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Abstract. Police officers investigating car accidents have to consider the dri-
ver’s interaction with a mobile device as a possible cause. The most common
activities such as calling or texting can be identified directly via the user
interface or from the traffic metadata acquired from the Internet Service Provider
(ISP). However, ‘offline activities’, such as a simple home button touch to wake
up the screen, are invisible to the ISP and leave no trace at the user interface.
A possible way to detect this type of activity could be analysis of system level
data. However, security countermeasures may limit the scope of the acquired
artefacts.
This paper introduces a non-intrusive analysis method which will extend the

range of known techniques to determine a possible cause of driver distraction.
All Android dumpsys services are examined to identify the scope of evidence
providers which can assist investigators in identifying the driver’s intentional
interaction with the smartphone. The study demonstrates that it is possible to
identify a driver’s activities without access to their personal content. The paper
proposes a minimum set of requirements to construct a timeline of events which
can clarify the accident circumstances. The analysis includes online activities
such as interaction with social media, calling, texting, and offline activities such
as user authentication, browsing the media, taking pictures, etc. The applica-
bility of the method are demonstrated in a synthetic case study.

Keywords: Digital evidence � Mobile forensics � Car accident � Driver’s
distraction � Android dumpsys

1 Introduction

The scope of digital evidence is growing in parallel with minor improvements and
newly added functionalities in mobile devices. In general, newly introduced operating
system (OS) upgrades are targeted to improve the security and ergonomics of the
mobile devices. While security upgrades challenge the investigator’s ability to acquire
detailed digital evidence, the opposite is the case when enhancing the usability of the
system: an improved user environment requires integrating new hardware and software
components, which results in new streams of evidence ready to be investigated by
forensic practitioners.

In comparison to traditional host-based digital forensic techniques, mobile forensic
solutions must consider a range of different mobile-device specific requirements.
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Firstly, mobile device data is highly volatile. Some evidence will simply not survive
until the police arrive at the accident. Some can be intentionally or unintentionally and
irreversibly destroyed by the user. Secondly, evidence acquisition is another challenge.
Taking into consideration the usual methods of accident investigation, it is unclear
how, if at all, the data from the mobile devices can be acquired. Depending on the
brand, model, operating system, version and patch level, the scope to successfully
acquire data varies significantly. The data available through the user interface
(UI) might reveal the most common activities such as telephony or texting, but offline
activities such as waking the screen would remain undetected. Even though data from
lower architecture layers may deliver further clarity, current mobile phone forensic
analysis solutions are simply not designed to reflect specific accident-related cases. For
instance, login activities or an attempt to reply to an incoming message can easily lead
to driver distraction, but whether this type of activity can be detected by current state-
of-the-art solutions is questionable.

Android Operating System (AOS) devices are equipped with an interactive inter-
face to observe user and system activities. Users and developers can inspect application
and system behaviour through built-in functionalities such as a circular buffer log
(logcat), the dumpsys tool or bugreports. These functionalities allow access to the
portion of the data which is normally not visible from the standard UI. Although the
ability to ‘abuse’ mobile phone diagnostic data for forensic purposes has been known
for almost a decade, analysis of Android dumpsys diagnostic data seems to have been
overlooked. In comparison to traditional smartphone digital forensic techniques, which
are primarily focused on content analysis, the analysis of diagnostic data has received
only limited research attention [1, 2]. A significant gap has been identified in terms of
acquisition, analysis and the interpretation of the artefacts of android dumpsys ana-
lytical data.

Hence, the primary motivation for this study is to inspect the current state of
Android dumpsys diagnostic data, identify artefacts which reflect specific driver
activities, inspect their relevance and volatility, and demonstrate the applicability of the
proposed method in a real-life investigation.

Besides the ability to avoid analysis of the user’s personal data, the study explains
how to extend the scope of prospective evidence providers and how to identify drivers’
activities without the need to collect the data from ISPs. The study also demonstrates
the possibility of determining those driver activities which are outside the analysis
capabilities of currently available digital forensic solutions. The outcome of the study
extends the perception of prospective digital forensic evidence, clarifying the cir-
cumstances leading to car accidents; and allow investigators to conduct more time- and
cost-effective investigation.

The remainder of this paper is structured as follows: Sect. 2 reviews related work.
Section 3 overviews the methodology and limitations of current work. Section 4
focuses on core Android dumpsys services, which are the most relevant to determine
driver activities. Section 5 demonstrates the effectiveness of the proposed approach in a
synthetic case study. The conclusions and future work are discussed in Sects. 6 and 7.
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2 Related Work

The detection of driver distraction has received substantial attention in academia over
the last decade. A significant portion of research has focused on how to detect driver
distraction based on sensorial data, collected either from a smartphone or vehicle
systems. The majority of the solutions propose to collect the data via custom appli-
cations or additional hardware installed in the vehicle. Mantouka et al. [3] attempted to
identify driving styles (including distracted driving) based on data from gyroscope,
accelerometer and GPS records. In addition to the previous, Papadimitriou et al. [4]
added data from a magnetometer. The data collected is temporarily stored within the
device itself and eventually uploaded to the cloud-based back-end and analysed.
Concerning privacy, Mansor et al. [5] proposed a mechanism for secure vehicular data
storage and cloud synchronization using a custom protocol, which complies with
forensically sound evidence collection requirements.

Another perspective leverages a vehicle’s built-in system. Khandakar et al. [6]
demonstrated a portable solution to collect vehicular data from a 3-DOF accelerometer
and ECU over the OBD-II port. This data is then sent to a mobile device for further
analyses and to conduct autonomous decisions such as reducing speed. Khan et. al [7]
presented the effect of smartphone activities on driving performance recorded in a
vehicular lifelog, which could help to detect distracted driving.

A substantial amount of research has been dedicated to solutions that can differ-
entiate between use of a phone by a driver or a passenger. Park et al. [8] studied typical
driver activities, e.g. opening vehicle doors; Torres et al. [9] focused on reading text
messages; Yang et al. [10] proposed advantages that could be gained from using a
vehicle’s speakers; Hald et al. [11], Liu et al. [12] and Manini and Sabatini [13] made
strides in terms of differentiating between driver and passenger activities based on
sensorial data from wearables. Lu et al. [14] analysed sensorial data to detect current
driving activity and vehicle type (car, motorbike, bicycle or travelling on foot). These,
and other detection techniques, were implemented in mobile applications which should
discourage drivers from dangerous interactions with mobile phones [15].

Mobile phone diagnostic data has been used relatively little in research into driver
distraction. Horsman and Conniss [1] analysed two major mobile operating systems,
showing the most promising sources of digital evidence that could help investigators to
indicate driver distraction. The study focused on artefacts that can reveal human
interaction with a mobile device acquired from two primary internal evidence provi-
ders: Android’s circular buffer log and iPhone’s CurrentPowerlog.powerlogsystem file.
The study provides several options how to identify the most probable activities such as
interacting with social media, texting and calling, either directly from the mobile device
or using hands-free equipment. Researchers described possible challenges to acquiring
and analysing the logcat dump. Apart from the now obsolete operating system versions
(AOS 4.3 (JellyBean) and 4.4 (KitKat)), the main drawback of the proposed solution
was the extremely high volatility of the evidence. If the first responders did not react
within a few minutes of the accident, the content of the buffer log might be overwritten
and the evidence permanently lost. Similarly, the vast majority of the circular buffer log
content would become unavailable after the device was rebooted. In addition, authors
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did not consider the dumpsys diagnostic data, which may indicate human interaction
the best.

The dumpsys output data is not completely unknown to researchers either. How-
ever, recent research has been oriented mostly towards malware detection and malware
classification techniques. Ferrante et al. [16] proposed a malware detection method,
which, among other aspects, processes CPU and memory usage data acquired via
dumpsys to identify which sub-parts of the executed application are malicious. Memory
consumption data, application permissions, battery usage and network statistics col-
lected via dumpsys were proposed by Lashkari et al. [17] as an additional type of
feature to develop more comprehensive Android malware detection framework. Trivedi
et al. [18] found that dumpsys package data helps with the correct application of a UID
to application name resolution in a technique that identifies applications accessing
malicious URLs.

Despite the fact that dumpsys offers powerful analytical options, it has not been
utilised as a feature by many known malware datasets [19]. Dumpsys diagnostic data
has also been found to be useful in other areas. Shoaib et al. [20] used dumpsys data to
analyse how the recognition of human activity impacts resource consumption in smart
devices. Dumpsys CPU statistics were included into the examination datasets to
identify UI performance regressions in Android applications [21] and to identify the
impact of logger-augmented mobile banking application on power consumption [22].
However, these implementations have only limited forensic value in terms of indicating
driver distraction.

3 Analysis Background and Methodology

3.1 Introduction to Android Dumpsys

The primary purpose of the dumpsys tool is to allow developers to inspect diagnostic
data generated by system services1 such as process statistics, CPU consumption, net-
work usage and battery behaviour. As with any other operating system, much of the
analytical data generated by system services, installed applications or telemetry func-
tions is not designed for digital forensic purposes. The same applies for Android
devices and their system services. The primary drawback is that only a limited number
of subject-relevant system events are time-stamped. Moreover, system services do not
necessarily generate diagnostic events with a unified timestamp format. The time value
might be expressed in epoch time, it may follow system time, or it may be expressed as
a differential value, e.g. the number of seconds since the application was pushed to the
back-stack until the dumpsys tool was executed. The time resolution of each set of
events may also vary from milliseconds to minutes. Even if some diagnostic data does
survive a system reboot, particular content was shown to be eventually overwritten,
either due to user interaction or just after regular system runtime. The lifetime of the

1 Authors in [23] use the term ‘service’ as a dumpsys option to specify the output from particular
dumpsys plugins.
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events kept by particular system services may also vary from seconds to months,
regardless of whether or not the device is rebooted.

One of the main advantages of dumpsys data acquisition is that the command can
operate under user level privileges. Meaning, the acquisition process does not require
elevation to the root-level access, but rather the standard ADB shell. If the minimal set
of requirements2 is met, full diagnostic output can be acquired by the ADB shell
dumpsys command without setting any additional arguments. Diagnostic information
will be extracted from all supported services. The scope of the supported system
services and the format of diagnostic data differ based on the installed platform. For
instance, the primary tested model Samsung Galaxy S9, SM-G960F/DSA running on
Android 8.0 supports 225 different services, while Samsung Galaxy S3 (AOS 7.0)
supports 189 services and Samsung Galaxy S5 (AOS 5.0) altogether 196 services.
Dumping all services may, however, produce quite verbose output in which not all
events are valuable for forensic purposes.

3.2 Evidence Identification

The diagnostic data from a single service may contain either data from a related service
or the aggregated data from multiple services. Since the output is highly verbose, the
initial objective is to limit the scope of targeted services and exclude irrelevant diag-
nostic content. As the dumpsys services do not generate diagnostic data in a unified
structure, the examination requires separate per-service data acquisition. Each dumpsys
service is triggered and the output is manually examined. Since the intention is to
construct a timeline dataset, the first filtering criterion requires the presence of time
information. Should the service generate information (an event) without a timestamp,
the service (the artefact) is excluded from further observation (see Fig. 1).

The next criterion inspects subject-relevant content which would reflect the driver’s
intentional interaction. The diagnostic data is categorised based on relevance to the
investigation subject. As case-relevant data is essentially an event which reflects direct
or indirect driver interaction; for instance, waking up the screen, unlocking the device,
charging, changing settings, opening an application and switching between applica-
tions. Irrelevant content can be considered the portion of the diagnostic data which is
not generated as a response to the driver’s intentional interaction or that does not
correspond to driver activity; for instance, an event which reports the volume of cur-
rently consumed memory or CPU is irrelevant.

Lastly, events which are not certainly irrelevant nor definitely attributed to the
driver’s intentional activity are examined and correlated in the context of all other
events; for example, a diagnostic output from WiFiController could be irrelevant, but it
tracks and logs activities such as screen on/off or user login, and so might be relevant.

The next stage requires empirical examination to identify under what conditions
each individual event is or is not generated. To exclude a portion of uncertainty, the
observation also considers whether the event can be generated without any user
interaction. The scope of the tests is customised for each artefact being explored. For

2 Steps to enable the ADB shell varies depending on the installed AOS [41].
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instance, telephony activities are examined separately for a phone call which is con-
ducted through the built-in earpiece, through the Bluetooth-connected car speaker or
through a wired external handset. The behaviour is then observed for situations when
the phone call is accepted, rejected or ignored. The full set of the conducted tests is
outside the scope of this paper.

The output of this stage results in a set of triggers which can be responsible for
generating each individual event. Following the principle of evidence reliability, each
event is repeatedly invoked by the set of discovered triggers. Should the event be
generated after a defined set of triggers is executed, the event is considered to be
reliable. Any deviation from the expected output marks the event as unreliable and the
event is excluded from the final timeline dataset.

Another examination criterion is the volatility of the event. The primary volatility
test shows whether the event survives system reboot. If it does, the next stage is to
determine the condition under which the event persists. The events might be erased
after a particular buffer has been reached or if the user triggers a certain activity (e.g.
the application is closed). The buffer might be defined by the maximum size of the log,
by the number of events being stored within one log, or by the expiration time.

A preliminary examination returned a list of services in which the diagnostic data
can be sufficient to indicate the driver’s interaction with the mobile device. The list
consists of 8 out of 225 supported services: activity, bluetooth_manager, mount, sta-
tusbar, telecom, customfrequencymanagerservice, wifi, and usagestat. A brief sum-
mary from the examination of each individual service is described in Sect. 4.

3.3 Post-acquisition Stage

The post-acquisition stage filters unnecessary content and unifies the event structure to
build the timeline. First, the timestamp format across all accepted events is converted to

Fig. 1. Analyses process
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the unified format. However, if multiple same-source events are generated within the
same minute (which often is the case), all of them will have the same times-
tamp. Consequently, the analyst may unintentionally break the relationship between
individual events which might result in misinterpretation of the user’s activities. To
maintain the integrity of the timeline, the order of the generated events has to be
preserved. For the purpose of this analysis, events which are not timestamped with at
least one-second resolution were tagged by an ORDER number which maintains the
order of events in which they initially were generated.

All extracted events are delimited into three fields: DATE; TIME and MESSAGE
body. To enhance the usability and simplify further filtering, each individual event is
enriched with additional fields: SOURCE, CLASS, EVENT_TYPE and DESCRIPTION.
The SOURCE tag equates to the origin; that is to say, the name of the service which
generates the event, e.g. wifi or telecom. The CLASS defines the specific application’s
class. For instance, the wifi service generates diagnostic output from but not limited to
the following classes: WifiStateMachine, AutoWifiController, WifiController and
WifiConnectivityMonitor. EVENT_TYPE and DESCRIPTION tags were constructed
based on observation, researched theory and the contextual meaning. EVENT_TYPE
refers to the group of same type events, regardless of which service or class generates a
particular event. A good example is a login activity event type which refers to the
user’s login and logout events. The login activity event type aggregates the events from
wifi, mount and statusbar services (see Table 1).

The ‘DESCRIPTION’ field clarifies the meaning of the message body and the
activity type with greater granularity. For instance, the screen activity distinguishes
screen on and screen off events, and the call activity recognises call started/ended.
Events for which their meaning is unclear were tagged as unknown (-) (see Table 2).

Table 1. Event types produced from individual dumpsys services

EVENT_TYPE SOURCE (dumpsys service)

App activity usagestats, CustomFreqencyManagerService
BT activity bluetooth_manager, CustomFreqencyManagerService
Call activity telecom, statusbar, CustomFreqencyManagerService
Charging activity CustomFreqencyManagerService
Login activity wifi, mount, statusbar
Screen activity wifi, CustomFreqencyManagerService
Task activity activity
Wifi activity CustomFreqencyManagerService
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Consequently, each case-relevant event extracted from dumpsys diagnostic output
appears in the timeline in a unified structure (see Fig. 2).

3.4 Limitations

The primary limitation is the rapid development of the Android operating system and
the application packages, which might invalidate certain results over the period of
analysis. Significant changes have already been introduced in AOS 9 and 10. A con-
siderable limitation is the scope of explored devices and installed operating systems.
The research results might be limited to device-specific hardware and installed versions
of the OS. Lastly, neither official resources [23, 24] nor Android project source code
[25] revealed sufficient documentation to support the research results. The research
outcomes are therefore highly depended on empirical examination supported by limited
documentation.

Table 2. Event type descriptions

Event type Description

App activity App launched; app moved to background; app moved to foreground;
lastTime executed; (-)

BT activity BT AUDIO connected; BT device connected; BT device disconnected; BT
entered AUDIO; BT entered NORMAL; BT paired device; call answered;
audio route; (-)

Call activity Call ended; call started; (-)
Charging
activity

Charging OFF, charging ON

Login
activity

UI locked; UI unlocked; login detected; pwtype requested; pwtype
confirmed; unlock requested; unlock confirmed;

Screen
activity

Screen OFF; screen ON

Task activity App exited
Wifi activity WiFi OFF; WiFi ON

Fig. 2. An example of event with unified structure
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4 Core Dumpsys Services to Indicate Driver Distraction

4.1 Application Activities

Activity manager is the Android built-in class available from API level 1 which
interacts and provides the diagnostic data about running processes, services and their
activities. The Activity command supports extended operation switches to limit the
observation to a specific package, service or broadcast delivery.

For the purpose of this research, the analysis of the Activity manager output was
limited to the Recent Tasks section. The data in the Recent Tasks dump provides
granular information about tasks that the user has most recently started or visited [26].
Authors in [27] define a task as ‘a collection of activities that users interact with when
performing a certain job’. All activities are arranged into a stack. If the user opens a
new activity within the application, older activities are sent to the back-stack. Once the
user exits the activity, the activity from the top of the back-stack will be retained with
the configuration it contained before being sent to the back-stack. Task configuration
holds details such as finger touch position, scroll position or even bar colours. Each
record in the stack holds the time when the task had been last active (lastActiveTime).3

Tasks are accompanied by Intent [28, 29]. By default, Intent’s structure consists of
primary attributes as Action and Data. Action and Data are paired to define a specific
action, e.g. ‘ACTION_VIEW content://contacts/people/1’. The secondary attributes
such as category, component and type define expected action more specifically. For
instance, the category.Launcher (cat) orders the application to start on top of all
currently running applications. Component (cmp) defines an explicit name of the
component to be executed, e.g. to start user login interface in Revolut app would be
defined as com.revolut.revolut/com.revolut.ui.login.pin.LoginActivity. Further expla-
nation of these attributes is beyond the scope of this paper.

Once the task is resumed, the combination of individual definitions (act, cat, cmp)
and others orders the system to resume the exact configuration as the application had
before it was pushed to the background. Meaning, retained tasks give the investigator
the ability to recover identical situations which the user had faced in the past.

The activities within the Recent Task dump are listed from the most recent at the top
of the list. The number of tasks running in the background relies on hardware con-
figuration. If the user runs many background tasks at the same time, the system might
start destroying them in order to recover memory. Even though the Recent tasks
memory is reboot-resilient, the evidence can be irreversibly destroyed if the user (or the
investigator) closes all running applications. The back-stack will be freed without the
ability to recover any past activities. While examining the test device, it was possible to
recover 32 tasks from last 22 h of user activities.

3 The Recent task dump also allows to attribute past activities to a specific user (EffectiveUiD).
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4.2 Application Usage Statistics

Application use statistics can be acquired from dumpsys UsageStats service, available
for developers from API level 21. The statistics are collected for a package for
a specific time range [30]. Data is stored separately for packages which are in the
foreground or background of UI, or for packages which are idle for a specific time
interval. The output can be divided into the following three categories:

1. In-memory statistics;
2. Event type collector statistics; and
3. Package idle statistics.

The In-memory statistics (stats) are aggregated into certain periods – day, week, month
and year. However, regardless of the length of the aggregation period, the aggregated
output of in-memory stats does not have to contain statistics through the whole
aggregation interval. In fact, the data is collected within a system-defined time range
(timeRange). For instance, In-memory daily stats may be limited to application use
statistics over the last several hours, ‘weekly stats’ to last several days, etc. While the
start time of timeRange is system-defined, the end time equals the time of dumpsys
acquisition.

Each aggregation period contains usage statistics for each individual package which
was executed on the system over the defined timeRange. The totalTime is measured
over the same period of time. The investigator may conclude that during the time
interval (timeRange), the user had been using a particular application (package) for a
specific amount of time (totalTime). The lastTime refers to the time of the last user
interaction (see Fig. 3).

Furthermore, each time the application is called, the Event type collector denotes
that the activity moved to the foreground or to the background and the time, application
name and associated activity type are recorded. If the user pushes the application to the
background, UsageEvents.Event object will generate a MOVE_TO_BACKGROUND
event. If the user calls the application to the foreground, the UsageEvents.Event object

Fig. 3. Usagestats – An example of In-memory daily stats output
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will generate MOVE_TO_FOREGROUND event.4 If the application consists of mul-
tiple activities, a separate event will be generated for each individual activity [31] (see
Fig. 4).

UsageEvents.Event object also reports the class which refers to a specific activity
within the application. For instance, if a driver attempts to compose a new email, a new
set of events with updated class definition will be generated (+ComposeActivityGmail)
(see Fig. 4).

Although In-memory statistics and Event type collector events are logged only with
a 1-min resolution5, the investigator may still define the last execution time more
precisely. An additional indication about the driver’s interaction with the mobile device
can be derived from Package idle stats which count the time since the application was
last used. In comparison to the previous Usagestats categories, Package idle stats do
not keep the history of the application usage, but only the most recent record per
application. If the application or its internal activity is either executed or pushed to the
background or to the foreground of the UI, the lastUsedElapsed counter will be
restarted. While the lastUsedElapsed counter counts the time since the application was
last used, the lastUsedScreenOn counter counts the time during which the screen is on
(see Fig. 5).

Fig. 4. Usagestats – An example of Event type collector statistics

Fig. 5. Usagestats – An example of Package idle statistics

4 As of API level Q (29), the ‘MOVE_TO_’ event types were deprecated and replaced by constants
ACTIVITY_PAUSED and ACTIVITY_RESUMED [31].

5 As of API level 28, events are generated with 1 s resolution.
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4.3 WiFi Analytics and Screen Activities

ADB dumpsys offers several options to inspect WiFi behaviour, connectivity, config-
uration and statistics. The tested device supported five dumpsys services: wifi, wifip2p,
wifi_policy, wificond and wifiscanner. Due to extensive output, further explanation will
be limited to wifi service, which may best clarify the driver’s activities.

Firstly, one may wonder why there is a need to inspect WiFi behaviour if the driver
is most likely not connected to any WiFi network while driving the car. It is because
selected classes keep tracking system activities and therefore the driver’s behaviour.6

For instance, any time a driver switches the screen on or off, the screen state change is
reported. Screen state changes can be observed through multiple classes, primarily:
WifiController, WifiStateMachine, WifiConnectivityMonitor and AutoWifiController.
The change of screen state can be recognised in the body of the message instantly (as
‘screen on’ or ‘EVENT_SCREEN_ON’) or it may require further decoding, as is the
case for the WifiController class.

Individual classes report system changes theWiFiManager, which acts as a primary
API for managing all aspects of WiFi connectivity [32]. Reported events contain so-
called msg.what codes which serve primary API to identify the type of received
message. Messages are constructed as a sum of the Message.what BASE message
address and the class’s specific state address. Message.what BASE message address is
declared as a public static final integer [33], e.g. WifiController’s BASE message
address is 0x00026000 (155648). The class’s specific state addresses are defined in
each individual class’s source code. For instance, WifiController declares the screen on
state as BASE+2 and screen off as BASE+3 [34] thus reporting the change of the
screen state as msg.what=155650 for screen on and 155651 for screen off (see Fig. 6).
The same principle is applied for all supported classes which use ‘msg.what’ codes.

The primary drawback, however, is that the vast majority of dumpsys wifi service
diagnostic content does not survive system reboot. The lifespan of each individual class
also varies. While testing, the WifiController and WifiStateMachine classes held
diagnostic data from the last 2 h, AutoWifiController for approximately 10 h, and
WifiConnectivityMonitor and WifiConnectivityManager for up to 36 h.

Fig. 6. Wifi - WifiController screen activity

6 The statement does not apply if the device is set to airplane mode.
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4.4 Login Activities

The user’s login activities can be perceived as the artefact which would indicate the
driver’s activity the best, but retrieving it is a considerable challenge. Android dumpsys
output holds only fragmented and, in most cases, indirect evidence of user login
activities, if anything. While logout activity can be indirectly attributed to screen off
events, this is not necessarily true of login activity. Given that the screen may be woken
up without any user interaction, screen on events by themselves are insufficient to
indicate that the driver logged in. Nevertheless, the investigation revealed several
options for how to detect login activities indirectly.

A driver’s login activity can be determined from WiFiManager statistics, the
WifiController class specifically. Applying the decoding approach described in the
previous section, the investigator may identify login activities tagged as what=155660
(0x2600c) messages. The value is constructed as a sum of WifiController’s base
message address ‘0x00026000 (155648)’ and USER_PRESENT state address (12).
Regardless of whether the WiFi module is enabled or not, and regardless of what
authentication method is used, WifiController reliably reported all user logins (see
Fig. 7).

Another indirect source of the prospective login artefacts is the Android disk
encryption subroutine. Each time the user changes or provides credentials to unlock the
UI, the crypfts connector is initiated which is accordingly reflected in system events.
Cryptfs connector activities (if FDE is present) can be obtained from dumpsys mount
service. The main benefit is that behaviour is reliable and the log may trace login events
over several hours. The tested device held logins from the last 7 h. However, if the user
uses fingerprint or face recognition, the log is not generated. Lastly, cryptfs events are
not reboot resilient.

A partial solution to this problem can be retrieved from statusbar manager service
logs. Android processes can call a routine in another process using a binder to identify
the method to invoke and pass the arguments between processes [35, 37]. The same
mechanism is used to maintain binder tokens which are shared between Notification
and StatusBar managers. Depending on the installed version of the OS, Android
processes may communicate with others via native binder object – the IBinder – or via
proxy – the BinderProxy.java [38].

Fig. 7. Wifi - User’s login activity
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Token activities can be acquired by the adb shell dumpsys statusbar command.
Among other triggers, each time the user logs into the device, statusbar manager
generates the what=CLEAR event. If the user or the system itself locks the user
interface out, a secondary event what=HOME RECENT is generated. The events are
ordered by time, with the most recent at the bottom of the list. The list holds up to 100
events. The primary drawback of this artefact is that the associated timestamps do not
hold the date, just the time with millisecond resolution. The second downside is that the
artefact is not reboot resilient. Regardless of what security measure is applied (PIN,
pattern, fingerprint or face recognition), the events are reliably recorded.

4.5 Telephony Activities

Android dumpsys telecom service generates a list of recently conducted phone calls.
Each call log contains call direction, the startTime and the endTime of the phone call.
For each direction, the callTerminationReason is defined by DisconnectCause attri-
butes, the Code and the Reason. These attributes show whether the phone call was
missed, rejected, or ended by a caller or by the counterpart. Depending on used
technology, telecom shows individual audio states. ‘Each state is a combination of one
of the four audio routes (earpiece, wired headset, Bluetooth, and speakerphone) and
audio focus status (active or quiescent)’ [39]. Whenever the driver conducts a phone
call via the external handsfree kit and switches back to the earpiece or phone speaker,
the telecom audio_route is switched and logged (see Fig. 8).

Yet another benefit is that telecom service preserves the phone log entries even if
the user deletes the log from her user interface. The downside it that telecom log is not
reboot resilient.

Fig. 8. Telecom - Switching audio routes
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4.6 Bluetooth

Bluetooth manager has been available in Android source code since API 18. The most
valuable artefacts reside in the base64-encoded BTSnoop file format log summary.
BTSnoop log resembles the snoop format of Host Controller Interface (HCI) packets7

[40]. Depending on the installed platform, BTSnoop log summary may contain an
extended clear text log. If a driver conducts a phone call via a Bluetooth paired device,
either incoming or outgoing, a unique event HFSM-enter AUDIO is generated. The
event itself does not signal an answered call, but rather entering the ringing state. With
incoming calls, if the call is answered, the service will generate ‘HSFM-
processAnswerCall’ event. If the call is outgoing, the BT manager generates the
HFSM-processDialCall record. When the call is finished, the mobile device quits the
AUDIO states which is signalled by HFSM-enter Connected message (see Fig. 9).

If the call is conducted over cross-platform VoIP applications such as WhatsApp,
the service records the events accordingly. The log integrity is not affected by system
reboot, and log lifetime exceeds several months; the tested device held the log from the
last 5 months.

4.7 SSRM Service (CustomFrequencyManagerService)

Android dumpsys CustomFrequencyManagerService (SSRM service) is the last of the
documented services which may clarify the circumstances of the accident.8 SSRM
service has been identified only on Samsung devices. Despite this, if the investigated
model is a Samsung, the investigator should include the output from the SSRM service
in the range of observed artefacts.

Fig. 9. Bluetooth manager - received phone call

7 https://tools.ietf.org/html/rfc1761.
8 As of API level 28, the data previously available under CustomFrequencyManagerService service
are available under sdhms service. CustomFrequencyManagerService remains present but without
any forensic value.
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The content of the SSRM service can be acquired by adb shell dumpsys Cus-
tomFrequencyManagerService. The output can be divided into two main sections:

1. Application (process) statistics and Recent Battery Level Changes; and
2. SSRM memory dump.

Both sections hold battery statistics data, mainly about total operational time, the period
of the time over which the device was charged, and the amount of data transferred
while connected to WiFi or GSM networks. Device battery statistics are recorded
separately for applications in the foreground and background when the state of the
screen is on and off, while the phone is connected to a paired Bluetooth device, and
while using different power modes.

Apart from the per-app statistics, the Recent Battery Level Changes section keeps
an overall battery statistic which is summarised for both states separately when the
screen is on and off. Each time the state of the screen changes, the Start Time and the
End Time of a new state is recorded, and Duration of the state is calculated. Whenever
the device’s battery is charged, the OnBatteryTime value equals 0 ms. The primary
drawback resides in the reliability of the artefact. In testing, the Recent Battery Level
Changes did not contain screen on/off events each time as they were triggered.
However, should the event be already present in the log, it can be considered as reliable
information.

The content of the SSRM memory dump is dumped as a base64-encoded data
stream delimited by SSRM MEMORY DUMP* header and trailer. Decoded data stream
resolves in a gzip-compressed data structure. The decompressed event log consists of
fixed header and the SSRM service log body. Each event is tagged by a timestamp,
followed by an event type tag and the log message. The decompressed SSRM service
log body holds a fixed number of 8,002 events. Since the detailed description of the
SSRM service log is beyond the scope of this paper, further explanation will be limited
to a brief description of two of the twelve recognised event types, [SET] and [PKG].
An example of the SSRM service log limited to [SET] and [PKG] events is in Fig. 10.

Fig. 10. An example of SSRM service log
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A [PKG] event types refer to application execution or activity. The body of the
message refers to the name of the package which was executed. In comparison to the
UsageStats artefacts, [PKG] events do not allow us to differentiate between activities
within the same application. In addition, [PKG] messages may appear in the log even if
the driver does not interact with the application. For instance, when a driver ignores an
incoming phone call, once the ringing state is over the SSRM service will generate a
[PKG] event which refers to the application on the top of the UI. Should the Facebook
app be the last used application, the service will generate [PKG] com.facebook.katana
event which can be misinterpreted as driver interaction. These and other discrepancies
can be clarified.

A [SET] event type primarily reports power management changes. The SSRM
service distinguishes two power-related functions, the power mode and the battery
status. Depending on the version of AOS, the investigator may recognize Normal Mode
[N], Power Saving Mode [P]; Ultra Power Saving Mode [U] and the Emergency Mode
[E].9 It also distinguishes battery status – charged or discharged. If the device is
charged, the service tracks the charging methods standard AC charging [Ac], USB
charging [Usb], Wireless charging method [W] or Fast Charging [F]. The information
is combined in the first two bits at the beginning of the [SET] event bit string.10 While
the 1st bit represents the power mode – [SET] [Nxxxxx…] – the 2nd reports battery
status – [SET] [xAxxxxx…]. For instance, a device which is set to Power Saving Mode
[P] and charged by standard charger [Ac] will generate [SET] [PAxxxxx…] events.

Fig. 11. SSRM [SET] - An example of decoded SET event

9 A slightly different terminology can be identified in devices running AOS 7.0 +.
10 The official terminology or definitions may differ.
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Similarly, a device which is set to Normal Mode and discharged [D], generates the
[NDxxxxx…] events (see an example in Fig. 11).

Each time the power mode is changed, a single or a combination of SET events is
generated. Similarly, each time the device is connected or disconnected from the power
source; the charging status change is logged.

A similar approach is applied for screen changes. Each time the screen is changed
to on or off, the SET [LCD] ON, respectively SET [LCD] OFF event is generated.
Consequently the 4th bit of the SET event bit string is switched to value 0 if the screen
is on, or switched back to value X if the screen is off. The [LCD] ON|OFF events are
reliably generated regardless of the trigger, be it user interaction, a received phone call
or notification of a fully charged battery.

SSRM memory dump [SET] event content is not limited to power mode and
charging status. It tracks any network-related changes such as connectivity to Bluetooth
devices or WiFi networks. It tracks details such as SSIDs, Bluetooth friendly names,
connection status, whether Bluetooth is enabled or if the device is also connected to an
external device. A summary of decoded attributes is presented in Fig. 11.

The log lifetime depends on device activity, the primary tested device held the
events from the last 5 days. Neither intentional reboot, nor several hours long power
outage affected the integrity of the log.

5 Synthetic Case Study and Results

The case study demonstrated a simulated car accident which occurred after the driver’s
interaction with a mobile device. The test was conducted on a Samsung Galaxy S9,
SM-G960F/DSA, AOS 8, connected by Bluetooth to the car’s entertainment system.
The evidence acquisition was limited to 8 out of 225 supported services which were
described in the previous section. The timeline search was focused on a 20-min time
window when the accident was reported. All simulated activities were conducted in
accordance with testing script and executed by a co-driver. The script contained the
following activities:

1. mobile device connected to the car’s stereo system;
2. driver uses Chrome app to search for a new destination and uses Google maps app

for navigation;
3. driver receives phone call, responds via handsfree kit and switches to device’s

earpiece;
4. driver is texting via Messenger; and
5. driver is taking pictures.

Since, the full analysis results exceed the scope of this paper, the applicability of this
technique is demonstrated only on a limited number of examples.
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5.1 Results

The analysis can be approached from multiple angles. The first option can be to focus
on the driver’s login and screen activities to identify whether a driver even attempted to
log in. In the current case, multiple login activities were reported by WifiController
(wifi), BinderProxy (statusbar) and Crypt Connector (mount) classes. Each login
activity was followed by Screen On activity, which copies natural behaviour while
logging into the device. Screen activities were proven reliably reported by all examined
wifi classes (see Fig. 12).

The second option is to observe UsageStats – Event type collector events which
cannot be generated without user interaction. Within an observed timeframe, it was
possible to detect all driver activity defined in a test script, including:

• home button touch, (com.android.launcher);
• run Galaxy Finder to search for an application;
• run Waze app and set up the navigation;
• USB connectivity (car’s charger);
• switching between executed applications Chrome app, Google maps, Messenger,

Waze and Contacts;
• browsing contacts, dialling, conducting a phone call;
• switch to PiP mode; and
• taking a camera picture.

An example of driver activities extracted from Usage statistics is in the figure
below (Fig. 13).

Fig. 12. Driver’s login activity
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Even the output from UsageStats could be sufficient to conclude that the driver did
interact with the mobile device. When the driver conducted a phone call, the mobile
device was already connected to the car’s entertainment system. Therefore, the ring
tone was routed through the car’s audio system, which was signalled by both blue-
tooth_manager (at 13:22:37.839) and telecom services (at 13:22:38.012) (follow
Fig. 14).

Then the driver accepted an incoming call which was again signalled by both
services, by bluetooth_manager at 13:22:40.667 and by telecom at 13:22:40.928. At
13:22:41.207 bluetooth_manager reported the change of state to HFSM-enter Con-
nected (1/1) which signals a return to the ‘normal’ state without interactive connection
to the Bluetooth-connected device (see Fig. 15). The device stayed connected to the
car’s entertainment system, but the call was not streamed via the audio system. Also,
telecom service reported another change of state from BluetoothRoute to EarpieceRoute
at 13:22:41:211 From this moment, the rest of the call was conducted via the phone’s

Fig. 13. An example of Usagestats diagnostic output

Fig. 14. A phone call conducted via BT handsfree device
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earpiece. Once the phone call was finished, the display switched on (13:23:15.649) and
the UI was locked.

Similar results can also be retrieved from the SSRM service. The analyst can
determine Bluetooth connectivity to car’s audio system and the call, which is
accompanied by screen activities. Analysts may also detect that the phone was set to
Power saving mode, charged through the USB and connected to Volvo Car’s enter-
tainment system (see Fig. 16).

In addition to the driver’s behavioural activities, the investigator can determine
other circumstances which might be relevant. For instance, analysts may detect the time
when the mobile phone was connected or disconnected from the wireless network (wifi,
SSRM), the time when the driver entered the car and started engine (SSRM, Blue-
tooth_manager) or even the approximate driving path (wifi). They may also detect
whether the mobile device was charged (UsageStats, SSRM) or whether the system was
rebooted (Bluetooth_manager, SSRM). Recent Tasks may also hold information about

Fig. 15. A phone call conducted via BT handsfree device

Fig. 16. A phone call conducted via BT handsfree device
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user activity (Intent). If the observed task is still in the stack, the investigator may
obtain its content. Since in the current case the applications had not been closed but
rather pushed to the background of UI, the content of the tasks could be restored (see
Fig. 17).

6 Conclusion

The goal of the study was to analyse the scope of the prospective digital evidence
which resides in diagnostic data acquired from the adb dumpsys tool. As was
demonstrated, dumpsys analysis does not require anything other than standard user-
level access with the developer’s options enabled, and it allows the investigator access
to system-level data. The results from the analysis and synthetic case study proved the
applicability of this technique in a real-life car accident investigation. The analysts have
several options to determine user interaction with a mobile device, including their
logins, texting, calling, interaction with social media or browsing offline content.
Analysts can also identify telephony activities and distinguish their operating modes,
such as conducting the phone call via the phone’s earpiece or external handsfree
appliance. Dumpsys diagnostic data allows the recovery of deleted phone call entries or
attempts to delete other artefacts, which could lead to conviction. Since evidence
acquisition does not rely on specialised digital forensics equipment, it may be con-
ducted outside digital forensics laboratories.

Like any other operating system, the range and structure of the events described
may be invalidated by newly implemented upgrades. The logic of the described ser-
vices is such that the structure of the events can be re-designed, re-placed or may be
completely removed. Despite these facts, the core services, such as, activity, Blue-
tooth_manager, usagestats and wifi have been identified across a selection of different
mobile device brands, types and operating system versions, from AOS 5 to AOS 10.
Even if a portion of the events may still become unavailable, the results and the method
described in this work can serve as a valid starting point to conduct further research and
customized development on a wider selection of brands and operating systems.

Fig. 17. Restored Recent Task Intent
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The outcome of the study can assist digital forensic practitioners to reveal addi-
tional evidence while investigating any type of crime or supporting the intelligence
operations. Discovered artefacts may clarify the scope of used applications, services,
paired accounts, paired devices, connected networks, visited locations, etc. It enables
differentiation between whether a certain activity was initiated by a system or a user.
The demonstrated method can assist investigators to verify a suspect’s alibi, build
communication networks or even verify whether a device’s security has been breached.
It can also provide a vital framework for targeted preparation, automated evidence
collection and further evidence visualisation.

7 Future Work

One of the biggest challenges identified in the study is to determine login activities.
A significantly more believable artefact of the user’s login activity can be extracted
from the Android buffer log through logcat. However, the main drawback of a buffer
log is its volatility, and future research should be focused either on less volatile evi-
dence or methods to extend the artefact’s lifetime.

As the scope of the analysed artefacts retrieved from Android dumpsys has not as
yet been exhausted, further analyses should be extended to a number of additional
topics. Activity manager has been found to be one of the most verbose plugins,
responsible for almost 25% of dumpsys output. However, this analysis covered only 1
of 14 sections holding the information about user- and system-initiated activities.
Correlation between Recent Tasks, Broadcast Activities and Pending Items activities
might extend understanding of past user behaviour. The same applies to other services,
mainly wifi and bluetooth_manager, which have not been explored in depth. Knowing
how msg.what messages are constructed, additional research may deliver further evi-
dence providers, which reflect human activities.

Since the structure of particular events from core services, such as activity, blue-
tooth_manager, usagestats and wifi has been changed with new AOS, demonstrated
artefacts will require systematic verification. A significant challenge will be to keep
track of newly implemented services. While the tested device (Samsung S9, AOS 8)
offered 225 services, the same device upgraded to AOS 10 provides access to
303 services. Finally, automating post-acquisition analysis to build a structured time-
line, be it JSON, CSV or other formats, would allow both effective examination and the
correlation of results with external evidence providers across multiple cases.
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