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Abstract. Industrial Internet of things (IIoT) has been envisioned as a
key technology for Industry 4.0. However, the battery capcity and pro-
cessing ability of IIoT devices are limited which imposes great challenges
when handling tasks with high quality of service (QoS) requirements.
Toward this end, in this paper we first use multiple unmanned aerial
vehicles (UAVs) equipped with computation resources to offer computa-
tion offloading opportunities for IIoT devices due to their high flexibility.
Then we formulate the multi-UAV-enabled computation offloading prob-
lem as a mixed integer non-linear programming (MINLP) problem and
prove its NP-hardness. Furthermore, to obtain the energy-efficient solu-
tions for IIoT devices, we propose an intelligent algorithm called multi-
agent deep Q-learning with stochastic prioritized replay (MDSPR). Sim-
ulation results show that the proposed MDSPR converges fast and out-
performs the normal deep Q-learning (DQN) method and other bench-
mark algorithms in terms of energy-efficiency and tasks’ successful rate.

Keywords: UAV-enabled IIoT · Deep reinforcement learning ·
Computation offloading

1 Introduction

Industrial Internet of things (IIoT), as an emergying communication paradigm,
is expected to evolutionize manufacturing and also drive growth in productivity
across various types of applications such as smart factories and smart grids [1]. It is
important toprovide the required quality of service (QoS) in terms of reliability and
real-time to IIoT applications [2]. However, the battery capacity and processing
ability of IIoT devices are limited, which imposes great challenges when handling
tasks with characteristics of computation-sensitive and latency-sensitive.
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Recently, with the rapid developement of mobile edge computing in IIoT,
local devices can choose to offload the latency-sensitive tasks to edge servers
through wireless access which can effectively alleviate the computation stress in
local [3]. Due to the high flexibility and controllbility, unmanned aerial vehicles
(UAVs) equipped with computation capabilities can act the role of edge servers
to enable edge computing even in the absence of wireless infrastructures [4]. Fur-
thermore, the communication links between devices and UAVs are largely line
of sight (LoS) links [5], which will improve the reliability in both uplink and
downlink transmission. The studies of energy-efficient computation offloading in
IIoT with UAVs assisted are still remain as an open issue. In [4], a single UAV
servers as a moving cloudlet for mobile users, aiming to minimize the total energy
consumptions by jointly optimizing the bits allocation for uplink and downlink
communications. [5] considers a stochastic task arrival model and obtains an
energy-efficient offloading solution through Lyapunov optimization [6]. Consid-
ers a multi-UAV scenario and solving the non-convex computation offloading
problem with iterative optimization algorithm. [7] studies the computation rate
maximization problem under both partial and binary computation offloading
modes subject to the energy constraints.

However, the solutions to the complex computation offloading problems in
the aforementioned works [5–7] are based on one-shot optimization and fail to
maximize the long-term performance of computation offloading. Moreover, these
solutions are obtained under a specific model and require a priori knowledge of
the network model, if the channel fading is fast, they cannot meet the require-
ment of real-time decision. Furthermore, the computation capabilities in devices
are limited in IIoT, algorithms with high time complexity cannot run efficiently
in the processor of devices. To obtain long-term rewards and real-time offloading
decisions, deep reinforcement learning (DRL), as an emerging artificial intelli-
gence technique, has been introduced to complex computation offloading prob-
lems with low complexity [8,9] proposes a deep dynamic scheduling algorithm to
solve the offloading decisions problem with minimum energy costs using deep Q-
learning (DQN). [10] considers a computation offloading problem with stochastic
vehicle traffic, dynamic computation requests and time-varying communication
conditions, and uses Q-learning as offline solution, DQN as online solution.

Motivated by the aforementioned issues, in this paper, we focus on the energy-
efficient binary computadtion offloading problem in IIoT with UAV assited. IIoT
devices can choose to execute the tasks locally or offload the tasks to UAVs
through LoS links or offload the tasks to the remote cloud center through base
stations. Compared with [4,5,7] which focus only on a single UAV, we use multi-
ple moving UAVs as edge servers to provide computation offload opportunities,
which is more practical due to the limited battery capacity of UAVs. We first
propose the multi-UAV-enabled network model and formulate the computation
offloading problem as a mixed integer non-linear programming (MINLP) prob-
lem. Branch and bound (BB) method can be used to solve the problem [8] but
with prohibitively high computational complexity. [9] proposes an iterative opti-
mization method to solve the MINLP problem, however, the complexity grows
rapidly as the size of the network increases. To address this, we propose our multi-
agent deep Q-learning with stochastic prioritized replay (MDSPR) to solve the
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problem distributedly and efficiently. Compared with [9,10] using normal DQN
and DDQN, our method choose training experiences with high priorities instead
of choosing randomly, which can accelerate the training process and improve
convergence stability.

2 System Model and Problem Formulation

Fig. 1. Multi UAV-Enabled IIoT devices computation offloading network model.

We consider a three-layer UAV-Enabled IIoT computation offloading network
model where IIoT devices process the tasks assigned from IIoT control centers,
each IIoT device can choose to execute the tasks locally or offload the tasks
to the UAVs or offload the tasks to the remote cloud center through terristrial
base stations, and send the execution results back to control centers, as shown
in Fig. 1. UAVs with communication and computation abilities act the role of
MEC servers. M = {1, 2, ...,M}, N = {1, 2, ..., N} denote the devices’ set and
UAVs’ set, respectively. IIoT devices are distributed in an area with a radius
of K and UAVs hover above the devices with a height of H. The locations of
devices and UAVs during a single time interval t ∈ {1, 2, ..., T} can be expressed
as qi(t) = (xi(t), yi(t)), i ∈ M and pj(t) = (Xj(t), Yj(t),H), j ∈ N , respectively.
Moreover, tasks can be modelled as Wi(t) = (si(t), ci(t), di(t)) according to [3],
where si(t) denotes the total bits of the task, ci(t) denotes the total CPU circles
required by the task and di(t) denotes the tolerant delay of the task. In this
paper, we assume UAVs flying with a random speed v in the fixed area, qi(t),
pj(t) remain unchanged in a single time slot and there is a coming task for each
IIoT device in a single time interval.

2.1 Communication and Computation Model

According to [8] the line of sight (LoS) channel gain between i-th IIoT device
and j-th UAV can be modelled as

hj
i (t) = β0d

−2(t) =
β0

H2 + ||qi(t) − pj(t)||2
, (1)
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where β0 denotes the channel gain at the reference distance d0 = 1 m. Tasks can
be offloaded to UAVs or the cloud center through wireless channle. Each IIoT
device is associated with UAVs using orthogonal frequency-division multiplexing
(OFDM). Tasks can be successfully offloaded to UAVs if the distance d between
UAVs and devices is less than R, where R denotes the communication range of
UAVs.

Since the size of the processed tasks can be negligible compared with the
original tasks, in this paper, we only consider the uplink transmission. The uplink
transmission rate between i-th IIoT device and j-th UAV can be expressed as

rji (t) = Blog2
(
1 +

Phj
i (t)

σ2

)
, (2)

where B is the allocated bandwith for IIoT devices, P is the uplink transmission
power of IIoT devices, σ2 denotes the background noise power, and we assume
that it is constant on the slow fading channel [7]. The uplink transmission rate
of an IIoT device i that chooses to offload the task to the cloud through wireless
link can be denoted as

rci (t) = ωlog2
(
1 +

PcHi(t)
σ2

)
, (3)

where w, Pc, Hi(t) denote the bandwith, transmission power , the channel gain
between i-th IIoT device and cloud, respectively. For UAV computation offload-
ing, the task transmission time can be expressed as

Lj
i (t) =

si(t)
rji (t)

, (4)

for cloud computation offloading, according to [7] the transmission time can be
denoted as

Lc
i (t) =

si(t)
rci (t)

+ τ, (5)

where τ denotes the uplink propogation delay factor due to congestion of the
bachhaul link. To simplify the analysis, all the UAVs are assumed to have the
same computation capacity, denoted as Cu. The computatioin capacity of IIoT
devices and the remote cloud center are denoted as Cl and Cc, respectively. Thus
the local task computation time can be expressed as

Ll(t) =
ci(t)
Cl

, (6)

according to [7], the energy consumption of local computation can be given as

El
i(t) = θci(t)2, (7)

where θ is the factor denoting the consuming energy per CPU cycle. The task
computation time in UAV can be denoted as

Du(t) =
ci(t)
Cu

. (8)
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Note that,the cloud processing time can be negligible since the computation
capacity is enormous in cloud center. Thus, for UAV offloading cases, the total
communication energy can be expressed as

Ej
i (t) = P (Lj

i (t) + Du(t)), (9)

for cloud offloading cases, the total energy consumptions can be modelled as

Ec
i (t) = Pc(Lc

i (t) + τ), (10)

2.2 Problem Formulation

In each time interval IIoT devices should make offloading decisions, we define I =
(I1(t), I2(t), ..., IM (t)) as the offloading indicated vector in a single time interval,
where Ii(t) ∈

{
I−1
i , I0i , I1i , ..., IMi

}
, ∀t ∈ T,∀i ∈ M is an indicator which can be

used to describe an offloading decision, Iki ∈ {0, 1} , k ∈ {−1, 0, 1, 2, ..., N}. Let
E(t) ∈

{
Ec

i (t), E
j
i (t), E

l
i(t)

}
, L(t) ∈

{
Lc
i (t), L

j
i (t), L

l
i(t)

}
. The energy consump-

tion of a singe task can then be derived as

Ei(t) = Ii(t)E(t) =

⎧
⎪⎨
⎪⎩

Ec
i (t), k = −1

El
i(t), k = 0

Ej
i (t), k ∈ M

(11)

Our objective is to minimize the total energy cosumptions of all IIoT devices in a
time period T through optimizing the offloading indicated vector while satisfying
the basic constraints. Thus, we can formulate the energy-efficient multi-agent
computation offloading problem as follows

min
I ,p,q

T∑
t=1

M∑
i=1

Ii(t)Ei(t).

s.t. C1 : Iki ∈ {0, 1} ,∀i ∈ M, k ∈ {−1, 0, 1, 2, ..., N}

C2 :
N∑

k=1

Iki ≤ 1,∀i ∈ M, k ∈ {−1, 0, 1, 2, ..., N}

C3 :
M∑
i=1

Ii(t) ≤ W, Ii(t) ∈
{
I1i , ..., IMi

}

C4 : Ii(t)L(t) ≤ di(t),∀i ∈ M,∀t ∈ T
C5 : H2 + ||qi(t) − pj(t)||2 ≤ R2,∀i ∈ M,∀t ∈ T

(12)

C1 indicates that Iki is a binary variable. C2 shows that if a task is choosen to
offload to UAVs, it can only be offloaded to a single UAV. C3 gives the constraints
that tasks need to be executed in UAVs cannot exceed the maximum limit. C4
guarantees that the task can be finished within the tolerant delay. C5 means if
i-th IIoT devices offload the task to j-th UAV, the distance between the device
and UAV should less than the communication range of the UAV.



300 S. Shi et al.

3 Proposed Intelligent Computation Offloading
Solution : MDSPR

In this section, we present our solutions using multi-agent deep Q-learning with
stochastic prioritized replay (MDSPR) for the energy-efficent multi-agent com-
putation offloading problem.

3.1 Markov Decision Process Modeling

We first model the problem as a markov decision process (MDP). A MDP
involves a agent that repeatedly observes the current state st during a time
period. Agents interact with the environment through making actions a among
all the available actions in that state, and the environment gives a feedback
reward rt to agents. Then, the agent will transfer to a new state st+1 with a
transition probability P (st+1|st, a). A typical MDP tuple can be modeled as
< S,A,F ,R,S ′ >.

State Space. A state vector should reflect the agents’ perception of the envi-
ronment. According to our network model, we define st = {S1,S2,S3,S4} as the
state vector. S1 = {si(t), ci(t), di(t)} reflects the task properties in each time
interval. S2 = {xi(t), yi(t)}, S3 = {X1(t), Y1(t),X2(t), Y2(t), ...,XN (t), YN (t)}
denotes the current locations of the IIoT device and UAVs.

S4 =
{
Hi(t), h1

i (t), h
2
i (t), ..., h

N
i (t)

}
gives the channel conditions between i-

agent and different offloading objectives. The dimension of a state vector is 3N +6.

Action Space. A = {−1, 0, 1, 2, 3, ..., N} represents the action space. Here
a = −1 means to offload the task to cloud center, a = 0 means to execute the
task locally, a = {1, 2, 3, ..., N} denotes that the agent chooses to offload the task
to UAVs.

Transition Probability. F denotes the probability distribution P (st+1|st,
{a}a∈A) ∈ [0, 1] when state transition happens. Note that, in our network model,
the agent cannot predict the state and reward of next state before making actions,
so the MDP problem needs to be solved by model-free reinforcement learning
method, in which the transition probabiliy distribution remains unknowm.

Reward Function. The reward function is a immediate feedback for agents’
actions from the environment. In our optimization problem, the objective is to
minimize the total energy consumptions of agents, so the reward function should
be inverse proportional to energy consumptions, which can be defined as

r(t) =

⎧
⎪⎪⎨
⎪⎪⎩

1
Ii(t)E(t)

, Ii(t)E(t) ≤ di(t)

1
Ii(t)E(t)

− m, Ii(t)E(t) > di(t)
(13)

where m is a punishment factor when the delay constraint is not satisfied.
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3.2 Deep Q-Learning Structure

In this paper, we use deep Q-learning structure to solve the MDP. Deep Q-
learing (DQN) is a promising reinforcement learning technique which combines
deep learning with Q-learing aiming to solve complex problems in communi-
cation and networking [9]. Compared with Q-learning, DQN uses deep neural
networks to replace the traditional Q-table, so that DQN can overcome the curse
of dimensionality in Q-learning. The key idea of DQN is to use neural network
as a function approximator. Given input state st, the output of neural network
is Q(s, ai;w), where w is the weights of DQN.

Experience replay is an important technique to improve training efficiency
in DQN. Since there is no Q-table in DQN, in a series of actions, the training
samples may have strong correlations which will make learning process fall into
local optimum. To solve this, DQN introduces a replay memory D, once the
agent obtain a new experience < st, at, rt, st+1 >, the experience is stored in D.
Each training step a mini-batch with size L is randomly sampled from D instead
of a one step experience.

In the training stage, despite the current network Q(s, ai;w), DQN intro-
duces another target network Q(s, ai;w’) to produce target value. The weights
of Q(s, ai;w’) are updated every Z training steps. The target value is defined as

yt = rt + γ max
a′∈A

Q(s′, a′;w’), (14)

where γ denotes the reward decay in DQN. However, recent research has
proved that the greedy iteration method may cause overestimation. Double DQN
(DDQN) is proposed to eliminate overestimation which can be expressed as

yt = rt + γQ(s′, argmax
a

Q(s, ai;w);w’), (15)

DDQN eliminates the problem of overestimation by decoupling the selection
of target Q action and the calculation of target Q into two neural networks.
Temporal difference error (TD-error) is defined as the difference between target
value and current value which can be denoted as

δjt = |yt − Q(st, a1, a2, ..., aN )|,∀t ∈ T ,∀j ∈ N (16)

The loss function is defined as the least squared loss of TD-error denoted as

L(w) = E[(ytarget − Q(s, a;w))2]. (17)

L(w) can be minimized through back propogation methods in deep learning, in
this paper we use the classic gradient descent method

w = w − α �w L(w), (18)

where α is the learning rate.
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3.3 Stochastic Prioritized Replay

Traditional experienced replay method selects L experiences randomly from D,
however, the importance of experiences in replay memory are different. Experi-
ences with larger TD-errors may have better training effect. Furthermore, simply
choosing L experiences with the largest TD-errors (greedy prioritized) in each
training step will cause high time complexity since the size of D is large. There-
fore, according to [2], in this paper we use deep Q-learning with stochastic priori-
tised replay. We adopt the binary tree structure to store and sample experiences
with priorities to accelerate the training process with relative low time complex-
ity. The top node stores the sum of all priorities in D, in sampling stage, the sum
is divided equally into L intervals. In sampling stage, each interval generates a
random count in its range, and then starts to search downwards with the top
node as the parent node. If the input value is less than the left child node, the
left child node is regarded as the parent node to continue the downward search,
otherwise, the input value is subtracted by the value of left child node, then, the
right child node is denoted as the parent node, and the difference is used as an
input to continue searching downwards until the last layer, and the experience
corresponding to the parent node is the output sample. The chosen probability
distribution of sk can be denoted as

P (k) =
pk∑O
d=1 pd

. (19)

where O denotes the capacity of D. (19) shows that the higher the priority, the
greater the probability of being selected. Moreover, the iterations of stochastic
prioritized replay during each sampling process is L ∗ log2(O), compared with
greedy prioritized L ∗ O.

4 Simulation Results

Fig. 2. The convergence performance of the proposed MDSPR.
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First, we show the convergence performance of the MDSPR. Figure 2 shows the
changes of loss over training steps, it is observed that the loss reduce rapidly
at the beginning. This is because at the beginning of the training, agents take
actions randomly and the approximation is not precise. After 600 steps the loss
become stable, which indicates the convergence of MDSPR. We then compare the
performance of our MDSPR with three benchmark algorithms, namely random
algorithm, DQN algorithm and DDQN algorithm. Figure 3 shows the average
energy consumptions of a mobile user when dealing with a single task. Since
the tasks are generated with random si, ci, di, an inappropriate offloading deci-
sion may cause huge additional energy comsumptions. For example, if a task
with high computation requirement and small size is executed in local, the cost
will increase significantly compared with that the task offloaded to the remote
cloud center. In the first n training steps, the agent makes offloading decisions
according to ε-greedy policy, after the learning stage, the average energy con-
sumptions become stable due to the convergence of neural networks. Figure 4
shows the total energy consumptions under different number of tasks after the
learning stage. From Fig. 4, it can be seen that the proposed MDSPR outper-
forms the three benchmark algorithms. The reason is that in each training step,
MDSPR chooses more valuable experiences to learn, thus maximizing the overall
long-time reward. Furthermore, it is observed that with the increase of tasks,
the energy consumptions increase approximately linearly. This is because agents
make offloading decisions upon each task arrival according to the maximum
Q-value. After the convergence of the neural network, the action with highest
Q-value has a high probability to obtain minimize energy consumptions.

Fig. 3. The average energy consumptions of a mobile user when dealing with a single
task.
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Fig. 4. The average energy consumptions of a mobile user when dealing with a single
task.

5 Conclusion

In this paper, we study the energy-efficient computation offloading problem in
UAV-enbaled IIoT network. To release the computation burden of IIoT devices,
we use UAVs as edge servers to provide computation offloading opportunities
and formulate the multi-UAV-enabled computation offloading problem as an
MINLP problem and prove its NP-hardness. To obtain energy-efficent decisions,
we propose our MDSPR solution. Simulation results show that the proposed
MDSPR converges fast and outperforms the normal DQN method and other
benchmark algorithms in terms of energy-efficiency and tasks’ successful rate.
Partial computation offloading and resource allocation issues in IIoT will be left
as our future works.
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