete the letter in this position and replace it with
another different random letter. Table 1 is an example of these four modificationmethods.

2.2 Performance of DeepWordBug

In this part, we choose two datasets to test DeepWordBug adversarial example gen-
eration algorithm, namely Yelp review dataset and Ag news dataset. We use two
commonly used text classification algorithms, LSTM [11] and TextCNN [12], to
classify these two datasets. After that, we use adversarial example generated by
DeepWordBug to attack the classification model, and analyze its performance and
problems.

Yelp review dataset is a two-category dataset of a text collection. The average
length of each text example is 146 words. It divides the reviews of restaurants, venues,
movies, etc. on Yelp website into two categories: positive reviews and negative
reviews. There are 560,000 texts in the training set and 38,000 texts in the test set. Ag
news dataset is a multi-category dataset. The average length of each text is only 42
words. It divides the sentences extracted from the news into four categories: global
news, sports news, business news, and technology news. There are 120,000 texts in the
training set and 7,600 texts in the test set.

The two datasets are very different in length and classification category. The pur-
pose of this choice is to test whether good results can be obtained from DeepWordBug
algorithm, in short text or long text, multi-classification or two-class classification.

Table 2 shows the classification accuracy of LSTM model and TextCNN model. It
can be seen from the experimental results that the classification accuracy of LSTM is
slightly higher than the TextCNN model on two datasets, and the classification accu-
racy of the two models on Yelp comment dataset is slightly higher than that on Ag
news dataset. In general, the two models have achieved an accuracy of more than 90%
on both datasets, and the effect is good.

Table 1. Modification methods of DeepWordBug

Original word Modification method Modified word

Sequence Insert Sequnence
Delete Sequnce
Swap Seqeunce
Substitute Sequerce

Table 2. The classification accuracy of classification models on two datasets

AG dataset Yelp dataset

LSTM model 92.57% 96.52%
TextCNN model 91.76% 95.92%

54 F. Yuan et al.

First of all, we perform the DeepWordBug algorithm on the two datasets.
Table 3 shows the experimental result of the accuracy experiment on the two models
and two datasets. In comparison, the accuracy of Ag news dataset decreases more, and
the accuracy of Yelp dataset decreases less. This is because the number of modified
words m = 30, the average length of Ag news dataset is 42 words, for Ag dataset,
the proportion of changes is relatively large. The average length of Yelp comment
dataset is 146 words, so the proportion of changes is small. So the accuracy is different
between the two datasets.

Then we analyze the impact of number of modified words m on the accuracy of
adversarial example classification. The experimental results using the TextCNN model
and Yelp dataset as examples are shown in Fig. 1. From this experimental result, it can
be found that as m increases, the classification accuracy of the adversarial examples
decreases, but the decrease becomes more and more gentle. This is because in the
process of increasing m, the modified words added later have lower importance
rankings. So their changes will contribute less to the decline in the classification
accuracy than the higher ones, so the curve becomes more and more flat.

Table 3. The accuracy on two models and two datasets

DeepWordBug
(m = 30, insert)

AG dataset Yelp dataset

LSTM model 20.0% 48.2%
TextCNN model 32.7% 56.3%

Fig. 1. The effect of changing the number of modified words m on the classification accuracy

An Improved Generation Method of Adversarial Example 55

Table 4 shows the adversarial example generated by DeepWordBug algorithm
when m = 30. The classification model is TextCNN, the dataset is Yelp, and the
modification method is swap. The red words are the modified words. In this example,
the actual number of modified words m = 27, which is less than m. This is because in
the swap operation, if two identical letters in a word are swapped, the original word will
be obtained.

Table 5 shows the transferability experiment results on the two datasets. According
to the difference in the average length of the two datasets, the number of modified
words in Ag dataset is changed to m = 30, in Yelp dataset m = 50, and the modifi-
cation method in the experiment are all swap. In the table, LSTM- > TextCNN means
inputting the adversarial examples generated on LSTM model into the TextCNN
model, and TextCNN- > LSTM means inputting the adversarial examples generated on
TextCNN model into the LSTM model. It can be seen from the transferability
experimental results that when the model used to generate adversarial examples is
different from the model using adversarial examples, the classification accuracy does
not change much. It means the transferability of DeepWordBug algorithm is good.

Table 4. An example of adversarial examples generated by DeepWordBug.

DeepWordBug
(m=30,
swap)

prediction text

original text positive
review

when i went to fry's today it was a great experience.
looked like they just went under a re-model and i
think it makes the place look much more clean and
welcoming. also, the staff there was very nice! since it
was under remodel i had no clue where everything
was and the front end manager helped me out! very
sweet nice people working there!

adversarial
example

negative
review

when i wnet to fry's otday ti was a graet experience.
looked ilke they just went under a er-model adn i
think ti makes the place look much more clena nad
wlecoming. alos, the staff tehre was veyr ncie! sicne it
was undre remodel i had no clue wheer everytihng
was and hte front edn manager hleped em out! evry
sewet ince people wokring there!

56 F. Yuan et al.

2.3 Problem Analysis

From the above experimental results, it can be seen that the accuracy of the adversarial
example generated by DeepWordBug algorithm is still not very satisfactory. Especially
on Yelp dataset, the accuracy is more than 35%. We found that DeepWordBug
algorithm has the following problems:

First, in DeepWordBug algorithm, the number of modified words m is a fixed
hyperparameter. In the experiment, if we fix m = 30, all adversarial examples will
change 30 words on the basis of the original example. As we can see in Table 5, too
many changed words will make the observer easily perceive the change of the text
content. At this time, even if the adversarial example can deceive the classifier, it is not
practical.

Second, in DeepWordBug algorithm, the modified m words are the top m words in
the importance score ranking. However, modifying the top m words in the importance
score ranking does not ensure that the effect of modifying these words is better than
modifying any other m words. Because when calculating the importance score of each
word, we only modified this word in the text, that is to say, we only measured the
contribution of this word to the classification of the entire text, but when modifying m
words, we cannot assume that the contribution of the m words to the entire text
classification is equal to the simple addition of each words contribution to the text
classification. Therefore, it is likely that there are other combinations of m words that
can play a greater role in changing the classification result than the previous m words.

3 Improvement Strategy

3.1 Improvement of DeepWordBug

During the research, we found that for some sentences, only changing one or two
words can cause changes in the classification results when using TextFooler algorithm.
Based on the above analysis, we decide to add TextFooler algorithm to DeepWordBug
to increase the effectiveness. This strategy is used to dynamically change the number of
modified words, and only select the words with better effects to modify after the
changes, and stop editing when the classification result can already be changed. In

Table 5. Transferability experiment results on two datasets

DeepWordBug Ag dataset Yelp dataset
Original
accuracy

Accuracy after
being attacked

Original
accuracy

Accuracy after
being attacked

LSTM 92.6% 20.0% 96.5% 36.1%
LSTM -
> TextCNN

91.8% 25.7% 95.9% 48.3%

TextCNN 91.8% 32.7% 95.9% 47.5%
TextCNN -
> LSTM

92.6% 36.6% 96.5% 50.5%

An Improved Generation Method of Adversarial Example 57

other words, even for the top-ranked words, we have to check whether the confidence
of the original prediction category of the sentence decreased after the modification. If
the confidence does not decrease but rises, we can also give up changing the top-ranked
words, instead, we can choose to change the lower-ranked words which can reduce the
confidence of the original prediction category. Its purpose is to reduce the number of
modified words while reducing the classification accuracy of adversarial examples, and
hope to maintain the transferability of adversarial examples generated by DeepWord-
Bug algorithm. The specific process of the improvement plan is as follows (Fig. 2):

After adding the effectiveness check to DeepWordBug algorithm, the experimental
results on Ag news dataset and Yelp comment dataset are shown in Table 6. The word
modification methods used in the experiment before and after the improvement are both
insert. Before the improvement, set m = 30 on Ag dataset and m = 50 on Yelp dataset.

Fig. 2. The specific process of the improvement plan.

Table 6. Experimental results and comparison of the improved algorithm

Dataset Ag dataset Yelp dataset

Parameters Insert, m = 30 before
the improvement,
dynamic m after the
improvement

Insert, m = 50 before
the improvement,
dynamic m after the
improvement

Classification model LSTM
model

TextCNN
model

LSTM
model

TextCNN
model

Original accuracy 92.6% 91.8% 96.5% 95.9%

(continued)

58 F. Yuan et al.

According to the experimental results, it can be seen that from the comparison of the
effectiveness of the adversarial examples, the classification accuracy of adversarial
examples generated by the improved DeepWordBug algorithm has dropped signifi-
cantly, from 20–50% to about 10%. From the comparison of the practicality of adver-
sarial examples, the average number of changed words is less than the fixed number of
modified words m on both datasets, and the accuracy of adversarial examples is lower.

However, from the “average number of modified words”, “minimum number of
changed words” and “maximum number of changed words” in Table 6, it can be seen
that after adding the improvement strategy, although the average number of modified
words is reduced, modifying a small number of words can change the classification
result in some sentences, but the number of changed words is still very large in some
sentences. The maximum number of modified words on Ag dataset reached 116 and
107, and the maximum number of modified words on Yelp dataset reached 210 and
447. This is because there is no restriction on the maximum number of modified words.
For any sentence, if the classification result is always not changed, you can continue to
change the next word in importance ranking until all words are modified.

3.2 Further Improvement

So we improved this method again and added the limit of the maximum number of
modified words. For Ag dataset, we limited the maximum number of modified words to
30, and for Yelp dataset, we limited the maximum number of modified words to 50. As
before, the difference between the experimental settings on the two datasets is still
based on the difference in the average number of words in the two datasets. After
adding the limit, the experimental results are shown in Table 7. For the convenience of
comparison, the table also shows the experimental results of the algorithm before the
improvement and the algorithm after the improvement without adding the limit of the
maximum number of modified words.

Table 8 shows the experimental results when the maximum number of modified
words is 30, the model is TextCNN, and the modification method is swap. The red
words are the modified words. In addition, we also did a transferability test on the
improved algorithm again. The experimental results are shown in Table 9.

Table 6. (continued)

Dataset Ag dataset Yelp dataset

Accuracy of adversarial examples
generated by DeepWordBug

20.0% 32.7% 36.1% 47.5%

Accuracy of adversarial examples
generated by improved DeepWordBug

6.5% 11.3% 5.4% 15.4%

Average number of modified words 11.6 15.3 30.9 35.1
Average number of Total words 42 42 146 146
Average change rate 27.6% 36.4% 21.2% 24.0%
Minimum number of changed words 1 1 1 1
Maximum number of changed words 116 107 210 447

An Improved Generation Method of Adversarial Example 59

Table 7. Experimental results and comparison of the improved algorithm

Dataset Ag dataset Yelp dataset

Parameters Insert, m = 30 before
the improvement,
dynamic m after the
first improvement,
limit m not more than
30 after the second
improvement

Insert, m = 50 before
the improvement,
dynamic m after the
first improvement,
limit m not more than
50 after the second
improvement

Classification model LSTM
model

TextCNN
model

LSTM
model

TextCNN
model

Original accuracy 92.6% 91.8% 96.5% 95.9%
Accuracy of adversarial examples
generated by DeepWordBug

20.0% 32.7% 36.1% 47.5%

Accuracy of adversarial examples
generated by improved DeepWordBug

6.5% 11.3% 5.4% 15.4%

Accuracy of adversarial examples
generated by further improved
DeepWordBug

11.3% 20.0% 24.5% 36.3%

Average number of modified words of
improved algorithm

11.6 15.3 30.9 35.1

Average number of modified words of
further improved algorithm

10.1 12.9 18.0 18.3

Average number of total words 42 42 146 146

Table 8. An example of adversarial examples generated by improved DeepWordBug

der remodel i had no clue where everything was and the
front end manager helepd me out! very sweet ncie peo-
ple working there!

adversarial example (origi-
nal DeepWordBug)

negative
review

when i wnet to fry's otday ti was a graet experience.
looked ilke they just went under a er-model adn i think
ti makes the place look much more clena nad wlecom-
ing. alos, the staff tehre was veyr ncie! sicne it was un-
dre remodel i had no clue wheer everytihng was and hte
front edn manager hleped em out! evry sewet ince peo-
ple wokring there!

DeepWordBug prediction text

original text positive
review

when i went to fry's today it was a great experience.
looked like they just went under a re-model and i think
it makes the place look much more clean and welcom-
ing. also, the staff there was very nice! since it was un-
der remodel i had no clue where everything was and the
front end manager helped me out! very sweet nice peo-
ple working there!

adversarial example (im-
proved DeepWordBug)

negative
review

when i went to fry's today it was a greta experience.
looked like they just went under a re-model and i think
it makes the place look much more clean and welcom-
ing. also, the staff there was very nice! since it was un-

60 F. Yuan et al.

From the experimental results in Table 7, it can be seen that even when the limited
maximum number of modified words is equal to the fixed number of modified words of
the original algorithm, the two models of the two datasets can achieve lower accuracy
than the original algorithm, and the average number of changed words is obviously less
than the original algorithm.

From the adversarial examples in Table 8, it can also be seen that the improved
algorithm can change the important words more accurately, and stop the changes
immediately when the classification results change. So the number of changed words in
the adversarial examples is small, and the effect is remarkable.

For example, the changed words in this example are “great”, “help” and “nice”.
These three words are the words that could clearly reflect the emotional tendency of the
reviewer. After the modification, they become an unknown word vector and can no
longer be recognized by the model, and they cannot make great contribution to the
classification result, so the classification result can be changed while maintaining high
practicability.

In addition, from the transferability results in Table 9, it can be seen that the
transferability of improved DeepWordBug is worse than that of the original algorithm.
This is because for different classification models, the same word has different influ-
ence on classification results. When the number of modified words is large, there must
be more words that have an impact on the prediction result in another classification
model, so the transferability of the algorithm will be good, otherwise, less modified
words will greatly affect the transferability of the algorithm. However, in practical
applications, we can use this algorithm only for white box attack, and the weakness in
transferability can be avoided.

4 Conclusion

In this paper, we first introduced an algorithm to generate adversarial example to
deceive NLP deep learning classifiers: DeepWordBug, and illustrated some short-
comings in the practicality of the algorithm through experiments. Then, we used the
idea of TextFooler algorithm for reference and improved DeepWordBug algorithm.
Using the improved DeepWordBug to generate adversarial examples to attack the NLP
classification models can maintain the classification accuracy at about 30%, and the
number of modified words is greatly reduced. The experimental results show that on

Table 9. Transferability experiment results of improved DeepWordBug on two datasets

DeepWordBug
(improved twice)

Ag dataset Yelp dataset
Original
accuracy

Accuracy after
being attacked

Original
accuracy

Accuracy after
being attacked

LSTM 92.6% 11.3% 96.5% 24.5%
LSTM -> TextCNN 91.8% 58.0% 95.9% 63.9%
TextCNN 91.8% 20.0% 95.9% 36.3%
TextCNN -> LSTM 92.6% 54.8% 96.5% 68.9%

An Improved Generation Method of Adversarial Example 61

the two datasets and two classification models, our improved DeepWordBug algorithm
has a significant improvement in practicability while ensuring the success rate of the
attack.

Acknowledgements. This work is supported by Beijing Natural Science Foundation (L191004).

References

1. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional
neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105
(2012)

2. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial examples.
arXiv preprint arXiv:1412.6572 (2014)

3. Papernot, N., McDaniel, P., Swami, A., et al.: Crafting adversarial input sequences for
recurrent neural networks. In: 2016 IEEE Military Communications Conference, MILCOM
2016, pp. 49–54. IEEE (2016)

4. Samanta, S., Mehta, S.: Towards crafting text adversarial samples. arXiv preprint arXiv:
1707.02812 (2017)

5. Ebrahimi, J., Rao, A., Lowd, D., et al.: HotFlip: white-box adversarial examples for text
classification. arXiv preprint arXiv:1712.06751 (2017)

6. Gao, J., Lanchantin, J., Soffa, M.L., et al.: Black-box generation of adversarial text
sequences to evade deep learning classifiers. In: 2018 IEEE Security and Privacy Workshops
(SPW), pp. 50–56. IEEE (2018)

7. Li, J., Ji, S., Du, T., et al.: TextBugger: generating adversarial text against real-world
applications. arXiv preprint arXiv:1812.05271 (2018)

8. Jin, D., Jin, Z., Zhou, J.T., Szolovits, P.: Is BERT really robust? Natural language attack on
text classification and entailment. arXiv:1907.11932 (2019)

9. Liang, B., Li, H., Su, M., et al.: Deep text classification can be fooled. arXiv preprint arXiv:
1704.08006 (2017)

10. Alzantot, M., Sharma, Y., Elgohary, A., et al.: Generating natural language adversarial
examples. arXiv preprint arXiv:1804.07998 (2018)

11. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780
(1997)

12. Kim, Y.: Convolutional neural networks for sentence classification. arXiv preprint arXiv:
1408.5882 (2014)

62 F. Yuan et al.

http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1707.02812
http://arxiv.org/abs/1707.02812
http://arxiv.org/abs/1712.06751
http://arxiv.org/abs/1812.05271
http://arxiv.org/abs/1907.11932
http://arxiv.org/abs/1704.08006
http://arxiv.org/abs/1704.08006
http://arxiv.org/abs/1804.07998
http://arxiv.org/abs/1408.5882
http://arxiv.org/abs/1408.5882

	An Improved Generation Method of Adversarial Example to Deceive NLP Deep Learning Classifiers
	Abstract
	1 Introduction
	2 Performance and Problem Analysis of DeepWordBug Adversarial Example Generation Algorithm
	2.1 Introduction of DeepWordBug
	2.2 Performance of DeepWordBug
	2.3 Problem Analysis

	3 Improvement Strategy
	3.1 Improvement of DeepWordBug
	3.2 Further Improvement

	4 Conclusion
	Acknowledgements
	References

