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Abstract. Unmanned Aerial Vehicles (UAVs) assisted communications are
promising technology for meeting the demand of unprecedented demands for
wireless services. In this paper, we propose a novel framework for delay min-
imization driven deployment of multiple UAVs. The problem of joint non-
convex three dimensional (3D) deployment for minimizing average delay is
formulated and solved by Deep Q network (DQN), which is a reinforcement
learning based algorithm. Firstly, we obtain the cell partition by K-means
algorithm. Then, we find the optimal 3D position for each UAV in each cluster
to provide low delay service. Finally, when users are roaming, the UAVs are
still able to track the real-time users. Numerical results show that the proposed
DQN-based delay algorithm shows a fast convergence after a small number of
iterations. Additionally, the proposed deployment algorithm outperforms several
benchmarks in terms of average delay.

Keywords: Unmanned Aerial Vehicles � Delay minimization � Deployment �
Reinforcement learning

1 Introduction

With the pullulating and landing deployment of wireless skills, as well as the birth of
killer apps, users’ pursuit of service quality is higher, and the existing skills cannot meet
the needs of tomorrow communication. People are looking for ever-increasing turnkey
solutions, including exploration on higher airways, better encoding and transmission
skills, and a large-scale connection that incorporates multiple networks. UAVs are
thought to be killers of auxiliary communication [1]. Rather than the orthodox ground
wireless-skills, UAV assisted communication has the preponderances of high mov-
ability, low expenditure, especially better LOS positioning ability. Therefore,
the employment of UAVs to acquire high rate is expected to play a pivotal role.
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The deployment of UAVs as locomotive BS to assist surficial infrastructure has been
deemed as an prominent technology for handling cellular network discharging and
offloading in hot spots, such as prompt renew after infrastructure damage, important
recreational gathering, high level meeting and natural disasters. Under the premise of
dependency and adjustability, these criticisms can be solved universally by UAVs. In
this paper, UAV, as a relay node, not only improves the total throughput of the system,
but also provides reliable connection for remote users without perfect direct link [2, 3].
In addition, UAVs can also be used to assist the Internet of things network to ensure
large-scale connectivity and low latency [4, 5].

In reference [6], the air ground model is given and the altitude problem of UAV is
well solved. In this paper, we can seek out the emblematic parameters of the air-ground
model and bring inspiration to the deployment of UAV. Recent strategy is not only
about maximizing coverage, but also on algorithms that try to cover the largest number
of users. In order to improve the system coverage, the deployment layout of single
UAV and multi UAV has been studied [7, 8]. The layout algorithm can be synchronous
or asynchronous [9]. However, due to the high computational complicacy, especially in
dealing with dynamic circumstances such as roaming users and ever-changing channel
conditions, the three-dimensional layout of multiple UAVs is defiant. RL reduces the
complexity of convex optimization by means of iteration and interaction, and has great
effect in shaping planning and multi-objective and constraint problems. In reference
[10], the author proposes a deep reinforcement learning algorithm for UAV control,
which considers fairness, energy consumption and connectivity. The object is to seek a
tactic to control the movement mode of each UAV. However, the three-dimensional
layout of multiple UAVs is ignored.

The indicators of user relationship are various, such as delay, flux, the number of
users meeting the threshold, file hit rate and so on. However, they can not be separated
from each other. It can be summarized by the quality of user service, which is nothing
more than choosing the best service target and service mode according to the user’s
needs, location, channel information, etc. In this paper, we consider a scenario that
multiple UAVs serve ground users for delay minimization. Firstly, we obtain the user
association to reduce the impact of user interleaving by K-means algorithm. Then, we
find the optimal 3D placement bourn for each UAV to minimize the sum delay of the
users. Finally, when users are moving, the UAVs are still able to track the real-time
users and provide low latency service.

2 System Model and Problem Formulation

We consider the downlink of UAV assisted ground users in urban as shown in Fig. 1.
Multiple UAVs act as BSs in the air to carry files of users’ interest and serve the users
in the target region. There exists K UAVs serving users set U with the total number of
U. Users are separated in K clusters. We assume that there are Uk users in the k-th
cluster and the specific user uki is the i-th user in class k, i 2 f1; 2; . . .;Ukg.Each user
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belongs to the coverage of only one UAV. The users in the city are very dense, so the
delay will be greatly increased if the time division method is used to serve the users in
turn. So that we assume at the same time, UAV can serve multiple users and adopt
multiple access based on frequency.

2.1 Transmission Model

The user’s location is random. In some literatures, the user is modeled as a PPP or a
uniform distribution around the center of a circle by using statistical methods. This is
not the most important because our algorithm is scalable and can be applied to different
user distributions without changing the model. Users can move continuously during the
service period of UAVs. Due to the high mobility, It is difficult to study the control of
UAV in large time scale. Thus, we use technique called time discretization, which is to
divide the time T into equal slots with length d and index t. The UAV flies at an
appropriate fixed altitude H and the maximum speed is Vmax. The 2D position of a
specific user uki at each time slot is ½xki ðtÞ; yki ðtÞ�T , and the 3D coordinate of the k-th
UAV is ½xkðtÞ; ykðtÞ; hkðtÞ�T . Compared with the whole mission cycle, the moving
distance of UAV in a short time is relatively small, which can be approximately static
in the initial or terminal position. Making use of time discretization, the instantaneous
distance between UAV k and the specific user uki can be fixed in a small time:

dki ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½hkðtÞ�2 þ ½xkðtÞ � xki ðtÞ�2 þ ½ykðtÞ � yki ðtÞ�2

q
ð1Þ

UAV Users

Fig. 1. System model for delay minimization. Each UAV serves one cluster.
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The downlink between UAV and user can be regarded as the line of sight domi-
nated air-to-ground channel. Occasionally, in the environment of high-rise buildings
and high-rise buildings in the city, it may be connected by high-rise buildings and high-
rise buildings. We adopt the probabilistic Los channel model and consider occlusion.
The probability of LoS can be expressed as

PLOSðhki Þ ¼
1

1þ a expð�bðhki � aÞÞ ð2Þ

where hki ¼ sin�1 H
dki

is the elevation angle, a and b are parameters according to the

change of environment conditions. The probability of NLOS with user uki ’s feedback is
given by PNLOSðhki Þ ¼ 1� PLOSðhki Þ. Intuitively, PLOS increases as the UAVs fly
directly on the target and approximate one when hki becomes large enough.

Then, the path loss for user uki is

PLLOS ¼ ð4pfc
c

Þ�2ðdÞ�a10gLOS ð3Þ

PLNLOS ¼ ð4pfc
c

Þ�2ðdÞ�a10gNLOS ð4Þ

PL¼PLOS � PLLOS þPNLOS � PLNLOS ð5Þ

where fc stands for the carrier frequency.c is speed constant of light. a is the exponent
indicating loss, gLOS and gNLOS are the attenuation factors according to the existence of
LoS and NLoS.

Many assume that the number of spectrum is variable and can be continuously
allocated. This assumption has certain truth, but it is very difficult to practice.

We discuss simple scheme of FDMA and assume the bandwidth B is allocated to
users belonging to the same sphere in an equal manner, thus the spectrum for Uk user is
Bk
i ¼ B=Uk. The maximum power carried is equally distributed similarly with each

user uki having Pk
i ¼ P=Uk . By estimating from the receiver along with the SNR, the

service rate for user uki with bit/s in unit of measurement:

rki ðtÞ ¼ Bk
i log2ð1þ

pki
PLdki ðtÞr

2Þ ð6Þ

where r2 ¼ Bk
i N0 is the AWGN var, N0 is power spectral density for general noise.
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2.2 Problem Formulation

We consider the UAV hovering over the user with variable altitude when the user is
stationary or continuously moving. The bandwidth and transmission power of each
UAV are uniformly allocated to each user. Therefore, the optimization problem is
simplified as a region segmentation problem, and its formula is as follows

max
x;y;h

dsum ¼
XK
k¼1

XUk

i¼1

XT
t¼1

s=rki ðtÞ ð7Þ

Where s is the standardized file size of content to transfer. It can be seen from
Eq. (7) that the altitude and horizontal coordinates of UAV have influence on the delay
of users. This is because both the distance and the Los probability are related to the
altitude of the UAV. Increasing the flight altitude of UAV will lead to greater path loss,
but also will obtain higher Los probability.

Due to the combination of user association and optimal location search, exhaustive
search algorithm is a direct method to obtain the optimal result. However, this is
computationally complex. Therefore, a low complexity 3D deployment algorithm
based on DQN is proposed. In addition, when the optimal position of UAV is fixed, the
acquisition of dynamic tracking is also very important due to the nonconvex problem of
sum delay.

3 Deployment and Movement of UAVs Using DQN

In the actual scene, the user roams continuously, which leads to the increase of delay.
Traditional methods tend to predict with high complexity solutions. Therefore, RL is
employed to tail after users.

Reinforcement learning (RL) is a forceful tool to solve decision-making problems.
In recent years, reinforcement learning has reached the limit of human cognition in
many aspects in the field of game, and can be used as an auxiliary means to solve
optimization problems. In this part, we first introduce some basic knowledges of RL,
and then we propose an algorithm to minimize average delay based on Deep Q-
Network (DQN).

Reinforcement learning contains basic elements including: environment which is
preset and can not be changed, agent which is trained, state which stands for the status
of robots that are being trained, action that the robots take using their habits, and
reward gained after each step. In RL, agents interact with the atmosphere in a way of
action and reward. The process is a MDP M ¼ \S;A;R; Prðstþ 1jst; aÞ[ , where S
is state set, A is action set, R is the set of reward. When taking action at, there is a
transition probability of Prðstþ 1jst; atÞ from state st to stþ 1.

The aim of RL is to conceive a policy that maximizes the total rewards observed
during the episodes. Value is a common term in RL which stand for the set of policies
that evaluate the long-term reward of the policy. Q-learning is a basic value-based
algorithm of RL, which maintains a Q-table to record and minimize the discounted
cumulative reward which is
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minC ¼ E
pð
X1
t¼1

ct�1
d rðstþ 1jst; atÞÞ ð8Þ

The integral is from the present moment to the infinite future which is the final state
of other restrictions, where p ¼ argmax

at2A
Qðst; atÞ is the policy to choose action, cd is

the discount factor. Allowing agents to choose actions according to the maximum value
cannot achieve good results, because it will destroy the balance between exploration
and optimization. An excellent tutorial tip to explore the environment is the e-greedy
policy. The Q table which is also known as value function is updated by

Qtþ 1ðst; atÞ ¼ ð1� aÞQtðst; atÞþ aðrt þ cd min
a0

Qtðstþ 1; a
0ÞÞ ð9Þ

where a is learning rate. However, since this algorithm holds a big form for each
action-state pair, it is intolerable for large scale problem. For example, when we play
chess, the state is the current chess piece, the actions set is to drop a piece randomly in
the blank position of the current chessboard. Considering the size of the board, the total
action space is equal to the length times the width, which still does not include some
actions that can and cannot be done according to the rules of the game. So we can see
that maintaining a table consumes huge resources and sometimes can’t solve problems.
Neural network is a good substitute, because large-scale network can approximate any
nonlinear function to meet our needs (Table 1).

Moreover, the control of UAVs is a continuous control problem. Many works
regard the UAV as a static base station, which plays the same role as the small base
station and studies the optimal solution in statistical sense. I don’t think this assumption
is very reasonable because the UAV is a mobile agent, so it is necessary to give full
play to its mobility advantages to carry out path planning. DQN take example by neural
networks to reckon the value. The NN target is minimizing the loss:

Table 1. Simulation Parameters.

Parameter Description Value

U Number of users 80
K Number of clusters and UAVs 4
P Total transmit power 0.1 W
d Time slot length 1 s
N0 Noise power spectral density −174 dBm/Hz
fc Carrier frequency 2 GHz
B Total bandwidth of each UAV 1 MHz
a; b Environmental parameters 10.39,0.05(urban)
gLOS,gNLOS Additional path loss for LOS, NLOS 1,20 (dB)
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LðhQÞ ¼ E rt þ cdQ
0ðstþ 1; pðstþ 1ÞjhQ0 Þ � Qðst; atjhQÞ

h i2
ð10Þ

where the first part yt ¼ rt þ cdQ
0ðstþ 1; pðstþ 1ÞjhQ0 Þ is the target value to reach, hQ is

the weight of NN. The network back propagates and updates hQ using gradient decent
with derivative rLðhQÞ.

In addition, DQN adopts two kinds of technologies: experience playback and target
network to reduce the influence of data correlation. The correlation between data can
not make neural network learn useful knowledge well. With the introduction of
stochastic gradient, this problem is solved well. Experience playback is selecting batch
size Bs experience from buffer in a random manner. In addition, DQN tries identical
target network Q0 as the NN of the original one. The weight of the original NN is to
update the parameters in a delay manner of the target network.

We explain the important elements:

1) Agent: Agent is one of the core of RL. At present, the mainstream research direction
has been extended to multi-agent learning. It considers the multi-objective coop-
eration or competition game, which itself is a difficult problem to see the optimal
solution, because there are still many challenges. In contrast, single agent has been
proved to be a good solution to some simple decision-making problems, and the
distributed single-agent solution is also a choice. Because the interference is not
considered, there is no cooperation and competition between UAVs. The training
agent: each UAV

2) State: During each training step t (also time index for epochs of the whole progress),
st ¼ ½xkðtÞ; ykðtÞ; hkðtÞ; xk1ðtÞ; xk2ðtÞ; . . .; xkUk

ðtÞ�. The state is the 3D site of UAV and
2D coordinates for ground customers.

3) Action: In order to provide continuous control of the UAVs, we denote the oper-
ating direction as the action. Also, the agent can suspend in a still manner. There are
6 directions available: left, forward, up, backward, right, as well as down.

4) Reward: Reward is a common term, which is suitable for our goal related. In the
actual scene, users can’t give us immediate feedback because the user’s experience
is delayed, but in the simulation and training, we can choose experience data
according to the parameters. Data generation is one of the benefits of RL, which
does not rely on training data sets, but through experience. However, it also brings
about the problem of data utilization. The reward of epoch t is defined as:

rðtÞ¼
XUk

i¼1
s=rki ðtÞ ð11Þ

which is the current sum delay.
Using DQN, the UAVs can quickly and efficiently find the location and moving

direction to obtain the minimum delay. The progress of the whole algorithm is shown
in Algorithm 1.
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4 Results and Analysis

First of all, we introduce the simulation platform and the specific super parameters in
machine learning. We conduct our experiments in Tensorflow with version 1.0. It is a
time-consuming and laborious process to find the suitable hyperparameters. In order to
simplify, we only give the best hyperparameters which represent the best performance
of the system, but we don’t talk about testing and selecting the parameters

The main hyperparameters are as follows: rate for learning a is 0.001, memory size
D is 5000, factor of discount as 0.9, repetitive update Bup = 300 steps. The neural
network adopts two-layer fully connected architecture, because in lots of experiments,
the single-layer network can not fit the model well, and the three-layer network also has
the problem of over fitting and slow training speed. Our algorithm is also compared
with the traditional exhaustive-based algorithm and random deployment algorithm in
terms of convergence and system performance.

Figure 2 depicts the instantaneous delay for each ground user. We draw the three-
dimensional equipotential diagram of all users’ delay. Intuitively, it is a concave sur-
face. The cluster has 20 users and is served by one UAV. It can be observed that with
the increase of the distance between UAV and ground user, the delay of the ground
user also increases.
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Figure 3 draws the optimal 3D map of UAV from the position of the first fleet and
ground user. The blue star represents the best location for the UAV. The horizontal
coordinates and height of UAVs are determined by the user’s position, because they
affect the line of sight probability and path loss.

Figure 4 depicts the relationship between total delay and training times. It can be
seen that the UAV can perform its actions in an iterative manner and learn from the
mistakes, thus improving the and delay. It can be seen that the algorithm converges
after a certain number of iterations. Despite the initial position of the UAV, it was
integrated after about 5000 sets. The process of convergence is not a straight line or has
been declining, but a fluctuating decline, which is one of the basic common sense of
RL, because RL constantly carries out trial and error and iteration to complete learning

Fig. 2. Minimum delay versus user location

Fig. 3. Optimal UAV location versus user distribution
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from experience. At every moment, it is possible to learn new knowledge to optimize
the objective function, so the loss value of neural network will be increased. Finally,
the method to judge the convergence is that the overall performance tends to be stable,
and the variance is small.

Figure 5 shows the total latency compared to random deployment. When the user
remains static, the optimal location keeps an optimal sum delay. The green line rep-
resents the delay optimal solution when the user does not move. It is obtained by brute
force exhaustion. The calculation amount of this exhaustion is very large. When the
user moves, we list the best position at all times to carry out path planning, and a more

Fig. 4. Convergence of DQN

Fig. 5. Sum delay when users are moving and static
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intelligent algorithm is needed to give the optimal decision in real time. The blue line
represents the real-time total flux under the path planning given by our algorithm when
the user moves. It can be seen that the value fluctuates around the initial value. This is
because the user’s movement is random and sometimes tends to gather near the UAV,
so the total flux must be relatively large. When the ground user moves according to the
random walk model, the UAV should move along the user’s direction. Otherwise, as
the user leaves the initial point, and the delay increases. As can be seen from the figure,
our algorithm is suitable for dynamic environment.
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