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Abstract. With the development of mobile Internet technologies, wire-
less communication is facing huge challenges under the explosive growth
of multimedia data, e.g. video conferences, online education. This makes
it difficult to guarantee the communication quality where communica-
tion resources (bandwidth, channel, etc.) are limited. In this paper, we
propose an image enhancement method to transform blurred images into
images with high perceptual quality. The proposed method serves as a
post-processing part for communication systems and is incorporated into
the receiver. Specifically, we learn the prior of high quality images using
a collected dataset. We train a neural network to accomplish this task
and adopt a multi-scale perceptual loss as the objective, which is more
consistent with the quality of experience (QoE). To validate the pro-
posed method, we train our model on a large dataset with both blurred
images and high quality images. Experimental results show that, using
a pre-collected dataset with high quality images, the proposed approach
can effectively restore the blurred images.

Keywords: Quality of experience (QoE) · Perceptual image
enhancement · Wireless communications

1 Introduction

With the rapid development of mobile Internet technologies, multimedia data
such as images and videos are becoming the mainstream. Cisco Visual Network
reported that Global IP video traffic will grow four-fold from 2017 to 2022,
with a compound annual growth rate (CAGR) of 29%. In particular, live Inter-
net video has the potential to drive large amounts of traffic as it is replacing
traditional broadcast services. Nowadays, live video already accounts for 5% of
Internet video traffic and will reach 17% by 2022 [1]. Correspondingly, the global
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average broadband speed will double from 2017 to 2022, from 39.0 Mbps to 75.4
Mbps, which exhibits a notable mismatch. When transmitting images/videos
with limited bandwidth, image compression must be applied to significantly
save the encoding bit rate [3,4]. However, commonly used image compression
methods usually have artifacts such as blocking and ringing, which may servery
degrade the quality of user experience (QoE). Moreover, these artifacts may
reduce the accuracy of subsequent classification, recognition and other high-
level tasks. Therefore, it is necessary to study the quality enhancement methods
to make the blurred image high-definition [2]. The quality enhancement module
follows the decoder to improve the degraded image quality that caused by lim-
ited bandwidth, channel and other transmission issues. The proposed approach
can not only help to improve the quality of experience (QoE) significantly but
can also be used to relieve the pressure on communication bandwidth.

Recently, there has been increasing interest in enhancing the quality of the
compressed images/videos [5,6]. The quality enhancement of image aims to
restore the original undistorted image as much as possible from the degraded
image, and at the same time improving the perceptual quality [7,15]. According
to different research methods, it can be roughly classified into two types, namely
model-based degraded image quality enhancement and data-based degraded
image quality enhancement. The whole quality enhancement process of the
model-based method includes three parts: modeling the degradation process,
estimating the degradation degree and inferring the reconstructed signal. Since
restoring the original data from degraded data is an ill-conditioned problem,
it is generally necessary to add certain prior constraints to solve it. In actual
application, it is necessary to know the degradation process in advance, and
then estimate the degradation degree so as to select the corresponding model
for restoration and solution. Data-based enhancement of degraded images is
expected to use real low-quality images and high-quality image data through
parameterized methods [9,10]. According to whether the training data is paired,
it is divided into: 1. The same image pair in the training data with low-quality
and high-quality image pairs, so the whole process can be trained by supervised
learning; 2. Degraded images and high-quality images that not corresponding
to each other, then optimization can be performed by minimizing the distance
between the reconstructed data and the distribution of high-quality images, and
the consistency of the image content before and after the restoration enhance-
ment can be ensured by the cyclic mapping method.

In this paper, we proposed a perceptual quality enhancement method with
multi-scale nerual network for video transmission toward QoE. Specifically, we
train an encoder-decoder model to exploit the relationship between the blurred
images and the high quality image for each scale. Moreover, we present multiscale
perceptual loss function that mimics conventional coarse-to-fine approaches.
Experiments on the benchmark dataset show that using the loss function of
the feature domain for training, the neural network has improved the subjective
perceptual quality of the restored image, and even achieved better results in
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Fig. 1. The framework of the proposed approach (scale s = 2). x0 is the original scale
and x1 is the downsampling scale with the stride ds = 2.

⊕
represents the average

weighted sum.

automated evaluation metrics. The corresponding framework is shown in Fig. 1.
The contributions can be summarized as follows,

– We established a QoE-oriented image quality enhancement framework. A
novel optimization objectives combing mean square error and feature-level
error to preserve the fidelity from pixel-level and semantic-level.

– We develop a multi-scale deep learning method to learn the relationships
between the blurred image and the high quality image. The multi-scale and
multi-feature learning are used to improve the performance of the proposed
approach.

The rest of this paper is organized as follows. Section 2 reviews the related work
about image enhancement and Sect. 3 presents the proposed perceptual quality
enhancement model including the network architecture and multi-scale end-to-
end optimization. Section 4 presents the experimental results on a benchmark
dataset and Sect. 5 concludes this paper.

2 Related Work

Recently, extensive works have focused on enhancing the quality of images after
compression [11–14]. In general, the input is a blurred image and the output is a
high-definition image. Through a deep neural network, a complex nonlinear rela-
tionship between the blurred image and the high-definition image is established
to improve the image quality.

The method based on deep learning needs to solve three extremely impor-
tant basic problems when applied to a specific field: high-quality data, a network
structure that can effectively extract features, and a loss function that can effec-
tively evaluate the results. In terms of data, early researchers mainly used some
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simple methods such as downsampling to generate fuzzy images on the existing
clear images to build a data set [15]. However, this simple way of generating
blurred images makes the training data not in line with the real-world data dis-
tribution, which greatly restricts the effectiveness of deep learning. Therefore,
some researchers have built a data set closer to the real world. This data set
is called the GoPro dataset [12], which meets the data needs of training neural
networks. In terms of network structure, because image deblurring is a pixel-
dense task, the network is required to generate output at each pixel, and this is
similar to some classic computer vision tasks in terms of output, such as image
semantic segmentation tasks [16]. Therefore, researchers have migrated the clas-
sic network U-shaped network in the field of image semantic segmentation to the
field of image deblurring and the U-shaped network has become almost the only
network basic framework in the field of image deblurring [17–19]. In terms of
loss function, researchers generally use a pixel-by-pixel two-norm loss function.
However, in recent years, research work has shown that the pixel-by-pixel two-
norm loss function cannot effectively describe the subjective perceptual quality
of the image. This phenomenon is called the “perceptual gap”, that is: higher
PSNR (Peak Signal to Noise Ratio) is not necessarily more in line with human
subjective perception [20–22].

Kim et al. [23] tried to solve non-uniform blind image deblurring problem. In
this paper, in contrastive the restrictive assumption that the underlying scene
is static and the blur is caused by only camera shake, authors address the
deblurring problem of general dynamic scenes which contain multiple moving
objects as well as camera shake. [11] to use deep learning technique to solve
image deblurring problem. In this paper, authors address the problem of esti-
mating and removing non-uniform blur from a single blurry image. They pro-
pose a deep learning approach to predicting the probabilistic distribution of
motion blur at the patch level using a convolution neural network (CNN). In
[12], researchers present a deep learning framework that mimics conventional
coarse-to-fine approaches, which restores sharp images in an end-to-end manner
through a multi-scale convolution neural network. To tackle the above problems,
in [24], researchers present a deep hierarchical multi-patch network inspired by
Spatial Pyramid Matching to deal with blurry images via a fine-to-coarse hierar-
chical representation. To deal with the performance saturation w.r.t depth, they
propose a stacked version of their multi-patch model.

3 Perceptual Quality Enhancement Model

3.1 Network Architecture

The framework of the proposed approach with multi-scale structure is show in
Fig. 1. For each scale, we adopt the encoder-decoder structure in Fig. 2. This
structure accepts a blurred image as input, and outputs a high-definition image
with same size as the input image. The encoder is responsible for extracting
the original image features for processing, and the decoder is responsible for
restoring a high-definition image based on the extracted features.
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Fig. 2. The network architecture of each scale. The network includes 4 encoder convo-
lutional block and 4 decoder convolutional block. Encoder convolution block 1 is the
inverse process of decoder deconvolution block 1, and so on.

As shown in Fig. 1, the encoder-decoder structure consists of two basic convo-
lutional blocks stacked: encoding convolutional block and decoding convolutional
block. The internal structure of the two convolutional blocks is shown in Fig. 2.
The encoding convolutional block is first composed of a convolution layer (the
convolution kernel size is 3× 3) followed by two residual convolution blocks [25].
The decoding convolutional block is first convolved by two residuals followed by
a deconvolution layer [26] (the deconvolution kernel size is 4 × 4). The residual
convolution block contains a two-layer convolution layer with ReLu activation
function [27]. With such basic components, we can build an encoder-decoder
structure: the encoding convolutional blocks are stacked to become an encoder,
and the decoding convolutional blocks are stacked to become a decoder, and the
two modules are symmetrical. The structure first reduces the size of the feature
map through the multi-layer convolutional neural network on the encoder side,
and increases the number of feature channels at the same time. The encoder com-
posed of a multi-layer convolutional neural network extracts the image semantic
features necessary for the deblurring task from the original input image, and
then such features are input to the decoder, and the multi-layer convolutional
network on the decoder side is gradually upsampled and increased The feature
map size is reduced while the number of feature channels is reduced, and the
processed image semantic features are decoded to generate a clear image with
the same size as the input after deblurring operation. ⊕ splices the feature maps
of the encoder and decoder as the input of the corresponding decoding convolu-
tion block. By this way, the decoder can make full use of different Hierarchical
information including the low-level and high-level features (Fig. 3).

The specific structure parameters of the network we adopted are as follows.
The encoder is composed of encoding convolutional block. The first encoding
convolutional block converts the image from a 3-channel (RGB) original image
to a 32-channel feature map with the same size. Subsequently, each of the three
encoding convolutional blocks doubles the number of input feature channels, and
at the same time reduces the size of the feature map by one time. Because of
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Fig. 3. The left is the residual block. The middle is the encoder convolution. The right
is the decoder decovolution.

the symmetry of the encoder-decoder structure, the decoder is also composed of
four decoded convolutional blocks. Each of the first three decoded convolutional
blocks reduces the number of feature channels of the input feature map by a
factor of two, while the feature map size doubled. The last decoder convolution
block converts the input feature map into a 3-channel restored image as the final
output.

3.2 Perceptual Quality Optimization

The current convolutional neural network based image quality enhancement
employ PSNR or SSIM as the optimization target. However, the PSNR of the
image does not consider the quality of experience (QoE) of users. Perceptual
quality is an objective measure of QoE. Therefore, we define the optimization
target from pixel-level and semantic-level as,

Lloss = Lpixel + Lfeature (1)

where m and n represents the height and width of the image, respectively. S is
the real clear image and O is the clear image learned by the network. In (1), the
optimization target includes two parts of the loss function in the pixel domain
and the feature domain. The loss function of the pixel domain is defined in (2).
It directly calculates the Euclidean distance of each pixel between the real clear
image and the clear image learned by the network.

Lpixel =
1

m × n

m∑

i=1

n∑

j=1

(S(i, j) − O(i, j))2 (2)

where n and m respectively represent the length and width of the image, S
represents the real clear image, and O represents the clear image generated by
the network.

Some researchers began to search for new loss functions to guide the neural
network to produce images that fit the human eye’s perceptual quality. In this
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paper, we use neural networks trained on large-scale data sets to extract features
from RGB three-channel images, or to convert images from pixel domain to
feature domain, similar to the human visual perception system Refine the image
in the same way. In this way, training in the feature domain will guide the neural
network to output images that are more in line with the perceived quality of the
human eye. The loss function of the feature domain is defined in (3). It calculates
the Euclidean distance of each element between the feature representation of the
real clear image and the feature representation of the clear image generated by
the network.

Lfeature =
1

m × n

m∑

i=1

n∑

j=1

(f(S(i, j)) − f(O(i, j)))2 (3)

We choose the pre-trained VGG16 [6] on ImageNet dataset as the feature
extraction function. The network is a neural network structure developed by the
Google DeepMind research team and the Oxford University Computer Vision
Laboratory. The neural network is formed by stacking a 3 × 3 convolutional
layer and a 2×2 maximum pooling layer. In order to use multiple feature maps,
the feature loss can be written as,

Lfeature =
1

m × n

m∑

i=1

n∑

j=1

C∑

k=1

αk(f(S(i, j)) − f(O(i, j)))2 (4)

where αk is the weights and C is the number of the feature maps.

3.3 Multi-scale Deep Learning Model

Intuitively, images always contain different features at different scales. The image
will show more texture details at large resolutions and the overall structure of
the image will be more compact at a small resolution. Therefore, under large and
small resolutions, different levels of information can be captured effectively. In
this way, multi-scale algorithms can fully extract the features of different levels
of the image and increase the accuracy of image feature description.

The multi-scale structure based on the encoder-decoder is shown in Fig. 1.
The encoder-decoder network is a fully convolutional network, and the convolu-
tional layer has no dimensional assumptions on the input of the image. Figure 1
shows the two-scale network architectures. We can see that the two encoder-
decoders are completely the same in structure. The overall network structure is
from bottom to top, and the resolution of the processed image is from small to
large. In addition, in order to accelerate convergence and strengthen the inter-
action between different scales, residual connections are also introduced in the
intermediate feature maps of the encoder and decoder of the two scales.

Lfeature =
1

m × n

m∑

i=1

n∑

j=1

C∑

k=1

αk(f(S(i, j)) − f(O(i, j)))2 (5)
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4 Experiments

Recently, a researcher proposed that the blurred frames of long exposure time can
be approximated by aggregating several consecutive short exposure time frames
in the video recorded by high-speed cameras, and released a public data set called
GoPRO data through this method [12]. The researchers used the professional
sports camera GoPRo Hero 4 Black to record. When the camera continuously
receives light during the exposure process, a blurred image is generated. The
fuzzy generation process can be modeled as,

B = g(
1
T

∫ T

t

s(t)dt) ≈ g(
1
M

M∑

i=1

s[i]) (6)

where s(t) represents the clear image corresponding to time t, and T represents
the exposure time. Correspondingly, M represents the number of sampled video
frames, and s[i] represents the i − th clear image signal sampled during the
exposure time. g represents the camera response function, which converts the
signal received by the camera into an image signal that we can observe.

The researchers used the GoPro data set to shoot 240FPS videos, and then
gathered 7 to 13 consecutive frames to obtain different degrees of blurred images,
using the middle frame in the blurred frame segment as the target clear image.
The training data of the GoPRo dataset can simulate complex camera shake
and object movement scenarios, which fits the real application scene very well,
and the amount of training data is larger than the previous dataset, which can
greatly satisfy the neural network’s training data. Therefore, this dataset has also
become the most important evaluation benchmark dataset for image deblurring
methods based on deep learning. The data set contains 3214 clear-fuzzy image
pairs. We use 2103 data for training, and the remaining 1111 data are used as
the validation set.

4.1 Settings

In the training phase, the adaptive momentum estimation optimization algo-
rithm (Adam) [8] is used to optimize the neural network, and the Adam algo-
rithm is widely used in deep learning training. The model is trained for a total of
3000 rounds, the initial learning rate is set to 0.0001, and after each 1000 rounds
of training, it is reduced to 0.3 times the current learning rate. According to
the experimental results, 3000 rounds of training can make the model fully con-
verge. In each iteration, we sample two blurred images and randomly crop the
image area of 256× 256 size as a batch (and in the test, the input is the original
size, that is, 720 × 1280), because the original input is 720 × 1280 resolution is
very large. If the original resolution of 720 × 1280 is used as input in the train-
ing phase, the video memory requirement cannot be met, and the experimental
results show that a 256 × 256 cropped image block contains enough informa-
tion to make the neural network Learn the mapping relationship from blurred
images to clear images. The input image is divided by 255 and normalized to the
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range [0, 1], then 0.5 is subtracted, and normalized to the range [−0.5,−0.5]. All
trainable parameters of the model are initialized using Xavier [9] initialization
method. All experiments are performed on an NVIDIA Titan X.

4.2 Performance of the Proposed Approach

Objective Evaluation. This section compares several previous algorithms on
the benchmark data set. Because the training data of the GoPro data set contains
general camera shake blur and object movement blur, the model trained on such
a data set has the ability to deal with non-uniform blur, so it is compared with
many traditional algorithms under the assumption of uniform blur. it’s meaning-
less. The algorithm proposed by Whyte [12] can be used as a representative of
the classic non-uniform deblurring algorithm. In addition, the comparison algo-
rithm also includes the algorithm proposed by Nah [3], the algorithm proposed
by Tao [10] and the algorithm proposed by Sun [2]. Nah introduced multi-scale
structure into the field of image deblurring for the first time. On the basis of
Nah, a recurrent neural network was added, and Sun used a convolutional neural
network to estimate the local fuzzy kernel, and then applied random fields and
traditional deconvolution algorithms to restore the entire clear image.

Table 1. Performance of different approaches.

Approaches Sun [11] Nah [12] Tao [31] Ours

PSNR 24.64 29.08 30.10 30.43

SSIM 0.8429 0.9135 0.9323 0.9031

Time 20min 3.09 s 1.6 s 0.26 s

The automated evaluation indicators are shown in Table 1. It can be seen
from Table 1 that this model is not inferior to the comparison algorithm in
the automated evaluation index (the PSNR is even better than the comparison
algorithm). In addition, one advantage of this model compared to the comparison
algorithm is that it takes less time to process a picture (0.26 s vs 1.6 s), which
makes this model more practical in some scenarios that are extremely sensitive
to time loss (such as video Stream processing, etc.).

Subjective Evaluation. The visual results of the proposed approach is shown
in Fig. 4 with three images randomly sampled from the test dataset. The first
row is the original blur image. The second row is the quality enhancement result
by Whyte et al. It can be observed that Whyte algorithm failed to restore the
photos with good sharpness, and the visual effect is very poor, such as the first
picture. The black streaks seriously affect the sensory quality. Sun’s algorithm
is also unable to restore effective clear images. It can be seen that the third row
has almost no effect on removing blur compared to the first row, because Sun’s
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model is trained on artificially synthesized data sets, and Compared with real
fuzzy data, artificially synthesized data is too simple to represent the real-world
data distribution well. Nah’s algorithm can output a certain quality of clear
images. Nah’s algorithm can output a certain quality of clear images, but there
is still a considerable degree of blur compared to the proposed model, because
the number of layers of the proposed model is deeper. Tao’s model can produce
clearer restored images. The results of the proposed model are similar to those
of Tao. But the overall look and feel of the results of the proposed model is
sharper, such as the text in the blue box area in the second row. In the output
result of the proposed model, the text in this area is clearer than the result
of Tao. Moreover, the proposed approach takes less time to process an image,
which makes this model more suitable for actual production scenarios, because
in actual production and life, the application scenarios for image deblurring are
often some Scenarios that require rapid response, such as monitoring equipment
or video stream processing. In these scenarios, the image processing speed and
image quality are equally important. Compared with Tao’s model, the delay of
this model is reduced by more than 1 s.

4.3 Ablation Study

Performance of Different Scales. In order to analyze the effect of multi-scale
structure, models of different scale levels are trained. The evaluation results
of these models are shown in Table 2. Considering the trade-off between the
limitations of video memory and training time and the performance improvement
brought by increasing the scale level, the network is only stacked to three scales
at most.

Table 2. Performance of different scales.

Scale-level 1 2 3

PSNR 30.37 30.45 30.43

SSIM 0.9018 0.9031 0.9030

It can be seen from Table 2 that the introduction of multi-scale has improved
the performance of the neural network. Among the three scale parameter set-
tings, the neural network with a scale parameter of 2 has the best performance.
Compared with a basic encoder-decoder network, That is, for a network with
a scale level of 1, the PSNR increased by 0.08 dB, and the SSIM increased by
0.0013. However, the network performance of scale level 3 has not been fur-
ther improved, but has slightly decreased. This phenomenon is more difficult to
explain. In the specific experiment, at the beginning, we guessed that the stack-
ing of scales caused the network to deepen and the trainability problem, so we
tried to use the multi-scale loss function proposed in the Nah algorithm, that
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Fig. 4. Visualization of image quality enhancement by different methods. The first row
is the original blurred image. The second row is the result of Whyte’s method. The
third row is the result of Sun’s method. The fourth row is the result of Nah’s method.
The fifth row is the result of Tao’s method. The sixth row is the result of our proposed
method.



Perceptual Quality Enhancement with Multi-scale Deep Learning 37

Fig. 5. Visualization of image quality enhancement with different losses. The first col-
umn is the original blurred image. The second column is the result with MSE loss. The
third column is the result with MSE loss and perceptual loss.

is, the output result of each scale is subjected to the loss function The calcula-
tion (ground truth is directly obtained by downsampling the clear image of the
original resolution), but the result of the training strategy training in this way
has been described in the previous section. The training loss of the model drops
very quickly, but in the validation set The PSNR and SSIM indicators are far
lower than those of models trained without multi-scale loss function. Therefore,
we believe that the introduction of a multi-scale loss function may cause the loss
function of the model to be dominated by the low-resolution image deblurring
results, that is to say, it is overfitted to the low-resolution output results. This
is obviously not the result we expected, so the multi-scale loss function is not
used.
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Table 3. Performance of different losses.

Loss function MSE MSE+VGG9 MSE+VGG23 MSE+VGG 9 23

PSNR 30.16 30.30 30.21 30.45

SSIM 0.8991 0.9009 0.9007 0.9031

Performance of Different Losses. In order to analyze the impact of intro-
ducing feature loss, a comparative experiment with and without feature loss is
carried out. Table 3 shows the impact of the introduction of the feature loss
function on the performance of the neural network during the training phase. In
the experiment, the feature maps of the 9th and 23rd layers of the VGG network
are used for perceptual loss, and the weighted coefficients are 0.002 and 0.0015,
respectively. It can be seen from the results in Table 3 that the introduction of
feature loss, whether it is a separate 9th layer, a separate 23rd layer, and the
combination of 9th and 23rd layers, has brought a great improvement in perfor-
mance. It can be seen that the feature loss of adding two layers at the same time
is the most obvious for the model performance improvement. Figure 5 shows
three examples of visual results. It can be seen that the networks generated by
the two training strategies (introducing feature loss vs without introducing fea-
ture loss) can remove blur better, and the deblurring generated by the neural
network that introduces the feature loss function The image will become clearer
and more realistic at the edges (such as the edge of the clothes of the person on
the left) and texture (such as the front window glass of the car in the picture).

5 Conclusions

For the purpose of image deblurring, this paper adds a simple loss function to
the original pixel-wise two-norm loss function and performs multi-scale expan-
sion on the network structure to improve the subjective perception quality and
objective quality of the restored image. We established a QoE-oriented image
quality enhancement framework and adopted a novel optimization objective that
combines mean square error and feature-level error to preserve the fidelity from
pixel-level and semantic-level. We developed a multi-scale deep learning method
to learn the relationships between the blurred image and the high quality image.
The multi-scale and multi-feature learning are used to improve the performance
of the proposed approach. Experiments on the benchmark data set for image
deblurring show that when using feature domain loss function for training, the
multi-scale image processing network has improved the subjective perceptual
quality of restored images, and achieved better results in objective quality.
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