
FTEI: A Fault Tolerance Model of FPGA
with Endogenous Immunity

Jie Wang, Shuangmin Deng(B), Junjie Kang, and Gang Hou

School of Software Technology, Dalian University of Technology,
Dalian 116023, China

wang jie@dlut.edu.cn, ku nan xi@163.com, 18840837856@163.com,

Hg.dut@163.com

Abstract. FPGA emerges as a very promising AI chip and algorithm
hardware accelerator. However, the FPGA is susceptible to complex and
changeable environment, which leads to circuit configuration information
faults. To address this issue, we propose FTEI, a fault tolerance model
of FPGA with endogenous immunity. At fault detection phase, we put
forward a fault detection models based on optimized logistic regression
classification and use it to establish a fault model matching library. Dur-
ing fault recover stage, we use fault configuration library and online evo-
lution to recover faults. In order to improve the success ratio of online
evolution, we propose RLAGA, an adaptive genetic algorithm based on
reinforcement learning. Experiments on typical functional circuits, 8-bit
parity verifier and 2-bit multiplier, demonstrate that the fault detection
accuracy rates reach 94.4% and 93.2%, and the fault recover success rates
of RLAGA are 100% and 90%, which significantly improves FPGA errors
detection and recover effectiveness.

Keywords: FPGA · Fault tolerance · Fault detection · Fault recover

1 Introduction

The extraordinary advantages of FPGA are high concurrency, low delay, and
reconfiguration. Taking these advantages FPGA emerges as a very promising
AI chip and algorithm hardware accelerator. However, a non-negligible issue
of FPGA is that complex and changeable environment, high temperature, high
pressure and high radiation, will change the configuration information on FPGA,
which causes Single Event Upset (SEU). Once the FPGA chip occurs SEU errors
that cannot be ruled out timely, the output results of FPGA will be wrong. More
seriously, it will lead to equipment stagnation. Hence, it is a core issue to improve
the reliability of FPGA chips.

In literature, flourishing researches have been achieved on fault tolerance
technology. In general, approaches can be broadly grouped into three categories:
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2021

Published by Springer Nature Switzerland AG 2021. All Rights Reserved

S. Shi et al. (Eds.): AICON 2020, LNICST 356, pp. 544–557, 2021.

https://doi.org/10.1007/978-3-030-69066-3_48

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-69066-3_48&domain=pdf
https://doi.org/10.1007/978-3-030-69066-3_48

FTEI: A Fault Tolerance Model of FPGA with Endogenous Immunity 545

redundancy technology [1,2], reconfigurable technology [3,4] and evolvable hard-
ware technology [5]. Although much effort has been devoted to redundancy
technology because of its simple design ideas, this method increases the com-
plexity of circuit design rapidly and large resource consumption. Reconfigurable
technology refreshes the system by reconfiguring configuration information, sav-
ing lots of resource. However, the fault detection and location methods [6] are
required to highly accurately locate the fault circuit of the system, which greatly
increases the difficulty of system design. The recover technology based on evolv-
able hardware, using the characteristics of self-organization, self-adaption and
self-recovery, can recover FPGA faults with less hardware circuit resources and
has better fault tolerance performance.

In order to achieve efficient and real-time recover of SEU errors, our compre-
hensive analysis of the above methods found that the following three challenges
need to be solved. The first challenge is (1) how to improve the real-time and
accuracy of fault location. The second challenge is (2) how to ensure the normal
operation of the circuit system while recovering faults. The third challenge is (3)
how to improve the efficiency of fault recover under strict space-time constraints.

To tackle all the challenges mentioned above, in this paper we propose FTEI,
a Fault tolerance model of FPGA with endogenous immunity. It endows FPGA
fault perception, fault memory, and environment adaptation to improve the reli-
ability of the FPGA platform. We realize fault perception through fault detec-
tion and location mechanism. The realization of fault memory and environment
adaptation is achieved through fault recover mechanism. In general, the main
contributions of this paper are summarized as below:

– To realize real-time fault location, we propose to take the FTRL-optimized
logistic regression classification algorithm as the fault detection model.

– We propose pre-setting chromosome of known faults in fault configuration
library to save recover time and truth table of circuits in circuit truth table
module to guarantee the normally operation of fault circuits.

– To realize faults recover of unknown faults we recover circuit by online evo-
lution and RLAGA algorithm is proposed to raise the success rate of online
evolution.

2 Related Work

FPGA is susceptible to complex and changeable environment. Therefore, enhanc-
ing the reliability of FPGA has won a lot of research interest. These researches
can be classified into two categories: fault-tolerant methods with fault detection
capabilities and fault-tolerant methods with fault shielding capabilities.

2.1 Fault-Tolerant Methods with Fault Detection Capabilities

The fault-tolerant methods with fault detection capability achieve troubleshoot-
ing by adding additional fault detection resources to the system design. Wang

546 J. Wang et al.

et al. [7] took deep learning algorithms as a fault detection model to monitor run-
time data. Reorda et al. [8] utilized additional logic of carrying chains and hard
links to perform error detection to implement fault detection and correct single
and two errors that affected FPGA configuration memory due to configuration
bit flips. Du et al. [9] exploited the bitstream analysis tool readback bitstream
to obtain the current status and absolute addresses of D flip-flops (DFFs) and
storage units. By analyzing the above information, the fault location is obtained.
Ranjbar et al. [10] devised a method which could transfer the effects of faults
occurring in the LUT (Look-Up-Table) to triggers facilitating fault detection.
Although the above methods can be used to locate circuit faults, it cannot
guarantee the real-time performance of circuit fault detection and increase the
difficulty of circuit design and realization.

Fig. 1. Chip real-time self-healing system architecture

2.2 Fault-Tolerant Methods with Fault Shielding Capabilities

Triple Modular Redundancy (TMR) can directly shield circuit faults when a
single modular circuit fails, which can effectively protect the system from cir-
cuit faults and maintain the normal operation of the circuit system [11]. Given
the hardware resource consumption problem of TMR, Schweizer et al. [12] pro-
posed a strategy using unused functional units for redundant calculation on a
coarse-grained reconfigurable architecture and realized a low-cost TMR strategy.
Experiments showed that this strategy reduced the area of hardware resources
by 12.8% compared with the traditional TMR method. Burdyshev et al. [13]
reduced a large number of extra hardware resources consumed by TMR tech-
nology to achieve fine-grained TMR by calculating the combination of channel
redundancy and transistor redundancy. Although the above methods can save
hardware resource, it makes the circuit more complex and difficult.

To overcome these above shortcomings, we develop FTEI, a fault tolerance
model of FPGA with endogenous immunity. Besides real-time fault perception,
the fault memory and environment adaptation are realized.

FTEI: A Fault Tolerance Model of FPGA with Endogenous Immunity 547

3 The Proposed Model

In this section, we generalize FTEI architecture firstly. Secondly, we introduce
fault detection and location mechanism. Finally, the circuit fault recover mech-
anism are depicted.

3.1 Fault Tolerance Model of FPGA with Endogenous Immunity
(FTEI)

The system structure is shown in Fig. 1. These circuits are divided into mod-
ules according to their functions in the design stage to facilitate detection and
recover. The target circuit module runs on FPGA which needs to be detected
and recovered when faults occur to it. The detection module is exploited to
supervise the real-time data of the system. Once the detection module detects
circuit faults, the circuit needs to be recovered in servery clock time. In order to
buy time for fault recover and ensure the normal operation of the circuit system,
the compensation module is mentioned. We pre-store truth table data of target
circuits in the circuit truth table and the compensation logic controller is utilized
to control data transfer of the compensation module. The fault recover module
consists of two parts: fault recover library and evolution algorithm. We preset
some circuit configuration chromosome in the fault configuration library whose
faults are known. For unknown faults, we use evolution algorithm to recover
and then store obtained configuration chromosome into the fault configuration
library. The process is controlled by recover logic controller.

3.2 Fault Detection and Location Mechanism

In order to realize the precise location of fault circuit, this paper proposes a fault
detection model, FTRL-optimized logistic regression, and uses it to establish a
fault model matching library.

Fault Detection Mechanism. The fault detection process is divided into two
stages: fault detection model acquisition and fault online detection. The fault
detection model is obtained through offline training. The offline training of fault
detection model needs to obtain a large number of circuit fault data. In this
paper, a software tool is utilized to randomly inject faults into the Cartesian
Genetic Programming (CGP) [16,17] code string running on the Virtual Recon-
figurable Circuit (VRC) [7,15]. Considering that the circuit data can be divided
into two categories: with fault and without fault, therefore, circuit fault detec-
tion is actually a binary classification problem. To get the fault detections model,
this paper proposes FTRL-optimized logistic regression.

FTRL (Follow-the-regularized-Leader) online learning algorithm integrates
the advantages of FOBOS algorithm and RDA algorithm, which can better guar-
antee the accuracy of model parameters and the sparsity of feature items in the
training process. At the same time, after adding non smooth regular items, FTRL

548 J. Wang et al.

can get better sparsity value. So we utilized FTRL to optimize the parameters
of the fault circuit logistic regression model [18].

The main iteration formula of FTRL can be expressed as Eq. (1):

wt+1 = arg min
w

{g1:tw +
1

2

t∑

s=1

δs||w − ws||22 + λ1||w||1} (1)

The above formula is divided into three parts: (
t∑

r=1
Gr)w is the cumulative gradi-

ent sum, which indicates the direction of loss function decline; 1
2

t∑

s=1
δs||w − ws||22

indicates that the new result should not deviate too far from the existing result;
λ1||w||1 is the regular term, which is used to generate the sparse solution.

Let δ1:t = 1
σt

, zt−1 =
t−1∑

r=1
Gr −

t−1∑

s=1
δs − ws we derive the following Eq. (2):

zt = zt−1 + gt − (
1

σt

− 1

σt−1
)wt (2)

Substituting Eq. (2) into Eq. (1), the iteration formula can be rewritten as
Eq. (3).

wt−1 = arg min
w

{(g1:tw −
t∑

s=1

δsws)w
1

2σt

||w − ws||22 + λ1||w||1 + c} (3)

Thus, Eq. (4) can be described as:

wt+1,i =

{
0, |zt,i| < λ1

−σt(zt,i − λ1sgn(zt,i)), zt,i| ≥ λ.
(4)

To improve the sparsity and accuracy of parameters, L2 regular term is added
to the regular term of FTRL in this paper, and the method of mixed regular
term is adopted to make the solution result of the fault model smoother, and
the accuracy of model prediction is also increased.

The feature weight iterative formula of the optimized FTRL can be expressed
as Eq. (5):

wt+1 = arg min
w

{g1:tw +
1

2

t∑

s=1

δ1:t||w − ws||22 + λ1||w||1 +
1

2
λ1||w||22} (5)

Here, gs is the standard gradient; δs is learning an update strategy; δ1:t = 1
σt

and σt is described as Eq. (6):

σt,i =
α

β +

√
t∑

s=1
g2

s,t

(6)

The formula (5) is expanded to obtain the optimal solution problem represented
by Eq. (7):

wt+1 = arg min
w

{(g1:tw − 1

2

t∑

s=1

δsws)w + λ1||w||1 +
1

2
(λ2 +

t∑

s=1

σs)||w||22 +
1

2

t∑

s=1

σs)||ws||22} (7)

FTEI: A Fault Tolerance Model of FPGA with Endogenous Immunity 549

Where 1
2

t∑

s=1
σs)||ws||22 for w is a constant, let:

z
(t)

= g1:tw −
t∑

s=1

δsws (8)

The Eq. (7) is equivalent to Eq. (9):

wt+1 = arg min
w

{ztw + λ2||w||1 +
1

2
(λ2 +

t∑

s=1

σs)||w||22} (9)

According to each dimension of feature weight, the above formula is decomposed
into n independent scalar minimization problems.

wt+1 = arg min
w

{zt,iwi + λ1||w||1 +
1

2
(λ2 +

t∑

s=1

σs)w
2
i } (10)

Therefore, the weight formula shown in Eq. (11) can be obtained.

wt+1,i =

⎧
⎪⎪⎨

⎪⎪⎩

0, |zt,i| < λ1

−(λ2

t∑

s=1

σs)

−1

(zt,i − λ1sgn(zt,i)), |zt,i| ≥ λ1.
(11)

The pseudo code of circuit fault detection based on FTRL-optimized logistic
regression is as Algorithm 1.

Algorithm 1. OPTIMAL SOLUTION OF LOGISTIC REGRESSION BASED
ON FTRL-OPTIMIZED ALGORITHM
Input: α, β, λ1, λ2;
1: for i = 0 to d do
2: Initialize zi = 0, ni = 0;
3: end for
4: for i = 1 to t do
5: The eigenvector of fault data set is Xt, Let I = {i|xi �= 0};
6: for i ∈ I do

7: wt+1,i =

{
0, |zi| < λ1

−(λ2 +
β + √

ni

α
)
−1

(zi − λ1sgn(zi)), |zi| ≥ λ1.

8: end for
9: Calculate estimated probability pt = σ(Xt ·W) by wt,i according to Equation 4;

10: Tags from training set yt ∈ {0, 1}, indicates if the circuit is faulty;
11: for i ∈ I do
12: Calculate gradient loss gi = (pt − yt)xi;
13: Calculate σi = 1

α
(
√

ni − g2
i − √

ni);
14: Update zi = zi + gi − σiWt,i;
15: Update ni = ni + g2

i ;
16: end for
17: end for

550 J. Wang et al.

3.3 Fault Recovery Mechanism

RLAGA: Adaptive Genetic Algorithm Based on Reinforcement Learn-
ing. When an unknown circuit fault occurs, in order to ensure the recover of the
fault, the evolutionary recover algorithm is used to obtain an alternative circuit.
Therefore, this paper proposes RLAGA. In this algorithm, the crossover oper-
ators and mutation operators of genetic algorithm are dynamically and adap-
tively adjusted by the reward feedback mechanism of reinforcement learning,
so the diversity of population in the iterative process can be maintained which
avoids the algorithm falling into the local optimal solution, and improves the
evolution efficiency of genetic algorithm. Q-learning algorithm [19] is adopted as
the learning algorithm to strengthen the learning agent. Through the crossover
operators and mutation operators of the population to reducing the probability
of local optimum. Therefore, it is necessary to consider the impact of crossover
operators and mutation operations on population diversity, when designs the
learning process of reinforcement learning.

The population diversity is measured by the population fitness. The popu-
lation size is n, the fitness of the i-th individual xi

t at time t is fit(xi
t), and the

average fitness of the population at time t is fitavg(xt), if the individual differ-
ence of population is di

t, it means the number of chromosomes in the population
with different fitness from the i-th chromosome, then the population diversity
can be expressed as Eq. (12).

div(xt) =
1

N

∑

i=1

N |fit(x
i
t) − fitavg(xt)|di

t (12)

The learning mechanism of reinforcement learning for genetic algorithms mainly
includes three elements: (1) setting and division of environmental status; (2)
Agent’s action division; (3) determination of action reward value.

State Setting and Division. As shown in Eq. (12), according to the maximum
iterative algebra G of the genetic algorithm, the whole evolutionary iterative
process is divided into four stages. According to the value of div of population
diversity, the value range is divided into four intervals. In this paper, the envi-
ronment of genetic algorithm is divided into 16 states by combining iterative
algebra and population diversity as state value of environment.

SG =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

SG1, G ∈
[
0,

G

4

)

SG2, G ∈
[

G

4
,

G

2

)

SG3, G ∈
[

G

2
,
3G

4

)

SG4, G ∈
[
3G

4
, G

)

Sdiv =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Sdiv1, div ∈ [0, 0.5)
Sdiv2, div ∈ [0.5, 1.0)
Sdiv3, div ∈ [1.0, 1.5)
Sdiv4, div ∈ [1.5,+∞)

(13)

FTEI: A Fault Tolerance Model of FPGA with Endogenous Immunity 551

Action Division. After Agent obtains the state and reward value at time t from
the genetic algorithm environment, it will dynamically and adaptively adjust
the crossover operator Pc and mutation operator Pm of the genetic algorithm
according to the feedback value, and then agent will transfer the adjusted opera-
tor parameters to genetic algorithm. The adjustment of Pc and Pm according to
Agent is shown in Eq. (14) and (15). According to the difference between Pc and
Pm, there are 9 kinds of action combinations that Agent can take for genetic
algorithm at time t.

Pc(t) = Pc(t) + Δα, Δα =

⎧
⎪⎨

⎪⎩

−k1

0

k1

, k1 = 0.05 (14)

Pm(t) = Pm(t) + Δβ, Δβ =

⎧
⎪⎨

⎪⎩

−k1

0

k1

, k1 = 0.05 (15)

Determination of Reward Value. In this paper, the reward mechanism of the
state action is established by comparing the population fitness obtained by the
cross mutation of the genetic algorithm after the agent action. The calculation of
action reward R is shown in Eq. (16). While the average fitness of the population
after iteration is greater than the previous generation, the reward value is posi-
tive; while the average fitness of the offspring is equal to the previous generation,
the action does not generate revenue, the reward value is 0; while the average
fitness of the offspring is less than the previous generation, the reward value is
negative.

R =

⎧
⎪⎨

⎪⎩

1, −Δfit > 0

0, −Δfit = 0

−1, −Δfit < 0

, Δfit = fitavg(xt) − fitavg(xt−1) (16)

In order to better calculate the cumulative reward value of Agent in the iter-
ative process, this paper adopts the Q-learning algorithm. The optimal action
strategy group is obtained by continuously evaluating the value function of the
state action pairs, and Eq. (17) is the Q value calculation formula of Q-learning
algorithm. Here, Q is the value of the state action pairs; α is the learning step of
agent; rt is the reward value of environmental feedback when action at is taken
in state st at time t; γ is the discount rate; maxQ(st+1, at+1)) is in the next
state s(t + 1) the maximum Q value corresponding to the action taken.

Q(st, αt) = Q(st, αt) + α[rt + γmaxQ(st+1, αt+1) − Q(st, αt)] (17)

The pseudo code of the adaptive genetic algorithm based on reinforcement
learning is shown as Algorithm 2

552 J. Wang et al.

Algorithm 2. RLAGA
Input: parameter population size N , chromosome length L, maximum iteration alge-

bra G, initial crossover operator Pc, initial mutation operator Pm, initial Q-value
table, initial learning step length, initial discount rate;

1: Initial P(t);
2: fit(xt) = AdpCalculateF it(P(t));
3: Calculate the current status value S and reward value R;
4: Agent reads status value S and reward value R, selects actions at by greedy strategy,

and updates the crossover operator Pc and mutation operator Pm;
5: if Termination condition then
6: break;
7: end if
8: for i = 0 to G do
9: fit

′
(xt) = a · fit(xt) + b;

10: P
′
(t) = Select(P (t), fit

′
(xt));

11: P
′′
(t) = Crossover(P

′
(t), Pc);

12: P
′′′

(t) = Mutation(P
′′
(t), Pm);

13: P (t) = P
′′′

(t);
14: fit(xt) = AdpCalculateF it(P (t));
15: Calculate the current status value S and reward value R, and send them to the

agent;
16: Calculate Q(st, at) = Q(st, at) + α[rt + γmaxQ(st+1, at+1) − Q(st, at)]; Update

Q value table; Selects actions by greedy strategy; Updates the crossover operator
Pc and mutation operator Pm;

17: if Termination condition then
18: break;
19: end if
20: t = t + 1;
21: end for

4 Experiment

In this section, we firstly illustrate the fault injection process, data acquisition
and system experimental parameter settings. Secondly, we utilize the 8-bit parity
checker and the 2-bit multiplier to verify the effectiveness of the proposed scheme
and demonstrate the advantages of our system.

4.1 Fault Injection and Data Acquisition

Existing fault injection methods to simulate the actual fault of the circuit can
be roughly divided into two categories: (1) utilize the simulator to simulate the
fault of the hardware circuit; (2) directly modify the hardware circuit and inject
the fault from the circuit source file. In order to fit the actual fault problem
of the circuit more closely, we uses the method mentioned by Wang et al. [7].
Taking the 2-bit multiplier as an example, the chromosome coding string is {
020 131 210 033 055 444 554 591 480 502 765 250 583 4132 1242 18 12 14 10 }.
Then we inject errors into CGP code string to obtain fault data.

FTEI: A Fault Tolerance Model of FPGA with Endogenous Immunity 553

Table 1. Experimental results of 8-bit
parity checker

Logistic

regression

Optimized

logistic

regression

Off-chip test

accuracy

85.1% 86.6%

On-chip test

accuracy

92.5% 94.4%

Average time

(clock cycle)

8 8

Table 2. Experimental results of 2-bit
multiplier

Logistic

regression

Optimized

logistic

regression

Off-chip test

accuracy

80.2% 84.3%

On-chip test

accuracy

89.4% 93.2%

Average time

(clock cycle)

15 15

4.2 Experiment Setting

Zed board [14] is an SRAM-based FPGA, which is used as the verification plat-
form for the self-recovery experiment of chip circuit. In order to fully utilize the
cooperative features of Zed boards software and hardware, the target circuit is
mapped to chromosome structure string through CGP and configured on VRC
circuit to make it work on Programmable Logic (PL) part. Then the fault detec-
tion and location mechanism and the fault recover mechanism are established.
In the Processing System (PS) part, an evolutionary hardware recovery module
is established. When an unknown fault occurs in the circuit evolution algorithm
will generate configuration chromosome of the fault circuit and save in the fault
recovery configuration library on PL interacting through AXI bus.

4.3 FTRL-Optimized Logistic Regression

We use the fault data of the 8-bit parity checker and the 2-bit multiplier to per-
form offline model training on traditional logistic regression and FTRL-optimized
logistic regression algorithm. Then we download and configure the above model
into FPGA, which is used as the fault model matching library for fault detection
and location. After that the actual injection of faults on the chip is used to verify
the accuracy of the obtained fault model.

The 8-bit parity checker data set scale of fault training is 1000; the fault test
set scale is 500, and the on-chip fault test scale is 100. For 2-bit multiplier, the
scale of fault training set is 2000; the scale of fault test set is 500, and the on-chip
fault test set is 200. Table 1 and Table 2 show the accuracy of the offline fault
test set of the fault model, the fault test set after fault injection of the on-chip
circuit, and the average time consumption of fault detection.

554 J. Wang et al.

According to Table 1 and Table 2, FTRL-optimized logistic regression per-
forms better in accuracy both online and offline tests. At the same time, the
average time of fault detection is only related to the circuit itself, and the fault
model is not related, which guarantees the real-time performance of fault detec-
tion on chip. Due to the complexity of the circuit structure, the average time-
consuming of the on-chip fault detection needs 15 clock cycles, and the real-time
detection of the on-chip fault still has good performance.

The fault model matching library based on FTRL-optimized logistic regres-
sion adopted in this paper can effectively solve the problem of real-time detection
of faulty circuits.

4.4 RLAGA Performance Comparison

The modify adaptive genetic algorithm adopts a population chromosome adap-
tation assessment method which changes with the iteration time. Different evo-
lution iteration coefficients have an influence on the evolution time of each gener-
ation of chromosomes. Therefore, different evolutionary iterative coefficients are
used to test the adaptive evaluation method, and the most appropriate evolu-
tionary iterative coefficient is determined by evolutionary operation of the target
circuit. The experimental results are shown in Table 3. We can known the higher
evolution iteration coefficient saves the evaluation time, but leads to the lower
efficiency of evolution, which cannot truly reflect the real-time fitness value of
each chromosome. Therefore, it is necessary to comprehensively consider the
evolution time consumption and the overall efficiency of evolution. According to
the results in Table 3, we set the evolution iteration coefficient to 0.3 to ensure
the best evolution time and efficiency.

Table 3. Time-consuming results of evolution with different coefficients

8-bit parity checker 2-bit multiplier

Iteration coefficient Time consuming per

generation

Total time (s) Time consuming per

generation

Total time(s)

0.1 5.09 5.37 5.23 41.21

0.3 4.73 5.23 4.87 34.27

0.5 4.53 6.45 4.61 76.32

0.7 4.46 8.36 4.49 265.74

0.9 4.35 12.83 4.38 403.82

To validate the evolutionary recover efficiency of the adaptive genetic algo-
rithm based on reinforcement learning, in this paper we do experiment and com-
pare with standard genetic algorithm SGA, ant colony algorithm PSO, adaptive
genetic algorithm AGA and self-simulation annealing Adaptive genetic algorithm
SAGA in the time consumption and evolution success rate [1]. Figure 2 respec-
tively represents the evolutionary recover results of randomly injecting different
circuit faults into the 8-bit parity verifier and the 2-bit multiplier for 100 times,

FTEI: A Fault Tolerance Model of FPGA with Endogenous Immunity 555

0 1000 2000 3000 4000
Generation

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Ev
ol

ut
io

n
Su

cc
es

s
R

at
e

SAGA
PSO
AGA
SGA
RLAGA

0 2000 4000 6000 8000 10000
Generation

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Ev
ol

ut
io

n
Su

cc
es

s
R

at
e

SAGA
PSO
AGA
SGA
RLAGA

Fig. 2. Fault recovery experiment results, left figure is 8-bit parity checker results and
right figure is 2-bit multiplier results

and then adopting 4 algorithms to carry out fault recover operation on the chip
circuit at recover stage.

Comparing the results of the five algorithms, we can see that the RLAGA
algorithm and SAGA algorithm proposed in this paper have achieved a high
evolutionary success rate for 8-bit parity checker at about 1000 generations, and
the circuit recover success rate is 100% at about 4000 generations. Among the
other three algorithms, only PSO can achieve 90% of the recover success rate in
4000 generations, and the overall recover time consumption is far higher than the
algorithm proposed in this paper. The circuit structure of 2-bit multiplier is more
complex than that of 8-bit parity check. In the process of circuit evolution, the
faults recover success rate of five kinds of algorithms in 1000 generations is not
very good. However, RLAGA and SAGA algorithm can still achieve more than
50% of the recovery rate. Because RLAGA algorithm guarantees the population
diversity in the evolutionary iteration process, the faults recover rate reaches
90% at about 3000 generations, while SAGA is relatively slow. Other algorithms
have defects in the recover time consumption and recovery rate. Therefore, for
the circuit with simple structure, SAGA and RLAGA can achieve better results,
but when the circuit to be recovered is large, RLAGA can better improve the
efficiency of evolutionary recover (Table 4).

Table 4. Comprehensive comparison of fault recover algorithms

8-bit parity checker 2-bit multiplier

Algorithm Average time(s) Success rate Average time(s) Success rate

RLAGA 4.2 100% 27.8 97%

SAGA 5.3 100% 34.5 95%

PSO 9.2 91% 89.8 92%

AGA 19.7 56% 163.1 53%

SGA 24.1 35% 178.6 33%

556 J. Wang et al.

5 Conclusion

In this paper, we design and implement FTEI, an FPGA fault-tolerant model
with endogenous immunity. In fault detection phase, we take FTRL-optimized
logistic regression as fault detection model to establish a fault model matching
library. In fault recover stage, we combine fault configuration library with online
evolution to improve the recovery efficiency. Simultaneously, RLAGA is proposed
to improve success rate of evolution. Experimental results of typical functional
circuits demonstrate that the fault detection accuracy rates are 94.4% and 93.2%,
and the fault recovery success rates of RLAGA are 100% and 90%. As part of
our future works, we will:

– Further study multi-class algorithms, and improve the accuracy of fault detec-
tion;

– Study evolutionary algorithm in higher scale digital integrated circuits and
improve success rate of evolution.

References

1. Wang, J., Kang, J., Hou, G.: Real-time fault recovery scheme based on improved
genetic algorithm. IEEE Access 7, 35805–35815 (2019)

2. Anjankar, S., Kolte, M., Pund, A., Kolte, P., Kumare, A., Mankarf, P., Ambhore,
K.: FPGA based multiple fault tolerant and recoverable technique using triple
modular redundancy (FRTMR). In: ICCCV, pp. 827–834 (2016)

3. Yang, X., Li, Y., Fang, C., Nie, C., Ni, F.: Research on evolution mechanism in
different-structure module redundancy fault-tolerant system. In: ISICA, pp. 171–
180 (2015)

4. Gong, J., Yang, M.: Evolutionary fault tolerance method based on virtual reconfig-
urable circuit with neural network architecture. IEEE Trans. Evol. Comput. 22(6),
949–960 (2018)

5. Wang, J., Liu, J.: Fault-tolerant strategy for real-time system based on evolvable
hardware. J. Circ. Syst. Comput. 26(7), 1–18 (2017)

6. Palchaudhuri, A., Dhar, A.: Design and automation of VLSI architectures for bidi-
rectional scan based fault localization approach in FPGA fabric aware cellular
automata topologies. J. Parallel Distrib. Comput. 130, 110–125 (2019)

7. Wang, J., Deng, S., Kang, J., Hou, G., Zhou, K., Lin, C.: A real-time fault location
mechanism combining CGP code and deep learning. In: DSA (2020, in press)

8. Reorda, M.S., Sterpone, L., Ullah, A.: An error-detection and self-recoverying
method for dynamically and partially reconfigurable systems. IEEE Trans. Com-
put. 66(6), 1022–1033 (2017)

9. Ruan, T., Jie, P.: A bitstream readback based FPGA test and diagnosis system.
In: ISIC, pp. 592–595 (2014)

10. Ranjbar, O., Sarmadi, S., Pooyan, F., Asadi, H.: A unified approach to detect and
distinguish hardware trojans and faults in SRAM-based FPGAs. J. Electron. Test.
35(2), 201–214 (2019)

11. Halawa, H., Daoud, R., Amer, H.: FPGA-based reliable TMR controller design for
S2A architectures. In: ETFA, pp. 1–8 (2015)

FTEI: A Fault Tolerance Model of FPGA with Endogenous Immunity 557

12. Schweizer, T., Schlicker, P., Eisenhardt, S., Kuhn, T., Rosenstiel, W.: Low-cost
TMR for fault-tolerance on coarse-grained reconfigurable architectures. In: ReCon-
Fig, pp. 135–140 (2011)

13. Burdyshev, I., Tyurin, S.: Fault tolerant FPGAs design method. In: EIConRus,
pp. 248–251 (2020)

14. Shanker, S., Bhaskar, B., Kizheppatt, V., Suhaib, A.: Dynamic cognitive radios on
the Xilinx Zynq hybrid FPGA. In: CROWNCOM, pp. 427–437 (2015)

15. Gong, J., Yang, M.: Evolutionary fault tolerance method based on virtual recon-
figurable circuit with neural network architecture. IEEE Trans. Evol. Comput. 99,
1–1 (2017)

16. Miller, J., Thomson, P.: Cartesian genetic programming. In: EuroGP, pp. 121–132
(2000)

17. Julian, M., Andrew, T.: Cartesian genetic programming. In: Proc. 2015, pp. 179–
198

18. Ruder, S.: An overview of gradient descent optimization algorithms. Computer
Research Repository, vol. abs/1609.04747, p. 12 (2016)

19. Indu, J., Chandramouli, K., Shalabh, B.: Generalized speedy Q-learning. IEEE
Control Syst. Lett. 4(3), 524–529 (2019)

	FTEI: A Fault Tolerance Model of FPGA with Endogenous Immunity
	1 Introduction
	2 Related Work
	2.1 Fault-Tolerant Methods with Fault Detection Capabilities
	2.2 Fault-Tolerant Methods with Fault Shielding Capabilities

	3 The Proposed Model
	3.1 Fault Tolerance Model of FPGA with Endogenous Immunity (FTEI)
	3.2 Fault Detection and Location Mechanism
	3.3 Fault Recovery Mechanism

	4 Experiment
	4.1 Fault Injection and Data Acquisition
	4.2 Experiment Setting
	4.3 FTRL-Optimized Logistic Regression
	4.4 RLAGA Performance Comparison

	5 Conclusion
	References

