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Abstract. The increasing demand of data and real-time analysis has given rise to
edge computing, providing benefits such as low latency, efficient bandwidth usage,
fine-grained location tracking, or task offloading. Edge computing based on con-
tainers brings additional benefits, facilitating the development and deployment of
scalable applications adapting to changing market demands. But in order to enable
edge computing in the telco industry, it is important that current standardization
efforts are followed by software platforms implementing those standards. This
paper proposes an approach to the design and implementation of an edge com-
puting platform based on Kubernetes and Helm providing functional blocks and
APIs as defined by ETSI in the Multi-Access Edge Computing (MEC) reference
architecture. Although this proposal is still at a work-in-progress state, this paper
describes the design and implementation of an open-source proof-of-concept sce-
nario focusing on the lifecycle management of cloud native MEC applications.
The resulting prototype shows the feasibility of this approach, that can be adequate
to create a lightweight MEC demonstration platform for university laboratories
and experimentation.

Keywords: Edge computing - Application virtualization - Platform
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1 Introduction

Edge computing technologies, by moving cloud computing resources closer to the end
users, bring many benefits such as low latency, efficient bandwidth usage, fine-grained
location tracking, or task offloading. Edge computing based on containers rather than
on virtual machines will help develop and deploy scalable applications that can adapt
dynamically to meet changing market demands. But besides the computing resources
to run applications, edge computing relies on management and orchestration services to
manage the application lifecycle and orchestrate different services.
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ETSI has already began the standardization work for Multi-access Edge Computing
(MEC). This paper presents an initial approach to implementing the MEC reference
architecture defined by ETSI, using a container-based computing infrastructure. We
focus on the Kubernetes platform because it provides scaling, scheduling and fault-
tolerance features that can be leveraged to address the lifecycle management of cloud
native MEC applications. But platforms providing edge computing management and
orchestration services for container-based edge computing, such as Akraino or Airship,
are still not aligned with the ETSI standards.

The objective of this work is to analyze how Kubernetes can support MEC services
following a clean slate approach, in which first the ETSI standards are analyzed, to
then map the reference architecture to a design based on Kubernetes and supported by
other open-source components. In the long term, we think this approach can result in
a reference platform that can be simpler to deploy than the current edge computing
platforms for university laboratories and experimentation.

The remainder of the paper is organized as follows. Section 2 provides an overview
of the MEC reference architecture, an introduction of Kubernetes and Helm as container
management tools, and a discussion of related work. Section 3 describes the HelmMEC
proposal, amiddleware that allows the deployment of containerized MEC applications on
Kubernetes following the ETSI standard specifications. Section 4 provides a description
of a proof-of-concept showing the feasibility of this proposal. Finally, conclusions are
summarized in Sect. 5.

2 Background

In this section, ETSI standardization of the Multi-Access Edge Computing (MEC)
paradigm is first introduced along with the MEC reference architecture. Then, the new
concept of cloud native applications is presented as an approach that can be embraced
to build applications within the scope of MEC. Then, the main technologies used as a
basis of the proposal are introduced: Kubernetes as a container management solution
and Helm as a package manager for cloud native applications. Finally, a brief discussion
of related work is provided.

2.1 Multi-access Edge Computing (MEC)

Edge computing is a new paradigm that moves cloud resources closer to the end users.
Due to the proximity of the consumers to the applications, the edge computing technol-
ogy brings many benefits such as low latency, an efficient bandwidth usage, fine-grained
location tracking, or task offloading [1]. ETSI standardized the Multi-access Edge Com-
puting (MEC) term and it is currently working on providing specifications of a reference
architecture and the different APIs used by its components. ETSI ISG MEC defines a
reference architecture [2] for MEC systems as depicted in Fig. 1, with two levels: MEC
system level and MEC host level.

The MEC system level is composed of the following functional blocks: Operations
Support System (OSS), MEC Orchestrator (MEO) and User Application Life Cycle
Management Proxy (UALCMP). The MEO is the core component in the MEC system
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Fig. 1. ETSI MEC reference architecture

since it is responsible for keeping track of the provisioned MEC hosts, the available
resources as well as MEC services. The MEO is also responsible for the management of
MEC application packages, and the scheduling, relocation, and instantiation/termination
of MEC applications deployed across the controlled MEC hosts. Customers or external
device applications can interact with the MEO through the OSS, which is responsible for
granting and forwarding requests to the MEO. Eventually, MEO forwards these requests
to the MEPM, which realizes them by interacting with the target MEP and the VIM.

The MEC host level is composed of: MEC Platform Manager (MEPM), Virtualiza-
tion Infrastructure Manager (VIM) and MEC host. The MEC host contains a virtual-
ization infrastructure that supports the instantiation of MEC applications. These MEC
applications are registered and configured by the MEC Platform (MEP) with the purpose
of exposing and/or consuming services. The MEC applications may interact with each
other and external users via a configurable data plane on the MEC host.

2.2 Cloud Native Applications

Due to the benefits that MEC provides, MEC technology opens an ecosystem for new
and innovative applications that need to quickly adapt to changing market demands.
In this respect, ETSI promotes the use of DevOps practices to deliver applications for
MEC [3]. Development of cloud native applications has risen as one of the approaches
followed by DevOps engineers.

Cloud native [4, 5] is a set of modern cloud techniques which aim at building scal-
able, dynamic applications than can quickly adapt to changing demands. Cloud native
applications embrace microservices-based architectures rather than the common mono-
lithic approach. The separation into independent services facilitates the development of
applications as each microservice can evolve at a different pace. The package isolation



188 I. D. Martinez-Casanueva et al.

and portability that containers provide makes them the perfect choice for virtualiza-
tion as developers can just focus on implementing the business logic rather worrying
about the underlying infrastructure. But building and deploying complex containerized
applications requires container orchestration, which can be provided by open source
orchestrators such as Docker Swarm [6] or Kubernetes (K8s) [7]. In this paper, we focus
on the Kubernetes platform because it provides scaling, scheduling or fault-tolerance
features that can be leveraged to address the lifecycle management of cloud native MEC
applications.

2.3 Helm

Helm [8] is an open source project that enables application package management for
cloud native applications that run on Kubernetes. Helm bundles the different Kubernetes
resources of an application (e.g., Pods, ConfigMaps, Services, etc.) into a Helm chart.
Helm charts are stored in a separate repository, and each chart may have different versions
available.

Using Helm, application lifecycle management is made possible by registering
releases of Helm charts in the Kubernetes datastore. Thus, when a user triggers a basic
management task from Helm, e.g., instantiate, Helm combines the previous, current,
and desired states of the application and applies changes in Kubernetes accordingly.
Helm operates with the Helm client which realizes charts as one-time operations against
Kubernetes. Upon issuing an operation over a given chart, the Helm client computes
changes and makes sure the resulting requests of resources to the Kubernetes API are
accepted. But, once this operation is finished, the Helm client no longer intervenes in
the lifecycle management of the chart.

Flux Helm Operator [9] is an open source project that provides an implementation
of a Kubernetes operator [10] for Helm. This project extends Kubernetes by defining the
Helm chart as a new Custom Resource Definition (CRD) and implements an operator
that runs Helm logic while watching for changes on Helm chart objects. Therefore, Flux
Helm Operator can be used as the basis of an application lifecycle management solution
for MEC applications based on Helm charts.

2.4 Related Work

Several open source platforms have been developed to provide the benefits of MEC
computing technologies in different industrial and entertainment areas. Akraino [11] is
an open source project of the Linux Foundation that implements MEC by using both
OpenStack and Kubernetes as a VIM. Airship [12] is a project originally conceived for
automatically deploying cloud infrastructures such as OpenStack. By means of Helm
charts, Airship automates the installation of OpenStack services such as Neutron or
Nova. But Airship can also be used to deploy MEC applications. However, the technical
documentation provided by these open source projects does not specify how the MEPM
and the MEO functions can be implemented in practice. This paper provides an initial
approach to implementing these functions using Helm and Kubernetes.

ETSI has focused for some time in an alternative approach to provide MEC. ETSI
has analyzed how the management and orchestration frameworks for MEC and for NFV,



An Initial Approach to a Multi-access Edge Computing Reference Architecture 189

which share many similarities, can be integrated into a unified MECinNFV architecture
[13]. From this perspective, MEC applications can be deployed as VNFs over existing
NFV platforms such as Open Source Mano (OSM) [14]. However, it is still not possible
to deploy a MEC application over an NFV platform as it is defined in the standards.
MEC applications are defined in a different manner than virtual network functions and
the functions performed by the MEO and the MEPM differ from the functions that
the NFVO and the VNFM entities can carry out. Taking into account these limitations,
Schiller et al. developed a generic VNFM based on JuJu, that can also play the role of
the MEPM [15]. However, in this paper we discuss how Kubernetes can work not only
as a VIM, but also as the core of the MEPM. Section 3 explains that Kubernetes natively
provides lifecycle management, scheduling, fault, or configuration features that make it
an intent-driven orchestrator that meets the needs of the MEPM.

3 Cloud Native MEC Applications Managed by Helm

Kubernetes main limitation for working as a MEPM block is that it is not aware of the
concept of a MEC application. Besides, identifying what exactly is a MEC application
becomes cumbersome due to Kubernetes’s nature. Hence, to fulfill the desired role of
the MEPM, an additional functional block that translates from MEC application man-
agement to Kubernetes resource management is required. Helm offers this functionality
by mapping Helm charts with MEC applications. Flux Helm Operator project provides
a mechanism that can be utilized to manage the lifecycle of a MEC application while
defining it in a declarative way through Kubernetes. As a result, Helm Operator works
as a generic MEPM for MEC applications that are declared as Helm charts.

The declaration of MEC applications in Kubernetes provides the means for an imple-
mentation of the MEPM’s interfaces specified by ETSI in the reference architecture (see
Fig.2). ETSIGS MEC 010 [16] provides REST API specifications for the Mm1 and Mm3
reference points. The Mm1.AppPkgm and Mm3.AppPkgm APIs focus on MEC appli-
cation package management whereas Mm1.AppLcm and Mm3.AppLcm focus on MEC
application lifecycle management. Additionally, ETSI defines Mm3.AppLccn APIs at
the MEPM for notifying the MEO about changes on the status of an application instance
that are related to lifecycle management operations. In this paper we propose an imple-
mentation of the MEPM via a new layer that supports Mm3.AppPkgm, Mm3.AppLcm
and Mm3.AppLccn APIs. This layer receives the name of HelmMEC.

3.1 HelmMEC

Figure 3 shows an overview of the proposed MEPM design, including the K8s Con-
trol Plane and the three main components of HelmMEC: HelmMEC proxy, Flux Helm
Operator, and NoSQL database.

The HelmMEC proxy is a web server that implements the standardized REST APIs
at the Mm3 reference point. It is responsible for handling requests through the Mm3
reference point and translating them into interactions with the K8s Control Plane via the
K8s APIL.
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Fig. 2. REST APIs specified by ETSI for Mm1 and Mm3 reference points

The HelImMEC proxy uses a NoSQL database to store all the information related to
MEC application instances. This information is necessary to run operations to create,
delete, instantiate, and terminate MEC application instances. Each application instance
has an appDId that is used by the HelmMEC proxy to identify which application package,
i.e., Helm chart, is used by the application. The MEC application package information is
managed at the MEO where the package appDId is associated with Helm chart-specific
details.

The Helm Operator is the core component of HeImMEC as it provides the func-
tionalities of a generic manager of Helm-based applications. Helm Operator achieves
this by adding the HelmRelease CRD in Kubernetes, which will allow a declarative
management of Helm-based applications via K8s API. The HelmMEC proxy interacts
with the Helm Operator by configuring HelmRelease resources in Kubernetes. These
configurations are the result of translating requests coming from the Mm3 REST APIs.
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Fig. 3. HelmMEC internal components

As a result, the OSS can request lifecycle management operations on MEC appli-
cation instances that will eventually trigger configurations in the Helm Operator. For
example, in the case of instantiating a MEC application instance: the HelmMEC proxy
creates a new HelmRelease in Kubernetes out from the package information of the appli-
cation; the Helm Operator fetches the corresponding Helm chart information from the
MEQO, and ultimately orders Kubernetes the creation of the resources that compose the
MEC application.
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4 Proof-of-Concept Validation

In this section we introduce the prototype that has been developed to validate HelmMEC.
The Virtual Network over linuX (VNX) [17] virtualization tool has been used to simulate
a scenario that resembles a MEC system as depicted in Fig. 4. The installation and
configuration of all the components has been automated with Ansible playbooks. The
code of the prototype is available in our GitHub repository [18].
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Fig. 4. MEC system prototype based on Kubernetes

At the MEC host level, a Kubernetes cluster is provisioned on two KVM virtual
machines running Ubuntu 18.04 LTS image. The K8s cluster is configured using open
source project Kubespray [19]. Kubespray is a collection of Ansible playbooks that
enable installing production-ready Kubernetes clusters that can be easily customized
with a variety of configuration parameters specified from Ansible. The HelmMEC com-
ponents run as containerized services on the Kubernetes cluster. The HelmMEC proxy
is based on a web server programmed with FastAPI framework [20] that partially imple-
ments the Mm3.AppLcm interface. An instance of MongoDB is deployed as the NoSQL
database that stores application instance-related information. Flux Helm Operator runs
as another Kubernetes service following Flux’s guidelines.

An emulated gateway router (rl) provides connectivity between the MEC host level
and the MEC system level. The router has been implemented by setting up a Linux
Container (LXC) that runs Ubuntu 18.04 LTS. In addition, the BGP daemon BIRD [21]
has been configured to BGP-peer with the Kubernetes cluster, thus enabling dynamic
routing to services running in Kubernetes.

At the top of Fig. 4, the MEC system level components are displayed. This level
contains the MEO which is deployed as a Linux Container (LXC) that runs an Ubuntu
18.04 image. The MEO is configured with a web server programmed using FastAPI
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web framework [20]. This web server acts as a MEC application package manager that
partially implements the Mm1.AppPkgm interface. It relies on MongoDB as its NoSQL
database for storing application package-related information. Additionally, the user’s
host machine is attached to the same network as the MEO, enabling users to interact
with the MEC system as the OSS component.

As a result, the prototype allows users to request the MEO to onboard new Helm
charts as MEC application packages, as well as directly request the MEPM to instantiate
MEC applications from a chosen Helm chart.

5 Conclusions

We presented the HelmMEC middleware that leverages Kubernetes and Helm to realize
MEPM functions. Helm provides package management features that fit the needs for
cloud native MEC applications. By running Helm as a Kubernetes Operator, a promo-
tion of generic applications as first-class objects in Kubernetes is achieved. This enables
benefiting from Kubernetes lifecycle management capabilities for whole generic appli-
cations. HelmMEC proposal is aligned with ETSI reference architecture for MEC. The
declarative definition of applications through Kubernetes, facilitates the integration with
ETSI-specified APIs for the MEPM functional block.

The proof-of-concept presented in this work shows the feasibility of implementing a
MEC system aligned with the reference architecture that is based on Kubernetes playing
the roles of VIM and MEPM.

As a future work, the prototype will be extended to implement the remaining APIs
for the reference points Mm1 and Mm3 as specified by ETSI. In addition, an elaborated
association between MEC application packages and Helm charts should be addressed.
The prototype will be a key element of initial experiments to support MEC based services
on campus networks in the context of our research group projects.
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