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Abstract. In recent years, unmanned aerial vehicle (UAV) technology has been
widely used in industry, agriculture, military and other fields, and its positioning
problem has been a research hotspot in this field. To solve the problem of
invalidation of integrated navigation of global positioning system (GPS) and
strapdown inertial navigation system (SINS) in indoor and other areas, this
paper presents a multi-source information fusion location algorithm based on
machine vision positioning and SINS. Based on image coordinate system (ICS),
body coordinate system (BCS) and navigation coordinate system (NCS), com-
bined with AprilTags recognition and positioning technology, this paper builds
NCS with AprilTags array to get the position observation of UAV. Based on the
idea of multi-source information fusion, this paper applied third-order fused
complementary filter algorithm, which combines with the SINS to obtain
accurate three-axis speed and position estimation. Finally, the reliability is
verified by the test of the UAV experimental platform.

Keywords: Unmanned aerial vehicle � Strapdown inertial navigation system �
Multi-Source information fusion

1 Introduction

As a new member of small Unmanned Aerial Vehicles (UAVs), quad-rotor UAVs have
many advantages, such as small size, flexible flight, vertical takeoff and landing,
hovering at fixed points, and portability. It has been widely used in military surveil-
lance, disaster prediction, agricultural mapping and civil life, and has gradually become
a hot topic for researchers and scholars.

A stable control and execution system is a prerequisite for the normal operation of
an unmanned aerial vehicle. Accurate, low-latency, low-noise estimation for attitude,
speed and position are necessary for the normal operation of the controller. So far, no
sensor has been able to measure the flight attitude, speed and position of an UAV at
anytime and anywhere with precision and no delay in the navigation coordinate system.
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There are many sensors that can be used to estimate the flight status of an UAV, but
they have different working principles, measuring objects, working conditions and data
delays. Therefore, it is difficult to estimate the flight status of an UAV accurately, with
low delay and low noise through a single sensor or through multiple sensors without
any processing.

In recent years, the concept of multi-source information fusion has been proposed,
and the location method for UAV based on this concept has gradually become a
research hotspot in this filed. Based on an inertial measurement unit (IMU) consisting
of a three-axis gyroscope and accelerometer [1], as well as an array of magnetic angular
rate and gravity (MARG) sensors including a three-axis magnetometer, the direction of
gyroscope measurement error is calculated as a quaternion derivative, and
accelerometer and magnetometer data are allowed to be used to analyze. Therefore,
reliable estimation of UAV flight attitude can be achieved. The strapdown inertial
navigation system has periodic oscillation error in pure inertial navigation mode, which
seriously affects the navigation accuracy. In [2], according to the principle of equiv-
alence, the external horizontal damping network of SINS is designed, and the periodic
oscillation is suppressed by the difference between the velocity of the system itself and
the velocity of the electromagnetic log, which improves the accuracy of the system.

It is difficult to achieve accurate and reliable state estimation by IMU alone. In [3],
the accuracy of the airborne GPS in a static environment is evaluated and its avail-
ability in low-cost projects is demonstrated. The combination of GPS and strapdown
inertial navigation is a feasible method for state estimation. However, the update fre-
quency of GPS is much lower than that of SINS. The two streams are out of sync,
which affects navigation accuracy. In [4], a digital high-pass filter is used to pre-filter
the measured signal and to filter the Schuler period of the difference between SINS and
GPS discrete velocity, which greatly improves the navigation accuracy. At present, the
common method of SINS/GPS integrated navigation system is based on ground speed,
which has some limitations and is interfered by abnormal measurements. In [5], a
dynamic coarse alignment method for SINS/GPS integrated system based on location
track is presented, which is proved to be more robust than the current popular methods
through simulation and measurement. Aiming at the integration of SINS with GPS and
the possible violation of Gaussian assumption of process noise [6], a new process
uncertainty robust Student’s t-based Kalman filter for process uncertainty is presented,
and its robustness in suppressing process uncertainty is proved.

However, in many cases, GPS does not work properly, and SINS requires other
location observation sensors to participate in multisource information fusion. By cal-
culating the time difference of arrival (TDOA) of the transmitted signal [7], a new
positioning method based on multipoint positioning is proposed to replace the GPS
positioning method. In [8], a colored noise model is proposed using the received signal
strength (RSS) by the onboard communication module and applied to the extended
Kalman filter (EKF) for distance estimation. In [9], a particle swarm optimization
algorithm is proposed for wireless self-organizing sensor networks. The UAV location
search model is described as a constrained optimization problem of a multi-objective
utility function to dynamically obtain the optimal location of multi-UAVs.

Machine vision-based indoor positioning of robots, including UAV positioning, is
also a hot research direction. The abundant parallel lines and corner points on the
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ceiling can be used as visual positioning features for indoor mobile robots. In [10],
based on the natural characteristics of the ceiling, a new visual positioning method is
proposed, and its validity is verified by error analysis and experiments. Redundant
navigation systems are essential for the safe operation of UAVs in high-risk envi-
ronments. In [11], a visual-based path tracking system is proposed for the autonomous
and safe return of UAVs under major navigation failures such as GPS interference.

Based on the above observation, this paper aims to designing an indoor navigation
algorithm for UAV based on multi-source information fusion of machine vision
positioning and strapdown inertial navigation. Specifically, the focus of this study
includes:

i. Based on the ground positioning tag array and the flight attitude of the UAV, a
real-time positioning method based on the onboard visual unit is constructed, and
the estimation of yaw is further corrected.

ii. Visual localization has some problems, such as slow update rate, high delay, easy
mutation and failure. Combining strapdown inertial navigation with advantages of
low latency, high update rate and long-time stability, an optimal estimation of the
UAV’s attitude, speed and position can be obtained by means of multi-source
information fusion. The effectiveness of the method is proved by the actual
measurement.

2 Inertial Navigation

Strapdown inertial navigation requires a mathematical platform coordinate system
constructed from the flight attitude angle of the UAV, and then the platform inertial
navigation estimation is performed. SINS is built on the body coordinate system
(BCS) and navigation coordinate system (NCS). The rotation matrix Rn

b describes the
process that the coordinate of a point changing from BCS to NCS. Defining pitch (h),
roll (c) and yaw (w) as the angles of rotation about X, Y, Z axes, we can obtain Rn

b and
Rb
n as follows:

Rn
b ¼

cos c cosw sin h sin c cosw� cos h sinw cos h sin c coswþ sin h sinw
cos c sinw sin h sin c sinwþ cos h cosw cos h sin c sinw� sin h cosw
� sin c sin h cos c cos h cos c

2
4

3
5

ð1Þ

Rb
n ¼ Rn

b

� �T¼ Rn
b

� ��1 ð2Þ

The acceleration vector measured by the onboard IMU is rotated to NCS by a
fictitious mathematical coordinate system. The acceleration of the body motion is
expressed on NCS by platform inertial navigation, and then the speed and position
estimation of the UAV is obtained by integrating as follows:
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avn ¼ kR þRn
b

� �
amb þ kmð Þ � kggn ð3Þ

€sn ¼ _vn ¼ avn ð4Þ

Where avn denotes motion acceleration vector in NCS, amb denotes measuring accel-
eration vector in BCS, gn denotes gravity acceleration vector in NCS, kR denotes the
error component relative to real rotation matrix, km denotes the measurement error of
IMU, kg denotes rate of variation of gravity acceleration with height, sn and vn
respectively denote speed and position in NCS.

It can be seen from (3) that although SINS can provide three-axis speed and
position estimation during the flight of an UAV, it is difficult to conform to the real
results due to various errors and interference.

3 Visual Orientation

AprilTags is a visual reference library, which can quickly realize 3D positioning and
inclination measurement (see Fig. 1), and is widely used in robot positioning tech-
nology. Considering the power consumption and load-carrying capacity of small
UAVs, this paper creates an AprilTags visual localization algorithm based on
monocular vision and AprilTags array.

3.1 AprilTags Location Algorithm

AprilTags identification and positioning system [12] is mainly composed of tag
detector and coding system. The tag detector is used to locate the tag and detect the tilt
angle. The encoding system is used to extract the information contained in the tag.

AprilTags recognition and positioning is mainly done in three steps [13]. Firstly,
calculate the gradient of each pixel and further detect the segments in the image.
Secondly, a depth-first search method based on depth 4 is used to find quadrilateral in
the image. Compare the standard libraries to determine if tags exist in the quadrilateral
and the ID of the tag. Thirdly, the isotropic matrix is calculated by direct linear

Fig. 1. AprilTags location and recognition
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transformation [14], and the relative position and rotation angle between the label and
the camera are calculated.

3.2 AprilTags Array Location Algorithm

In this paper, several AprilTags are arranged into a two-dimensional array at regular
equal distances (see Fig. 2). According to the tag position and ID number in the field of
view, as well as the UAV attitude angle, the relative position relationship is constructed
(see Fig. 3).

In Fig. 3, OXYZs denotes horizontal body coordinate system (HBCS), OXYZb
denotes BCS, a denotes the AprilTags array plane, b denotes the image plane with Z
axis of BCS as normal, T denotes the center of the identified AprilTag, A denotes the
projection of camera normal on b, B denotes the projection of UAV on a. The position
deviation between tag center and image center can be represented by orthogonal TiC
and CA.

Assuming that the angle between vector O
*

C and vector O
*

P is hT , the angle

between vector O
*

C and vector O
*

T is cT , and the positive direction of rotation is
defined by the right-handed helix rule, the relationship can be obtained as below:

Fig. 2. AprilTags array
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where d is a constant greater than zero, which is determined by the camera resolution

and viewing angle. Vector O
*

T can be expressed as below:

O
*

T

O
*

T
���

���
b

¼ Rx;b hTð ÞRy;b cTð Þ
0
0
�1

2
4

3
5¼

� sin cT
sin hT cos cT

� cos hT cos cT

2
4

3
5 ð6Þ

Vector O
*

T and O
*

B can be expressed respectively as follows:

O
*

T

O
*

T
���

���
s

¼ Rz;s wð ÞRy;s cð ÞRx;s hð Þ O
*

T

O
*

T
���

���
b

ð7Þ

O
*

B

O
*

B
���

���
s

¼
0
0
�1

2
4

3
5 ð8Þ

Vector O
*

B points to the negative direction of z-axis of HBCS. Its mode length is
measured directly by the laser ranging module of the UAV, which is denoted as d.

Fig. 3. Image coordinate conversion algorithm
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The mode length of vector O
*

B can be obtained by converting a simple trigonometric
function as follows:

O
*

B
���

��� ¼ O
*

P
���

��� cos h cos c ¼ d cos h cos c ð9Þ

O
*

Bs ¼
0
0
�1

2
4

3
5 O

*

B
���

��� ¼
0
0

�d cos h cos c

2
4

3
5 ð10Þ

Vector O
*

T and vector O
*

B have the same z-axis component, so we can obtain the

representation of vector O
*

T in HBCS as below:

O
*

Ts ¼
tx;s
ty;s
tz;s

2
4

3
5 ¼

tx;s
ty;s

�d cos h cos c

2
4

3
5 ð11Þ

Assuming that the actual coordinate of point T in the array is Ta tx;n; ty;n; 0
� �

, then
the coordinate of point B in the array can be expressed as Ba tx;n � tx;s; ty;n � ty;s; 0

� �
,

and the position of the UAV can be obtained as below:

p*n ¼
tx;n � tx;s
ty;n � ty;s

d cos h cos c

2
4

3
5 ð12Þ

4 Multi-source Information Fusion

4.1 Heading Direction Estimation

To ensure that the NCS defined by SINS is consistent with that defined by the
AprilTags array, the heading angle of the UAV needs to be corrected by the rotation
angle of AprilTags. In this paper, the error of two angles is used as compensation, the
heading angle is corrected, and the estimation is obtained, which ensures the complete
synchronization of the two NCS. The fusion estimation method is shown below:

ŵ kð Þ ¼ ŵ k � 1ð Þþ le kð Þ ð13Þ

e kð Þ ¼
e1 kð Þ
e2 kð Þ
e3 kð Þ

8<
: ¼

wm kð Þ � w k � 1ð Þ ; min abs e kð Þ½ �f g ¼ abs e1 kð Þ½ �
wm kð Þ � w k � 1ð Þþ 360 ; min abs e kð Þ½ �f g ¼ abs e2 kð Þ½ �
wm kð Þ � w k � 1ð Þ � 360 ; min abs e kð Þ½ �f g ¼ abs e3 kð Þ½ �

8<
: ð14Þ

where l denotes a constant between 0 and 1 as correction rate, e kð Þ denotes the error of
two heading angles.
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4.2 Velocity and Position Estimation

Velocity and position estimation of UAV obtained from SINS has the advantage of low
delay, but it is difficult to directly apply to control system because of measurement error
and interference. The location estimation of UAV obtained by the machine vision
location algorithm proposed in Sect. 3 has the advantages of high delay and poor
stability, and it is also difficult to apply directly to the control system. To solve this
problem, third-order fused complementary filter algorithm is applied (see Fig. 4),
which can get reliable speed and location estimates by complementing each other.

In Fig. 4, a*n denotes the motion acceleration in NCS from SINS, p*n denotes the
position estimation from location algorithm proposed in Sect. 3. The discrete iteration
of this algorithm can be represented as follows:

an kð Þ ¼ avn kð ÞþKa pn kð Þ � sn kð Þð Þ ð15Þ

vn kð Þ ¼ vn k � 1ð Þþ an k � 1ð ÞT þKv pn kð Þ � sn kð Þð Þ ð16Þ

sn kð Þ ¼ sn k � 1ð Þþ vn k � 1ð ÞT þ 1
2
an k � 1ð ÞT2 ð17Þ

where T denotes the iteration period of the algorithm, avn kð Þ denotes the motion
acceleration in NCS at time k, an kð Þ, vn kð Þ and sn kð Þ respectively denote the estimation
of acceleration, velocity and position of multi-source information fusion algorithm, Ka

and Kv are both compensation factors (Fig. 5).

5 Experimental Testing

In this chapter, a planar array consisting of 16 AprilTags is designed according to the
rules of Chapter 3. The positioning algorithm proposed in this paper is tested by a self-
developed four-rotor UAV experimental platform, and the test results are actually
sampled (see Fig. 7).

Fig. 4. Third-order fused complementary filter algorithm
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Since all three axes are visually located to obtain position estimates, this result can
represent the X and Z axes. We can see in Fig. 7, Fig. 8 and Fig. 9 that location
estimation after multi-source information fusion has faster response speed and almost
the same positioning accuracy than machine vision location estimation. This is suffi-
cient to demonstrate the reliability of the algorithm presented in this paper (Fig. 6).

Fig. 5. Self-developed four-rotor UAV test platform

Fig. 6. UAV hovering in the AprilTags array area

Fig. 7. Estimation of motion acceleration, velocity and position of x-axis
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6 Conclusions

In this paper, a multi-source fusion location estimation method based on machine
vision and strapdown inertial navigation is presented for indoor positioning of small
UAVs with GPS invalid or unable to load. Based on AprilTags positioning and
recognition technology, this paper defines NCS with AprilTags array, identifies tags
with onboard camera, and obtains the spatial location of the UAV through the algo-
rithm proposed in Sect. 3. Due to processor performance and power constraints, the
location estimation obtained by the onboard image processing unit running the visual
localization algorithm is more stable and not affected by the integral effect, but with
high latency and unpredictable mutations, it is difficult to directly apply to the cascade
controller. The position estimation of strap-down inertial navigation has fast response
speed and strong anti-mutation ability, but it is susceptible to serous interference from

Fig. 8. Estimation of motion acceleration, velocity and position of y-axis

Fig. 9. Estimation of position of x-axis and y-axis over time
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measurement error and integral effect, and it is difficult to operate independently. Based
on the idea of complementary filtering, combined with the multi-source information
fusion algorithm, the third-order fusion complementary filtering algorithm is used to
achieve the complementary filtering of the two estimation results, and the corre-
sponding fast and reliable speed and location estimation is obtained. Finally, based on
the self-developed four-rotor UAV experimental platform, the validity and reliability of
the algorithm are verified by sampling.
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