
A Kind of Design for CCSDS Standard GF(28)
Multiplier

Wei Zhang(&), Aihua Dong, Hao Zhang, and Dacheng Cao

Shandong Institute of Space Electronic Technology, Yantai 264003, China
wzzw1219@126.com

Abstract. Through theoretical analysis, the calculation method of dual basis
multiplication in GF (28) field based on CCSDS Berlekamp is given. Based on
this calculation method, a VLSI architecture for parallel multiplication and serial
operation in circuits is proposed. At the same time, the hardware resource
occupation and the timing performance of each VLSI architecture are analyzed
in detail.

Keywords: CCSDS reed-solomon Code � Dual basis � Multiplication

1 Preface

In the Reed Solomon code specified in CCSDS standard, the codeword is located in GF
(28) Galois domain and is represented by Berlekamp [1]. Because the basis components
used in Berlekamp representation are not directly related to common polynomial bases,
polynomial dual bases and normal bases, the multiplication of two elements in Galois
field under the Berlekamp representation can not be applied to the more mature design
methods under the representation of other bases, such as polynomial base multiplica-
tion, dual base multiplication, normal base multiplication and so on [2]. In general, we
can transform the Berlekamp base representation to other common base representa-
tions, and the results are then converted to the Berlekamp basis after calculating. This
calculation process is relatively complicated. In this paper, a method for computing
dual basis is proposed, which can be multiplied directly on the Berlekamp basis. The
product of the two elements is still expressed by the Berlekamp basis, which greatly
simplifies the calculation process and is convenient to realize in practical circuits.

2 Theoretical Analysis

The generating polynomial of GF (28) field in CCSDS standard is shown in Formula 1:

F xð Þ ¼ x8 þ x7 þ x2 þ x þ 1 ð1Þ

The Berlekamp representation of any element Z in the GF (28) field is shown in
Formula 2:

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2021
Published by Springer Nature Switzerland AG 2021. All Rights Reserved
S. Shi et al. (Eds.): AICON 2020, LNICST 356, pp. 510–516, 2021.
https://doi.org/10.1007/978-3-030-69066-3_45

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-69066-3_45&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-69066-3_45&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-69066-3_45&domain=pdf
https://doi.org/10.1007/978-3-030-69066-3_45

z ¼ z0l0 þ z1l1 þ z2l2 þ z3l3 þ z4l4 þ z5l5 þ z6l6 þ z7l7 ð2Þ

The basic component series {li} and a group of base component series {ui} are dual
bases, and their corresponding relationship is shown in Table 1 (a is the primitive
element).

We know that the key to the implementation of polynomial dual base multiplier is
to generate polynomials in Galois domain, which defines the iterative relationship
between polynomial basis components [3]. In GF (28) domain, the iterative formula is
shown in Formula 3:

a8 ¼ a7 þ a2 þ a þ 1 ð3Þ

In the dual basis system {ui} epresented by Berlekamp, there is no iterative relationship
determined by the generating polynomial, but according to the relationship between
dual basis and trace [4], the following Formula 4, holds:

u8 ¼ a117�8 ¼ a171 ¼ Tr u8�l0ð Þu0 þ . . . þ Tr u8�l7ð Þu7 ð4Þ

Where Tr(.) is the trace function. Through calculation, the iterative relationship shown
in Formula 1 can be obtained:

u8 ¼ u7 þ u3 þ u1 þ 1 ð5Þ

The following is the multiplication operation. Suppose:

a ¼ bc ð6Þ

In the above formula,

a ¼
X

aili

c ¼
X

ciui

b ¼
X

bili

ð7Þ

Table 1. Dual relation between {li} and {ui}

{li} {ui}

l0 = a125 u0 = a117�0 = a0

l1 = a88 u1 = a117�1 = a117

l2 = a226 u2 = a117�2 = a234

l3 = a163 u3 = a117�3 = a96

l4 = a46 u4 = a117�4 = a213

l5 = a184 u5 = a117�5 = a75

l6 = a67 u6 = a117�6 = a192

l7 = a242 u7 = a117�7 = a54

A Kind of Design for CCSDS Standard GF(28) Multiplier 511

There is:

ai ¼ Trða � uiÞ ¼ Trðbc � uiÞ ¼
X7

j¼0

cjTrðbuiujÞ ¼
X7

j¼0

cjTrðbuiþ jÞ ð8Þ

When i + j � 7,

Trðbuiþ jÞ ¼ biþ j ð9Þ

When i + j > 7, let i + j = 8 + n, according to Formula 5 we can get the following
results:

Trðbuiþ jÞ ¼ Trðbu8þ nÞ ¼ Trðbu7þ n þ bu3þ n þ bu1þ n þ bnÞ ð10Þ

Formula 10 produces the following iterative relationship:

Trðbu8Þ ¼ Trðbu8þ 0Þ ¼ b7 þ b3 þ b1 þ b0
Trðbu9Þ ¼ Trðbu8þ 1Þ ¼ b8 þ b4 þ b2 þ b1

¼ b7 þ b4 þ b3 þ b2 þ b0
� � � � � �
Trðbu14Þ ¼ Trðbu8þ 6Þ ¼ b13 þ b9 þ b7 þ b6

¼ b7 þ b6 þ b5 þ b3 þ b2 þ b1 þ b0

ð11Þ

It can be seen that in CCSDS Berlekamp representation, there is also an iterative
relationship similar to the common polynomial base representation, which suggests that
we can use a similar implementation method to polynomial basis multiplication to
design multipliers.

3 Hardware Structure

In GF (28), “addition” corresponds to XOR operation in logic circuit, and “multipli-
cation” corresponds to “and” operation. The multipliers used in Reed Solomon codes
usually have serial structure and parallel structure.

3.1 Serial Structure

The hardware structure of the serial multiplier represented by Berlekamp is described in
Fig. 1. The structure adopts the form of parallel input and serial output. Each clock
cycle outputs one bit of product data. It takes 8 cycles to calculate a multiplication. The
working principle of the circuit in Fig. 1 is analyzed below.

512 W. Zhang et al.

The first clock cycle: Multipliers b8 * b0 and multipliers c8 * c0 are input into
corresponding registers in parallel. The output is:

ai ¼ b0c0 þ b1c1 þ � � � þ b7c7 ¼ a0 ð12Þ

The second clock cycle:

b
0
0 ¼ b1; b

0
1 ¼ b2; � � �; b0

6 ¼ b7 ð13Þ

b
0
7 ¼ b0 þ b1 þ b3 þ b7 ð14Þ

According to Formula 10, it can be calculated that:

b
0
7 ¼ b8 ð15Þ

The output is:

a
0
i
¼ c0b1 þ c1b2 þ � � � þ c6b7 þ c7b8 ¼ ai ð16Þ

In this way, a2, a4,…, a7 can be calculated in turn. It can be seen that the circuit shown
in Fig. 1 is essentially a pulsating structure.

3.2 Parallel Architecture

The structure of the parallel multiplier represented by Berlekamp is described in Fig. 2.
The function of module A is to calculate b8–b14 from B0 to B7 according to the
calculation method described in Eq. 8, and the function of module B is to calculate a bit
of product according to Formula 6.

Taking B8 as an example, the circuit structure for calculating the bit in module A is
shown in Fig. 3.

All B modules have the same circuit structure, as shown in Fig. 4.

b0

c4c3c2c1c0

b7b6b5b4b3b2b1

c7c6c5

ai

Fig. 1. Serial multiplier.

A Kind of Design for CCSDS Standard GF(28) Multiplier 513

Fig. 2. Parallel multiplier

b7 b3 b1 b0

b8

Fig. 3. Example of A module

bi c1 bi+1 bi+2

ai

bi+7bi+6bi+5bi+4bi+3 c11c 1c 1c 1c1c 1c

i=1...7

Fig. 4. Example of B module

514 W. Zhang et al.

4 Analysis of Resources and Time Sequence

Table 2 shows the resource usage and timing comparison of serial and parallel mul-
tipliers. In the table, Na is the number of two input AND gates. Da is AND gates’s
delay. NX is the number of two input XOR gates. DX is XOR gates’s delay. Nd is the
number of triggers.

The statistics of hardware resources in CCSDS dual base multiplier do not include
the hardware circuits needed to convert {li} basis to {ui} basis. This is because in
CCSDS Reed Solomon code decoding scheme, the common Berlekamp Massey
algorithm or Euclid algorithm uses multiple multipliers. These multipliers share the
same multiplier [5] and only need one conversion.

We can see that the XOR gate resources occupied by parallel multipliers are more
than 4 times that of serial multipliers. In FPGA, XOR gates are scarce resources (one
XOR gate for each LE), and the overall resource consumption of parallel multipliers is
relatively large. The multiplier (B0 * B7) of serial multiplier needs to be saved for the
next clock cycle, which increases the usage of 8 flip flops. In FPGA, flip flops are rich
resources and will not become a limiting factor.

From the timing point of view, the parallel structure consumes more than six XOR
gates’ inherent delay produced by a module than the serial structure. Assuming that the
delay of the parallel structure is approximately equal to that of the gate and XOR gate,
it can be estimated that the signal path delay of the parallel structure is twice that of the
serial structure.

5 Conclusion

The key to the design of CCSDS standard Reed Solomon encoder and decoder is the
multiplier design on Galois GF (28). In order to reduce the resource consumption and
improve the timing performance, the multiplier with simple structure and short path
delay must be adopted.The design method of multiplier proposed in this paper uses the
iterative relation of GF (28) field on the dual basis of Berlekamp basis, and adopts the
structure similar to polynomial basis multiplication. Compared with the commonly used
dual base multiplier, the multiplier does not need to transform from the Berlekamp base
representation to the dual base representation before the multiplication. In the calcula-
tion process, the basis transformation is performed automatically, and the calculated
product is directly expressed on the Berlekamp basis. The hardware structure of the base
transformation is omitted and the hardware structure is greatly simplified. The serial

Table 2. Performance analysis of serial and parallel architectures.

Na Nx Nd Delay

Serial 8 7 8 Da + 7Dx
Parallel A module 0 26 0 6Dx

B module 8 7 0 Da + 7Dx

A Kind of Design for CCSDS Standard GF(28) Multiplier 515

multiplier needs 8 clock cycle processing delay, while the parallel multiplier only needs
1 clock cycle processing delay, but its resource usage is large and the timing path delay
is long. In the actual using process, we can reasonably choose the serial or parallel
structure according to the requirements of encoding and decoding delay clock cycle.

References

1. CCSDS 101.0-B-6: Telemetry Channel Coding, October 2002
2. Hsu, I.S., Troung, T.K., Deutsch, L.J., Reed, L.S.: A comparison of VLSI architecture of finite

field multipliers using dual, normal, or standard bases. IEEE Trans. Comput. 37(6), 735–739
(1988)

3. Fenn, S.T.J., Benaissa, M., Taylor, D.: Bit-serial Berlekamp-like multipliers for GF(2m).
Electron. Lett. 31(22), 1893–1894 (1995)

4. Wang, X., Zhen, X.: Error correcting codes - Principles and methods. Xidian University Press,
Xi'an (2001)

5. Troung, T.K., Cheng, T.C.: A new decoding algorithm for correcting both erasures and errors
of reed-solomon codes. IEEE Trans. Commun. 51(3), 381–388 (2003)

516 W. Zhang et al.

	A Kind of Design for CCSDS Standard GF(28) Multiplier
	Abstract
	1 Preface
	2 Theoretical Analysis
	3 Hardware Structure
	3.1 Serial Structure
	3.2 Parallel Architecture

	4 Analysis of Resources and Time Sequence
	5 Conclusion
	References

