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Abstract. In order to realize high-precision DOA tracking in space, researches
on two-dimensional DOA estimation have been conducted in recent years. The
existing algorithms often need large snapshots for estimation accuracy, going
against the fast solution. Considering the low sensitivity of DOA estimation
algorithm based on compressed sensing theory to the number of snapshots and
the correct estimation with less sampling data, a modified two-dimensional
multitask compressed sensing algorithm based on SVD decomposition is pro-
posed in this paper. This algorithm makes up for the drawbacks of existing
compressed sensing algorithms in dealing with multi snapshot problem and
reduces the unnecessary calculation. Simulation results show that the proposed
algorithm can solve the off-grid problem in compressed sensing, and has better
estimation performance than other algorithms under the condition of low SNR
and few snapshots.
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1 Introduction

First proposed by Malioutov et al. in 2005, the concept of CS-DOA is called l1-SVD
[1], with the core idea of transforming the DOA estimation problem into a sparse
reconstruction problem for solving an underdetermined system of equations. It has
become a classic algorithm in the field of CS-DOA. The array signal models of the
following algorithms are roughly the same, and the differences mainly focus on the
selection of optimal reconstruction algorithms. To reduce the calculation amount in
OMP algorithm used in sparse signal reconstruction, Wang Shuhao et al. proposed
DOA Estimation of LFM Signals Based on Compressed Sensing [2], which makes use
of the bat algorithm's population search mode and excellent echo localization ability in
flight to achieve fast optimization. To solve the problem of poor accuracy of DOA
estimation based on compressed sensing when the array antenna has amplitude and
phase errors, Zuo Luo et al. proposed a super-resolution DOA estimation method based
on TLS-CS [3], combined with singular value decomposition (SVD) and greedy iter-
ative pursuit algorithm for CS sparse reconstruction to obtain the azimuth information
of the target. In order to solve the problem of low efficiency when orthogonal matching
pursuit algorithm is used for sparse recovery of high dimensional signals, Zhao
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Hongwei et al. proposed a DOA estimation algorithm combined with particle swarm
optimization [4]. The algorithm uses PSO algorithm to solve the optimization problem,
and improves the particle renewal mechanism and inertia weight.

At present, among the problems in DOA estimation algorithm based on compressed
sensing theory, the main one is off-grid. No matter how fine the grid is divided, the
target signal may be located between the grids, resulting in mismatch between the
sparse base of the artificially constructed redundant dictionary and the real base of the
target, so the off-grid problem is also known as the base mismatch problem. In the field
of DOA, many researches on off-grid problem have been carried out, such as the
alternating iteration method [5], and the sparse Bayesian method [6] used to solve the
off-grid problem in DOA. Some variant algorithms on this basis also appear, such as
the introduction of second-order Taylor polynomial, and the idea of noise subspace [7].
However, the limitation of these algorithms is that most of the signal models are for
one-dimensional DOA estimation, which cannot be effectively extended to two-
dimensional cases. And the two-dimensional off-grid problem is more universal. In
order to improve the accuracy of DOA estimation, this paper will focus on the real-
ization of two-dimensional DOA estimation based on compressed sensing and the off-
grid problem.

2 Problem Formulation

In the case of one-dimensional space, there are Q incident signals with azimuth angles
h1; � � � hQ

� �
. Meanwhile, we divide the space ½0�

; 90
� � into N grids as a1; a2; � � � ; aN½ �

with Q < < N. When there is an incident signal at a certain grid, the value at the
corresponding position of sparse representation signal is not zero; otherwise, it is zero.

The relationship between the division of spatial discrete grids and the angles of
incident signals is shown in Fig. 1, where “�”is the real spatial incident signals, and
“�”the potential ones.

Fig. 1. Spatial discrete grids and the angles of incident signals
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In practice, the direction of arrival of the signal is continuous in the spatial domain,
but we discretized space angles in the process of DOA estimation. The incoming
direction of the actual source may fall between the adjacent grid points in spite of dense
grid sampling, as shown in Fig. 2. The off-grid problem hence appears, leading to
errors in DOA estimation. Although the dense division of spatial grids can alleviate this
problem, it will increase the dimension of redundant dictionary (array manifold) and
the amount of calculation and slow down the solution, which restricts the application of
DOA estimation algorithm based on compressed sensing theory in practice.

Due to the coupling of pitch angles and azimuth angles in conventional array
manifold, the steering matrix A cannot be decomposed. Hence, new array model is
introduced, as shown in Fig. 3.

Fig. 2. Off-grid problem

Fig. 3. Array model
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The uniform square array is set as the object, with dimension as M � N in zoy
plane. The number of spatial domain grids is shown as P� Q, and the signal time delay
s m;nð Þ; p;qð Þ of the p; qð Þ-th grid received by the m; nð Þ-th array element as

s m;nð Þ; p;qð Þ ¼
n� 1ð Þd sin hp;q þ m� 1ð Þd sinup;q

c
ð1Þ

Where p is the pitch dimension of the grid, and q is the azimuth dimension. For a
clearer derivation, the azimuth angle hp;q is hq, and the pitch angle up;q is up. The
formula (1) can be expressed as

s m;nð Þ; p;qð Þ ¼ sm up

� �þ sn hq
� � ð2Þ

Where

sm up

� � ¼ m� 1ð Þd sinup

c

sn hq
� � ¼ n� 1ð Þd sin hq

c

ð3Þ

And the steering matrix A can be expressed as

A ¼
e�j2pf0s1 u1ð Þ e�j2pf0s1 u2ð Þ � � � e�j2pf0s1 uPð Þ

e�j2pf0s2 u1ð Þ e�j2pf0s2 u2ð Þ � � � e�j2pf0s2 uPð Þ

..

. ..
. . .

. ..
.

e�j2pf0sM u1ð Þ e�j2pf0sM u2ð Þ � � � e�j2pf0sM uPð Þ

2
6664

3
7775

�
e�j2pf0s1 h1ð Þ e�j2pf0s1 h2ð Þ � � � e�j2pf0s1 hQð Þ

e�j2pf0s2 h1ð Þ e�j2pf0s2 h2ð Þ � � � e�j2pf0s2 hQð Þ

..

. ..
. . .

. ..
.

e�j2pf0sN h1ð Þ e�j2pf0sN h2ð Þ � � � e�j2pf0sN hQð Þ

2
6664

3
7775 ð4Þ

i.e.

A ¼W�HT ð5Þ

Restore vector s to matrix as S, a P� Q dimensional matrix; the matrix form of
vector n is N, an M � N dimensional matrix. Therefore,

y ¼ W�HT� �
sþ n ¼ vec WSHþNð Þ ð6Þ

Where vec shows that the matrix is arranged into column vector in row priority
order. Then,
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Y ¼ WSHþN ð7Þ

Where Y is M � N dimensional, and the matrix form of vector y.

3 2D Multitasking CS Algorithm Based on SVD

3.1 2D Off-Grid Algorithm Based on Taylor Expansion

The first order approximation of Taylor expansion can be used to solve the basis
mismatch problem in two-dimensional DOA estimation by applying the above signal
model with separable steering matrix.

Discrete the spatial domain; suppose the angle of a target signal is ĥ; û
� �

, and the

angle of its nearest grid is hp;uq

� �
. dhp and duq

represent the estimation bias of the
pitch dimension and azimuth dimension. Here,

dh ¼ dh1 ; dh2 ; � � � ; dhP½ �Tdu ¼ du1
; du2

; � � � ; duQ

h iT
.

Discrete steering vector as follows:

a û; ĥ
� �

¼ w ûð Þ � / ĥ
� �

ð8Þ

Where � is Kronecker product.

a û; ĥ
� �

¼ e�j2pf0s 1;1ð Þ û;ĥð Þ e�j2pf0s 1;2ð Þ û;ĥð Þ � � � e�j2pf0s m;nð Þ û;ĥð Þ � � � e�j2pf0s M;Nð Þ û;ĥð Þ
h iT

ð9Þ

s m;nð Þ û; ĥ
� �

¼ n� 1ð Þd sin ĥþ m� 1ð Þd sin û
c

ð10Þ

w ûð Þ is the steering vector of pitch dimension, expressed as follows.

w ûð Þ ¼ e�j2pf0s1 ûð Þ e�j2pf0s2 ûð Þ � � � e�j2pf0sm ûð Þ � � � e�j2pf0sM ûð Þ� 	T ð11Þ

/ ĥ
� �

is the steering vector of azimuth dimension, expressed as follows.

/ ĥ
� �

¼ e�j2pf0s1 ĥð Þ e�j2pf0s2 ĥð Þ � � � e�j2pf0sn ĥð Þ � � � e�j2pf0sN ĥð Þ
h iT

ð12Þ

Express the steering vectors of pitch and azimuth dimensions of the target signal
separately with first order approximation of Taylor expansion as follows.

a û; ĥ
� �

¼ w up

� �þ b up

� �
û� up

� �� �� / hq
� �þ c hq

� �
ĥ� hq

� �� �
ð13Þ
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Where b up

� �
and c hq

� �
are first derivative vectors of w up

� �
and / hq

� �
.

Put the above into matrix form, and the signal model of 2D DOA estimation can be
expressed as follows.

Y ¼ WþBDdu
� �

S HþDdhCð ÞþN ð14Þ

Where Ddu ¼ diag du
� �

and Ddh ¼ diag dhð Þ, B is the matrix obtained by deriving
each element in the steering vector of pitch dimensionW, so does C, and N is the noise.

In (14), there are three unknown variables Ddu, Ddh and S. Solve the matrix S, then
solve Ddu and Ddh with the method of alternate iteration as follows.

In the solution of signal matrix S, initialize Ddu and Ddh as zero matrixes, and (14)
can be expressed as follows.

Y ¼ WSHþN ð15Þ

The original problem degenerates into the basic problem of separable DOA esti-
mation, which can be regarded as a rough solution of S. Due to the off-grid problem,
the solution obtained must be deviated from the true value.

Then solve Ddu and Ddh.
In the solution of Ddu, initialize Ddh as unit matrix, regard S HþDdhCð Þ in (14) as

a fixed value, let H ¼ S HþDdhCð Þ, then

Y ¼ WþBDdu
� �

HþN ð16Þ

The minimum deviation is required between hp;uq

� �
, the angle of signal matrix,

and the true angle of the target signal, which means du and dh are restrained to the
minimum. Constrain their sparsity with 2-norm, and the optimization problem can be
obtained.

min du


 

2

2 þ Y � WþBDdu
� �

H


 

2

F ð17Þ

Least-squares solution is applied, and each column in matrix Y in (17) meets the
following equation:

Y n½ � ¼ WþBDdu
� �

H n½ � ð18Þ

Where � n½ � is the n-th column, n ¼ 1; 2; � � � ;N. Given the following equation

DduH n½ � ¼ DH n½ �u ð19Þ

Where DH n½ � ¼ diag H n½ �ð Þ. The optimization problem can be transformed into the
problem of obtaining the least square solution.
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Y 1½ � �WH 1½ �
Y 2½ � �WH 2½ �

..

.

Y N½ � �WH N½ �

2
6664

3
7775 ¼

BDH 1½ �
BDH 2½ �

..

.

BDH N½ �

2
6664

3
7775du ð20Þ

The solution to du can be obtained with the least square method.

du ¼ BDHð ÞþYWH ð21Þ

Where �ð Þþ is the generalized inverse of the matrix.

BDH ¼ BDH 1½ �;BDH 2½ �; � � � ;BDH N½ �½ �T
YWH ¼ Y 1½ � �WH 1½ �;Y 2½ � �WH 2½ �; � � � ;Y N½ � �WH N½ �½ �T

ð22Þ

Substitute du into (14), and let G ¼ WþBDdu
� �

S, and solve dh in the same way.
Calculate du and dh alternatively, and set the condition to finish iterative process. S,
Ddu and Ddh are ultimately solved, then the true angles of the target signal can be

expressed as ĥp ¼ hp þ dhp and ûq ¼ uq þ duq
.

3.2 OMP Reconstruction Method Based on SVD

The two-dimensional off-grid algorithm based on the first-order Taylor expansion has
some limitations. When reconstructing the sparse matrix S, the noise of the received
data matrix Y is zero by default, which leads to a poor accuracy of the solution to the
sparse matrix and a less likely improvement in the following solution. In addition, in
the case of a low SNR, more sampling snapshots can achieve certain estimation
accuracy, and the algorithm is only suitable for single snapshot, which needs to be
extended to multiple snapshots and solve the problem of high computational
complexity.

In order to reduce the computational complexity and improve the anti-noise per-
formance, the subspace methods are often applied in array signal processing. In this
paper, singular value decomposition (SVD) is used to extract signal subspace to pro-
cess array received signal matrix.

Without considering the coherence among signal sources, this paper conducts the
singular value decomposition to the received data matrix Y with the purpose of
removing noise from the received signal.

Y ¼ ULVH ¼ USUN½ �LVH ð23Þ
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Where V is an orthogonal matrix, and U is a matrix formed by arranging singular
values from large to small. US is the signal subspace formed by singular vectors
corresponding to the preceding K singular values. UN is the noise subspace. Suppose
the number of signal source K is known, take the preceding K columns of matrix U,
and the N � K dimensional matrix YS ¼ ULDK ¼ YVDK formed by signal compo-
nents is obtained, where DK ¼ IK O½ �H . IK is the K � K dimensional unit matrix, O
is the K � ðT � KÞ dimensional zero matrix, and the low-dimensional form of Y can be
expressed as follows.

YS ¼ WSSHþNS ð24Þ

Where SS ¼ SVDK , and NS ¼ NVDK . SS remains the sparsity unchanged. It is the
signal theoretically denoised from S, then the solution to S can be simplified as the
solution to SS. Compared to the common high sampling frequency under the practical
condition, data dimension can decrease from T to K with the application of this
algorithm, hence the calculation is significantly reduced. Simultaneously, SVD can be
comprehended as a denoising process, which is helpful in DOA estimation under low
SNR.

The algorithm steps are as follows:

(1) Conduct SVD to observation matrix Y to get YS, and keep the right singular
vector UK ;

(2) Initialize residual matrix and index set, i.e. R ¼ Y and K0 ¼ ;;
(3) Take the inner product of each column in UK and U, i.e. Gn ¼ UHUKn�1

�� ��;
(4) Find out the row index value k corresponding to the maximum norm of row vector

q in Gn, and update the index set Kn ¼ Kn�1 [ knf g and its column vector set
Wn¼ Wn�1 [ Uknf g;

(5) Obtain its approximate solution SnS ¼ WH
n Wn

� ��1
WH

n YS with the least square
method;

(6) Update the residual error Rn ¼ YS �WSnS, where n ¼ nþ 1;
(7) Judge whether the end condition of the algorithm is reached. If so, the calculation

will be terminated. Otherwise, skip to Step (2) and repeat.

3.3 Multi-task Processing

The improved algorithm applies the current separable array signal model, which is only
suitable for single snapshot. To solve the problem of DOA estimation under the
condition of multiple snapshots, this paper introduces the idea of multitasking Bayesian
compressed sensing into the algorithm.

20 C. Fu and J. Ma



Define snapshot as K, solve the data of the i-th snapshot to obtain du and dh,

Y i ¼ WþBDdui
� �

HþNi

Y i ¼ G HþDdhiCð ÞþNi
ð25Þ

Conduct sparsity constraint to Ddui and Ddhi with 2-norm to get the optimized
problem:

min dui


 

2

2 þ Y i � WþBDdui
� �

H


 

2

F

min dhik k22 þ Y i � G HþDdhiCð Þk k2F
ð26Þ

Solve it with least-squares solution to get the analytical solution of dui

dui ¼ BDHð ÞþYWHi ð27Þ

And the analytical solution of dhi

dhi ¼ GDCð ÞþYGHi ð28Þ

To sum up, the solving steps of 2D multitasking compressed sensing off-grid
algorithm based on SVD are summarized as follows:

(1) Set a pitch dimension W and an azimuth dimension H, and conduct derivation to
get matrixes B and C.

(2) Obtain spectral matrix S by applying the OMP reconstruction method to matrixes
Y, W and H.

(3) Take the sampling data of the i-th snapshot iði ¼ 1; � � � ;KÞ, and obtain dhi and dui
according to (26) and (27) till the termination conditions are met.

(4) Work out the incident angles with hp;uq

� �
, dhi, and dui in S obtained in Step 2.

4 Performance Study

To verify the effectiveness of the modified algorithm, a supposed simulation model is a
8� 8 matrix URA with d ¼ k=2. Two independent narrow-band signals are separately
incident on the array with azimuth angles 9:9� and 18:4�, and pitch angles 3:3� and
24:2�. Their ranges of spatial discrete grids are both 0�; 90�½ �. The following experi-
ments are conducted based on the above conditions.

Experiment 1
To test the feasibility of signal model with separable array manifold under the

condition of single snapshot, the DOA estimation performance of MMV-OMP, BCS
and off-grid algorithms under different SNR is simulated, with SNR increasing from
�15 dB to 10 dB, the number of snapshots 1, and Monte-carlo simulation 500 times.
Results are shown in Fig. 4.

2D DOA Estimation Based on Modified Compressed Sensing Algorithm 21



Fig. 4. Curves of mean square error
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(a) snapshot 100 

Fig. 5. Curves of mean square error

2D DOA Estimation Based on Modified Compressed Sensing Algorithm 23



(b) SNR 0dB 

Fig. 5. (continued)
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Simulation results verify the effectiveness of the model and a higher estimation
accuracy of the 2D off-grid algorithm based on the first-order Taylor expansion for the
off-grid incident signal under the condition of single snapshot.

Experiment 2
To verify its effectiveness, the modified algorithm is compared with WSF algorithm

based on particle swarm optimization (PSO) algorithm. The distance between two
adjacent grids is 1�, with SNR increasing from �15 dB to 10 dB, snapshot from 10 to
1000, and Monte-carlo simulation 500 times. Results are shown in Fig. 5.

Simulation results show that the proposed algorithm can deal with the more
snapshots problem, and improve the solution accuracy under off-grid conditions with
better robustness. Compared with the traditional subspace DOA estimation algorithms,
it has better accuracy and is less affected by SNR and snapshot number. It solves the
off-grid problems better than the basic compressed sensing methods.

5 Concluding Remarks

This paper introduces the signal model with separable array manifold and its 2D off-
grid algorithm based on the first-order Taylor expansion. The effectiveness of the
algorithm in off-grid conditions is analyzed by simulation, while unsuitable in more
snapshots. In order to solve this problem, a 2D multitasking compressed sensing off-
grid algorithm based on SVD is proposed. Experimental results show this scheme can
solve the problem of 2D off-grid DOA estimation in such cases, and its performance is
significantly improved compared with the traditional subspace DOA estimation
algorithms.

References

1. Gorodnitsky, I.F., Rao, B.D.: Sparse signal reconstruction from limited data using FOCUSS:
a re-weighted minimum norm algorithm. IEEE Trans. Signal Process. 45(3), 600–616 (2002)

2. Wang, S.H., Ruan, H.L.: DOA estimation of LFM signals based on compressed sensing.
Comput. Simul. 36(11), 175–179 (2019)

3. Zuo, L., Wang, J., et al.: Super-resolution DOA estimation method of passive bistatic radar
based on TLS-CS. Syst. Eng. Electron. 42(01), 61–66 (2020)

4. Zhao, H.W., Liu, B., Liu, H.: Improved PSO and its application to CS DOA estimation.
Microelectron. Comput. 33(05), 33–36+41 (2016)

5. Gretsistas, A., Plumbley, M.D.: An alternating descent algorithm for the off-grid DOA
estimation problem with sparsity constraints. In: Signal Processing Conference. IEEE (2010)

6. Yang, Z., Xie, L., Zhang, C.: Off-grid direction of arrival estimation using sparse bayesian
inference. IEEE Trans. Signal Process. 61(1), 38–43 (2013)

7. Lin, B., Liu, J., Xie, M., et al.: Super-resolution DOA estimation using single snapshot via
compressed sensing off the grid. In: 2014 IEEE International Conference on Signal
Processing, Communications and Computing (ICSPCC). IEEE (2014)

2D DOA Estimation Based on Modified Compressed Sensing Algorithm 25


	2D DOA Estimation Based on Modified Compressed Sensing Algorithm
	Abstract
	1 Introduction
	2 Problem Formulation
	3 2D Multitasking CS Algorithm Based on SVD
	3.1 2D Off-Grid Algorithm Based on Taylor Expansion
	3.2 OMP Reconstruction Method Based on SVD
	3.3 Multi-task Processing

	4 Performance Study
	5 Concluding Remarks
	References




