
Evaluating Recursive Backtracking
Depth-First Search Algorithm in

Unknown Search Space for Self-learning
Path Finding Robot

T. H. Lim(B) and Pei Ling Ng

Universiti Teknologi Brunei, Tungku Highway, Gadong, Brunei Darussalam
lim.tiong.hoo@utb.edu.bn

Abstract. Various path or route solving algorithms have been widely
researched for the last 30 years. It has been applied in many differ-
ent robotic systems such as bomb sniffing robots, path exploration and
search rescue operation. For instance, an autonomous robot has been
used to locate and assist a person trapped in the jungle or building
to exit. Today, numerous maze solving algorithms have been proposed
based on the some information available regarding the maze or remotely
control. In real scenario, a robot is usually placed in an unknown envi-
ronment. It is required for the robot to learn the path, and exhibit a
good decision making capability in order to navigate the path success-
fully without human’ assistance. In this project, an Artificial Intelligence
(AI) based algorithm called Recursive Backtracking Depth First Search
(RBDS) is proposed to explore a maze to reach a target location, and
to take the shortest route back to the start position. Due to the limited
energy and processing resource, a simple search tree algorithm has been
proposed. The proposed algorithm has been evaluated in a robot that has
the capability to keep track of the path taken while trying to calculate
the optimum path by eliminating unwanted path using Cul-de-Sac tech-
nique. Experimental results have shown that the proposed algorithm can
solve different mazes. The robot has also shown the capability to learn
and remember the path taken, to return to the start and back to target
area successfully.

Keywords: Maze solving · Search space · Graph theory · Search tree ·
Depth first search · Cul-de-sac

1 Introduction

Technology advancements in the area of robotics have made enormous contribu-
tions in both industrial and social domains. The applications of automation and

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2021

Published by Springer Nature Switzerland AG 2021. All Rights Reserved

S. Shi et al. (Eds.): AICON 2020, LNICST 356, pp. 531–543, 2021.

https://doi.org/10.1007/978-3-030-69066-3_47

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-69066-3_47&domain=pdf
https://doi.org/10.1007/978-3-030-69066-3_47


532 T. H. Lim and P. L. Ng

robotics have increased significantly from home to industrial automations, bomb
sniffing robot, and search rescue operation [1,2]. For such applications to oper-
ate in a dynamic environment, the systems must exhibit autonomy and decision
making properties. In a fully autonomous robot, it is important that it can per-
ceive and adapt to the environment, and operate for an extended period without
human intervention. After operating for a period of time, it should learn about
its new environment and become more intelligent. In the perspective of intelli-
gence in a robot, it can be derived from the fields of Artificial Intelligence (AI)
that compromises of three separate entities namely search algorithm, knowledge
representation and the extent of implementing these ideas.

In the application of search and rescue, speed and efficiency is much more
concerned due to the urgency to locate the position of wounded or trapped
persons in order to save them [3]. These complex situation of accident locale
can be abstracted using a maze. Therefore, to test the intelligence, these robots
are required to solve problem such as solving a maze. A maze is network of
paths and hedges designed as a puzzle through which solver has to find a way
or solution, usually from an entrance to a goal or another exit. In general, there
are two types of mazes [4] namely model-based maze in which global model is
available, and sensor information-based maze of which information about the
maze is unknown.

Many algorithms for maze navigation and maze solving have been proposed
and continue to be improved over the years [3,5–7]. Artificial Intelligence plays
a vital role in defining the best possible method of solving maze effectively, such
that Graph Theory appears to be an efficient tool while designing proficient maze
solving techniques [8]. Primarily, the search problem includes either an explicit
initial or goal node in which one has to find the path connecting them or simply
find the goal which is implicitly defined [9].

It is fundamental for the robot to successfully navigate to its goal. This
is usually achieved either with direct human navigation, a predefined program
or set of general rules programmed in the systems. These approaches usually
assume that global model or view is available in advance [7]. This assumption
may not be always true as the environment to be traversed is usually unknown
in advanced. Each maze is usually different and may change dynamically. Hence,
the use of fixed rules or predefined path is not the best approach. In order for
a robot to traverse through an unknown environment from a source position to
a target, it needs to percept and act using current available information. The
key information of the maze’s search space, situation of branches, dead-end or
passing-through crossing and current perception of the robot are all acquired
locally from sensors attached to the robot during the search.

In this paper, a new Artificial Intelligence (AI) based algorithm called Recur-
sive Backtracking Depth-first Search (RBDS) is proposed and evaluated in real
robots. To the best of our knowledge, this is the first time a search tree based AI
algorithm has been applied in a low processing and powered robot. The motiva-
tion behind re-using an existing simple known AI algorithm is that we do not
want to design a whole new algorithm. In contrast, the simplest search algorithm



Recursive Backtracking Depth-First Search 533

can easily be applied and what is proposed in this paper can be supported by
any microcontroller such as Arduino and microPy. We have also incorporated
a route optimization algorithm to allow the robot use the shortest and optimal
path to traverse between the goal and initial start point.

The main contributions of this paper are: 1) A novel AI-Based algorithm
called Recursive Backtracking Depth-first Searh (RBDS) using an uninformed
Depth First Search (DFS) to explore an unknown search space and applied
an optimization algorithm called Recursive Cul-de-Sac Backtracking (RCB) to
eliminate all unwanted path for route optimisation; 2) A quantitative analysis
of the AI-Based RBDS algorithm on a robotic platform based on a low power,
and low cost microcontroller robot to solve an unknown maze autonomously. A
reinforcement learning technique is used by the robot to learn about the new
environment and update its environment. Initially, the robot traverse through an
unknown search space using the information received from an input sensor. Once
the goal is located, the robot will identify the optimal path by eliminating the
dead ends using RCB. In the subsequent run, the robot can traverse between
the goal and initial position using the optimal path. The results have shown
the proposed algorithm can help to solve any maze and determine the optimum
path..

The rest of this paper is organized as follows. Section 2 presents related work.
Section 3 provides an overview of AI based RBDS follows by the experimental
setup to analyse the performance of the proposed system in Sect. 4. In Sect. 5,
we summarize with our conclusions.

2 Related Works

Autonomous mobile robots need to operate safely and reliably. At the same
time, they are expected to minimize energy consumption, travel time and dis-
tance. Mishra and Bande [10] conducted a comparative study on the path length
and time taken to solve the maze using 3 different algorithms namely basic
wall follower, Djikstra’s shortest path, and flood fill algorithm [11]. Mishra and
Bande show that the Djikstra’s algorithm can be effectively used if both time
and hardware are not critical and supported. However, both constraints need
to be satisfied, flood fill would be preferable compared to the others despite
the complex calculation required. The basic and simplest wall follower logic is
the most supported algorithm in hardware. In another study, Sharma [12] the
same results are also obtained where flood fill algorithm outperformed basic wall
follower logic.

Another comparative study on wall follower, Lee’s algorithm [13] and flood fill
algorithm [5] were presented by Gupta and Sehgal [14]. Equally, Lee’s algorithm
is an application of Dijkstra’s algorithm that uses Breadth First Search (BFS).
It works in two phases namely the filling phase in which cells are marked while
retrace phase is derived from the concept of backtracking [13]. In BFS, the tree is
examined from top down such that every node at depth d is examined before any
node at depth d+1. Starting from the source vertex, the entire layer of unvisited



534 T. H. Lim and P. L. Ng

vertex is visited by some vertex in the visited set and the recently visited vertexes
are added with the visited set [15]. Although floodfill is by far the most famous
and efficient algorithm to solve all types of maze, it is commonly set with a preset
target point. Initially, the algorithm assigns to a value of each cell representing
the distance between the cell and the target cell. The robot follows the path of
decreasing value and is updated in every single step.

Finally, in Depth First Search (DFS), the search starts from the root of a
graph. The terminal nodes are examined from left to right. The exploration
continues toward the deeper region of the tree or graph until it reach a dead-end
and needs to back track. The algorithm starts searching from a specific vertex
and then it navigate by branching out corresponding vertices until it reach the
final goal [16]. The whole maze is mapped as graph where the nodes or vertexes
are considered as maze cells. The search order may not be in specific order, it
only commits the idea of always expanding a node as deep in the search tree as
possible. Hence a search from right to left is also possible.

3 AI-Based Recursive Backtracking Depth-First Search
(RBDS) Algorithm

In this section, an overview of design and methodology used for Artificial Intel-
ligence Based Maze Solving robot is presented. This includes the construction
and implementation of two-wheel robot that is capable of solving a line maze
using an array of infra-red sensors. A line maze is used instead of the real wall
maze as it is cheaper to built and modify. The robot will be used to evaluate the
propose Artificial Intelligence (AI) based algorithm known as Recursive Back-
tracking Depth First Search (RBDS), capable of searching through an unknown
search space to identify a target without any guidance.

3.1 Systems Design

The system design of the autonomous robot consists of three fundamental phases
in the design process. The first involved the selection and integration of individ-
ual components of a mobile robot to operate according to the system specification
required to traverse the maze. Secondly, the design of the RBDS algorithm and
apply Cul-de-Sac approach to elimate any deadend from the database in order
to optimize the route taken. Finally, the interface the system software with hard-
ware components with the RBDS algorithm in order for the evaluate the robot
to operate autonomously using RBDS.

The proposed path finding algorithm is based on an uninformed or blind
search, Depth First Search algorithm. The operating environment is in the form
of a maze with black lines representing the path and having different kinds of
junctions. The starting point can be randomized with target goal differentiating
from other paths. Figure 1 shows the overall system of block diagram of maze
solving robot.

The working principle of robot in solving the line maze is provided by the
systems program functions listed as follows;



Recursive Backtracking Depth-First Search 535

INPUT SENSOR
MODULE

System So ware
Line Tracking
Path Finding 
Maze Solver

Op mizer

Motor Driver
Maneuver

Power Supply

Fig. 1. Robotic systems design.

– Line tracking system In line tracking system, the robot follows a black line
maze by sensing the environment using the input sensor module. The sen-
sor values are sent to the software system, in which the microcontroller will
process. The program function will instruct the robot to follow the line as it
percepts and acts accordingly to the instruction sent from the system to the
motor drive system.

– Depth First Search Based on the output sensory module information, the
robot teaches itself to identify the route path taken using path finding algo-
rithm. The robot will apply the Depth First Search Algorithm to explore the
maze to achieve its goal and use its knowledge through the computational
perception and action condition rules to learn about the route to reach the
goal.

– Recursive Backtracking Path Optimisation Function After identifying the
route path, the robot enters the learning phase and optimises the path. In
subsequently run, the robot returns to its original source position using the
optimised path. Once it returned to the original position, the robot can now
operate for instance transport and transfer goods from the start to the desired
position using the optimised path.

3.2 Platform Design

Figure 2 shows the circuit diagram of hardware system of the robot. It consists
of 3 major hardware components namely the processing unit, the input unit and
the output unit. An Arduino microcontroller processing unit is used to operate
the robot. As the core component of the systems, it is responsible for process-
ing the input data and storing the information produced during the computa-
tional process. The input and output units are responsible robot’s perception and
actions. Input information regarding the line tracks, dead end and turns will be
obtained from the five channel infrared reflective sensor array module. The track
or movement can be determined by sending an infrared signal to the line while
photo-transistor receive and sense the signal correspondingly. The correspond



536 T. H. Lim and P. L. Ng

information from the sensors will be fed into the Arduino. Arduino will then
process the signals and convert them to digital values with an integrated analog
to digital ADC interface. The resulting results will then be compared with the
programmed action condition rules to generate appropriate output instruction
to the motor drive system. The robot is driven by a motor driver H-bridge IC
L298N and 2 DC geared motor. The wheels of the robot are capable of indepen-
dent rotation in two directions.

Fig. 2. Hardware circuit design for the autonomous robot

3.3 Software Design

The system application design of the AI based autonomous maze solving robot is
shown in Fig. 3. C programming language is used to develop the AI based RBDS
algorithm to traverse and solve a maze. The program code acts as the decision
maker using Depth First Search Algorithm embedded in the microcontroller. The
robot percepts and acts based on the output for particular set of combination
of sensors.

The working principle of robot in solving line maze is as follows;

– Line path tracking.
For line path tracking, the robot follows a line maze by perceiving its envi-
ronment using array IR sensors. It is programmed to follow the line perfectly
with both motors rotating in forward direction. Any deviation from the line
will cause the motor change accordingly to ensure it is still on and within the
right path. The most right and left sensors are used for taking decision on
junctions while the other 3 middle sensors are for tracing the black line, for
forwarding.

– Mobile robot navigation.
For navigation, the robot is dependent on the sensors. The output from the
sensor is fed into the Arduino, microcontroller which is programmed based
on the action condition rules. As the input is processed, the corresponding
output is sent to the H-bridge, L298N motor driver to navigate the robot by
rotating it in corresponding directions.



Recursive Backtracking Depth-First Search 537

SENSOR
MODULE

IR Sensor with 
Phototransistor

System AI 
So ware

Microcontroller 
to process the 

data and provide 
the correct path 
in the memory 
for rapid solver

Motor Driver

Guide the motor 
according to the 

feedback 
provided by the 

controller

Power Supply

Fig. 3. Software system block diagram

– Knowledge based navigation and reinforced learning.
The knowledge based navigation is incorporated by means of Depth First
Search, left search variant rule. The first priority is given for the left, second
to the straight and least to the right. Based on the knowledge, the robot
navigates accordingly. In the teaching phase, it uses the rule to navigate and
traverse through all paths including dead ends. When it encounter dead end,
it takes a back turn or 180◦ turns and traverses the same path again. The
turns are stored only at junctions, intersection, later used by the robot for
navigation in the subsequent phase. In the second run, Depth First Search is
not applied, instead the Cul-de-Sac technique is applied such that optimised
path is used to traverse the robot back to its original position by eliminating
unnecessary turn and dead ends. Alternatively, the robot can also go back to
the goal from the start position using the optimised path learnt.
The use of Artificial Intelligence concept is similar to the reinforcement learn-
ing applied in the second run. Where it illustrates the concept of learning from
mistake. The former teaching phase, enable the learning of how to solve the
maze as it proceeds through dead ends. Subsequently the next phase involves
Cul-de-Sac approach by eliminating all the dead ends and remove them from
the stack memory. As a result, an optimal path to the goal from the start
position is identified.

3.4 Algorithms

A Depth First Search, left hand rule with Cul-de-Sac approach is used as the
algorithms to solve the line maze. This algorithm is qualitative in nature, requir-
ing no map of environment, no fundamental matrix and no assumption as used
in other algorithms.

Line Tracking Depth First Search. Similar to classical strategy for exploring
maze, DFS algorithm is used for exploring a maze, The DFS follows the left



538 T. H. Lim and P. L. Ng

hand rule such that it commits the idea of always expanding the left hand node
and move down in the search tree following the known rule. The left hand rule
states the left direction has the highest priority compared to the straight and
right direction. Similarly, the straight direction has higher percedence compared
to the right. The precedence order is as follows: Left, Straight, Right. At each
intersection, junction, and dead end (vertex) visit are marked, so that the path
back to the entrance, start vertex could be tracked using recursion stack.

During the first phase, the robot follows the black line path and traverse
to find the desired goal. When traversing the maze to find the desired goal, at
every junction that requires decision making, the turn the robot takes is recorded
and stored in the stack of Arduino. The moves are denoted by S when it move
forward, L when it turns left, R when it turns right and B for turning back when
it encounters dead end. When the desired goal is reached, the robot finishes
the first phase and proceeds to the next phase of learning. The robot will then
traverse from the target to the starting point and vice versa though the optimal
path. The optimal path can be determined using Cul-de-Sac approach to simplify
the path.

Cul-de-Sac Approach. Once the goal node is found, path simplification can
be achieved using Cul-de-Sac approach to find the optimal path in the tra-
versed maze. At every turn, the length of the recorded path increases by 1. The
algorithm takes the turn stored in the stack during the first phase and applies
Cul-de-Sac approach, respective reduction path rules accordingly and removes
all the dead end, back turn made previously.

Fig. 4. Correspondence of LBL sequence and equivalent path

With path simplification, the strategy is that whenever the robot encounters
a sequence xBx, the path can be simplified by eliminating the dead end and
replaced with a turn corresponding to the total angle. The path can only be
simplified if the second to the last turn was “B” a dead end and the path length
must be greater than 3. Considering the sequence “LBL”, after turning 90◦ to
the left and 180◦ back and 90◦ to the left again, the net effect of the robot is
heading back in its original direction. The path can be simplified to 0◦ turn, a
single “S” move.



Recursive Backtracking Depth-First Search 539

The Cul-de-Sac algorithm is based on the data in Table 1. In a traversed
maze, the algorithm is applied onto the list of path moves stored in an array
stack several times until all the necessary “B” moves are removed. Figure 4
exhibits two functionally equivalent paths from the start to the end.

Table 1. Path simplification

Original path sequence Reduced path

LBL S

LBS R

LBR B

SBL R

SBR L

SBS B

RBR S

RBL B

RBS L

L = left, R = right, B = back, S = straight

3.5 Robot Driving Control System

To allow the system to drive the robot autonomously, the robot is mounted with
five channel infra-red sensors. These five sensors will be used to detect a straight
line, turns, dead end or goal and the robot can use the detected information
to navigate the robot. With five input values, the sensors can have numerous
configuration that allow the robot to make decision whether to move straight or
to turn. With digital output, there are 32 possible combinations. With that, ‘0’
output indicates sensor sense black line and ‘1’ output sense otherwise.

As shown in Fig. 5, the far most left and right sensors detect turning and
intersection. The three sensors in the middle are evenly spaced. Chance of two
sensors detecting line at the same time when it adjust itself is high. Thus, few
combinations are accounted for in the action condition rule. These sensors looks
directly down on the line track and processed by the program to determine the
correct action. The following figures exhibit some of the possible sensor output
combinations for following a line.

As the robot is expected to follow the lines and find the path from the source
position to the desired goal. There are various junctions in the line maze. Given
a maze with no loops, there are only 8 possible scenarios that the robot would
encounter. First, it follows the line. When it reaches an intersection, the sensor
will decide what type of intersection it is and make appropriate turn. These steps
continue in a loop until it reach the maze end.



540 T. H. Lim and P. L. Ng

With the path finding algorithm implemented, the robot acts accordingly as
it perceives the environment, depending on the type of turns and intersection it
encounters. In the case of left turn junction and right turn junction, the robot
has no alternative but to make 90◦ turn. As of reaching a dead end, the robot
make a 180◦ u-turn to backtrack. For the straight or right turn junction, a sub
routine is created. The robot moves forward for a bit and perceive the current
state’s its in. If the robot sense there is line ahead, it moves forward as the rule
prioritizes straight rather than right. As of the left or straight junction, the robot
will always prioritize and turn left. The junctions can be identified according to
the sensor readings tabulated in Table 2.

Table 2. Truth table For direction and motor rotation

S1 S2 S3 S4 S5 Junction Rotation

0 0 0 0 0 Left Left

1 1 0 1 1 Following line Straight

1 1 0 0 0 Left Left

1 1 1 0 1 Slight left Left

1 1 0 0 1 Slight left Left

1 0 1 1 1 Slight right Right

1 0 0 1 1 Slight right Right

0 0 0 1 1 Right Right

0 0 0 0 1 Slight left Left

1 0 0 0 0 Slight right Right

1 1 1 1 1 No line U-Turn

1 0 0 0 1 End maze Stop

Fig. 5. Sensor combinations for following line

4 Performance Evaluation

For the evaluation of RBDF Search Algorithm, 4 line mazes are tested. Figure 6
shows the corresponding line mazes to be solve. The robot is placed at a defined
source position with differentiated desired goal position to test if it is capable
of solving the maze autonomously. Alternatively in each line maze with a fixed
goal, the robot start position is also chosen randomly.



Recursive Backtracking Depth-First Search 541

(a) Maze (a) (b) Maze (b)

(c) Maze (c) (d) Maze (d)

Fig. 6. Evaluation of RBDF on different mazes

4.1 Analysis

From the results obtained and observed, the algorithms are able to solve mazes
in the teaching phase and learning phase. In the first phase, the learning phase
indicated by the blue line in Maze (a), the robot traverse and store the paths it
have taken until it reaches the goal. In the subsequent run indicated by pink line,
using Cul-de-Sac approach it backtracks the path to reach the starting source
position using an optimal path. Once it reaches the source position, it finishes
the run by traversing through the optimal path to the desired goal. For looped
maze as shown in Maze (d) Fig. 6, the fourth maze, the algorithm was not able to
solve the maze. This is due to the Depth First Search algorithm, Left Hand Rule
following such that the robot will always choose to move in the left direction
instead of turning right to reach the goal.



542 T. H. Lim and P. L. Ng

5 Conclusion

In this paper, an AI based maze solving robot has been proposed and evaluated
on a robotic platform. This autonomous robot can be deployed in a location
that is not accessible by rescue team or endangered to human’s intervention. It
uses RBDS to calculate the optimal path to move from one point to another in
the most energy efficient way, thereby reducing the power consumption. With
Cul-de-Sac approach, the uses the best or shortest path to go back to the start
position without traversing the whole maze. Although the robot evaluation plat-
form can successfully solve the maze autonomously, there are still issues such as
power availability and sensitivity of the sensors affecting the route tracing that
need to be addressed. Since the design is based on 8 V power supply, problems
such as voltage drop due to rapid discharging of battery are observed. Some-
times, it has also affected the tracking of the path and decision making process
due to the voltage drop in the sensor-motor driver system. Hence, it is neces-
sary to address this issue before this platform can be used to evaluation the AI
algorithm.

References

1. Abdullah, A.H., Lim, T.H.: SmartMATES for medication adherence using non-
intrusive wearable sensors. In: Perego, P., Andreoni, G., Rizzo, G. (eds.) Mobi-
Health 2016. LNICST, vol. 192, pp. 65–70. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-58877-3 8

2. Muhammad, N., Lim, T.H., Arifin, N.S.: Non-intrusive wearable health monitor-
ing systems for emotion detection. In: 2017 12th IEEE Conference on Industrial
Electronics and Applications (ICIEA), pp. 985–989 (2017)

3. Stentz, A.: Optimal and efficient path planning for partially known environments.
In: Hebert, M.H., Thorpe, C., Stentz, A. (eds.) Intelligent Unmanned Ground
Vehicles. The Springer International Series in Engineering and Computer Science
(Robotics: Vision, Manipulation and Sensors), vol. 388, pp. 79–82. Springer, Boston
(1997). https://doi.org/10.1007/978-1-4615-6325-9 11

4. Jiang, H.L.: Designed of Wheeled Robot Based on Single Chip Computer, vol. 13
(2009)

5. Elshamarka, I., Saman, A.: Design and implementation of a robot for maze-solving
using flood-fill algorithm. Int. J. Comput. Appl. 56(5), 8–13 (2012)

6. Dang, H., Song, J., Guo, Q.: An efficient algorithm for robot maze-solving. In:
2010 Second International Conference on Intelligent Human-Machine Systems and
Cybernetics, vol. 2, pp. 79–82 (2010)

7. Cahn, D.F., Phillips, S.R.: ROBNAV: a range-based robot navigation and obstacle
avoidance algorithm. IEEE Trans. Syst. Man Cybern. SMC 5(5), 544–551 (1975)

8. Sadik, A.M.J., Dhali, M.A., Farid, H.M.A.B., Rashid, T.U., Syeed, A.: A compre-
hensive and comparative study of maze-solving techniques by implementing graph
theory. In: International Conference on Artificial Intelligence and Computational
Intelligence, vol. 1, pp. 52–56 (2010)

9. Cai, J., Wan, X., Huo, M., Wu, J.: An algorithm of micro mouse maze solving. In:
2010 10th IEEE International Conference on Computer and Information Technol-
ogy, pp. 1995–2000 (2010)

https://doi.org/10.1007/978-3-319-58877-3_8
https://doi.org/10.1007/978-3-319-58877-3_8
https://doi.org/10.1007/978-1-4615-6325-9_11


Recursive Backtracking Depth-First Search 543

10. Mishra, S., Bande, P.: Maze Solving Algorithms for Micro Mouse, pp. 86–93, Jan-
uary 2009

11. Wang, H., Yu, Y., Yuan, Q.: Application of Dijkstra algorithm in robot path-
planning. In: Second International Conference on Mechanic Automation and Con-
trol Engineering, pp. 1067–1069 (2011)

12. Mishra, S., Bande, P.: Maze solving algorithms for micro mouse. In: 2008 IEEE
International Conference on Signal Image Technology and Internet Based Systems,
pp. 86–93 (2008)

13. Lee, C.Y.: An algorithm for path connections and its applications. IRE Trans.
Electron. Comput. EC 10(3), 346–365 (1961)

14. Gupta, B., Sehgal, S.: Survey on techniques used in autonomous maze solving
robot. In: 2014 5th International Conference - Confluence The Next Generation
Information Technology Summit (Confluence), pp. 323–328 (2014)

15. Ginsberg, M.: Essentials of Artificial Intelligence. Elsevier Science (2011)
16. Adil, M.J.S., Maruf, A.D., Hasib, M.A.B.F.: A comprehensive and comparative

study of maze solving techniques by implementing graph theory. In: International
Conference on Artificial Intelligence and Computational Intelligence (2010)

17. Lim, T.H., Lau, H.K., Timmis, J., Bate, I.: Immune-inspired self healing in wireless
sensor networks. In: Coello Coello, C.A., Greensmith, J., Krasnogor, N., Liò, P.,
Nicosia, G., Pavone, M. (eds.) ICARIS 2012. LNCS, vol. 7597, pp. 42–56. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-33757-4 4

18. Lim, T.H., Bate, I., Timmis, J.: A self-adaptive fault-tolerant systems for a depend-
able wireless sensor networks. Des. Automat. Embedded Syst. 18(3–4), 223–250
(2014)

https://doi.org/10.1007/978-3-642-33757-4_4

	Evaluating Recursive Backtracking Depth-First Search Algorithm in Unknown Search Space for Self-learning Path Finding Robot
	1 Introduction
	2 Related Works
	3 AI-Based Recursive Backtracking Depth-First Search (RBDS) Algorithm
	3.1 Systems Design
	3.2 Platform Design
	3.3 Software Design
	3.4 Algorithms
	3.5 Robot Driving Control System

	4 Performance Evaluation
	4.1 Analysis

	5 Conclusion
	References




