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Abstract. We investigate machine-learning-based cross-layer energy-
efficient transmission design for vehicular communication systems. A
typical vehicle-to-vehicle (V2V) communication scenario is considered,
in which the source intends to deliver two types of messages to the
destination to support different safety-related applications. The first are
periodically-generated heartbeat messages, and should be transmitted
immediately with sufficient reliability. The second type are randomly-
appeared sensing messages, and are expected to be transmitted with
limited latency. Due to node mobility, accurate instantaneous channel
knowledge at the transmitter side is hard to attain in practice. The
transmit channel state information (CSIT) often exhibits certain delay.
We propose a transmission strategy based on the deep reinforcement
learning technique such that the unknown channel variation dynamics
can be learned and transmission power and rate can be adaptive chosen
according to the message delay status to achieve high energy efficiency.
The advantages of our method over several conventional and heuristic
approaches are demonstrated through computer simulations.

Keywords: Cross-layer transmission design · Vehicular
communication · Deep reinforcement learning

1 Introduction

Traffic congestion, road safety, and energy shortage have become severe issues
in the modern transportation system. Supported by the great progress made
in the Internet of things (IoT), high-performance cloud/edge computing, and
LTE/5G radio access technologies [10], intelligent transportation system (ITS)
has been widely accepted as the promising solution and has attracted tremendous
attentions in both academia and industry. As one of the key ITS technologies,
vehicular networking enables traffic information, sensing data, and control
demands to be shared, so that various ITS services can be developed [7]. However,
such applications are in general safety-related and have diverse characteristics.
Message transmissions have to be conducted among highly mobile terminals,
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subject to stringent delay and reliability requirements [6]. Realizing high-quality
communication, especially vehicle-to-vehicle (V2V) transmission, is challenging.

Efficient transmission design in wireless systems has been extensively
investigated for years. The conventional designing procedure is mainly based on
channel state information (CSI) in the PHY layer. Although such an approach
is sufficiently good for most modern wireless communication scenarios, it may
not be able to satisfy the demands in vehicular communication systems due to a
number of reasons. First, CSI does not reflect the time that source messages have
already waited before satisfactory transmission opportunities are available. This
may cause unbounded transmission delay. Involving the queue state information
(QSI) in the MAC layer also into the decision-making process would enable
delay-aware transmission design. Second, a sufficient amount of instantaneous
CSI at the transmitter side is often assumed. Attaining such channel knowledge
can be managed in relatively static wireless environments [14], but is challenging
in dynamic ITS. Third, existing transmission design normally focuses on only
one single type of application. In vehicular networks, however, multiple types of
applications with diverse quality of service (QoS) requirements always co-exist.
Therefore, new models and solutions are needed.

Our earlier work [4] investigates a multi-user V2V communication network
in which each information source desires to send two types of delay-limited
messages with different characteristics to its destination. We propose a
cross-layer delay-aware transmission design using both CSI and QSI through
the Lyapunov optimization theorem. It is shown that the performance can be
much better than conventional CSI-based approaches. Nevertheless, the solution
is established based on a knowledge of instantaneous transmit CSI (CSIT). In
practice, a common approach to attaining CSIT is to exploit feedback from the
receiver. In highly mobile networks, channel knowledge conveyed in the feedback
normally can only reflect a delayed version of the true channel condition. In this
case, transmission design based on instantaneous CSIT would not be applicable.

The past few years have witnessed explosive advances in artificial intelligence
(AI) technologies. Utilizing machine learning techniques to facilitate wireless
systems design has already attracted attentions in the communications research
society [2,3]. As a main branch of machine learning, reinforcement learning,
especially when combined with deep neural networks (DNNs), has been proven
to be capable of solving a wide range of challenging sequential optimization
problems (see, e.g., [5,8,11,12,15]). In this paper, we investigate the potential
of applying reinforcement learning for enabling V2V transmission design.

Specifically, we consider a typical V2V transmission system, in which
two types of messages with different QoS requirements are delivered to
support safety-related applications. The first type are heartbeat messages which
should be transmitted immediately with high reliability. The second type
are environment sensing messages that should be sent with limited delay.
The small-scale channel fading coefficients change across time-division slots
following a fixed but unknown distribution. Only a delayed version of the
CSIT is available. It is expected that the transmission can be realized with
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Fig. 1. System model

the maximal energy efficiency, i.e., one joule energy enables the maximum
information delivery. We propose formulating the design optimization problem
as a finite Markov decision process (MDP), and apply a deep Q-network (DQN)
algorithm to solve it. Simulation results show that, our method is able to
achieve close performance as using the method presented in [4] with perfect
channel knowledge, and outperform three heuristic solutions in the imperfect
CSI environment. The advantages of machine-learning-based cross-layer
delay-aware transmission design are thus demonstrated.

2 System Model

We consider a typical V2V communication scenario with source S and
destination D, as shown in Fig. 1. S desires to send two types of delay-limited
messages to D. They have very different characteristics and QoS requirements,
to support different safety-related ITS applications. The operations of the whole
system are conducted in multiple time-division transmission blocks, each of which
consists of T unit time slots. At the beginning of each time slot, S executes
transmission. At the end of the slot, D provides certain feedback to update the
knowledge of S regarding channel and message delivery status.

The first type of messages, termed type-1 messages, arrive in S periodically
with a fixed data rate r bit/slot. An example of such messages is the heartbeat
messages that provide D with the real-time status of S. They should be
transmitted immediately. Otherwise the contained information would become
stale. For each transmission block, a sufficient proportion of the messages
(e.g., 70%) are expected to successfully reach D, as a transmission reliability
requirement. Let φ[t] = 1 denote that, at time slot t, S successfully delivers a
type-1 message to D. Otherwise, φ[t] = 0. The reliability requirement can hence
be written as

1
T

T∑

t=1

φ[t] ≥ φ0, (1)
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where φ0 is a constant specified according to the application.
The second type of messages, termed type-2 messages, arrive in S randomly.

The arrival data volume a[t] (in bits) at time slot t follows a stationary random
process (e.g., Poisson with parameter λ bit/slot). An example of these messages
is the environment sensing data collected from S’s on-board sensors. Sharing
them with D can help extend the environment perception capability of D. These
messages can be temporarily stored in the source queue Q. But the queuing delay
must be limited. Such a latency requirement is posed by a finite maximum queue
length Q0 (queue length exceeding Q0 results in overflow and loss of data). Let
Q[t] denote the instantaneous queue length at S and b[t] denote the data volume
that the type-2 messages leave the queue, at time slot t. Within each transmission
block, at the end of time slot t, the queuing dynamics of Q under the latency
requirement is

Q[t] = max{Q[t − 1] − b[t], 0} + a[t] ≤ Q0, (2)

for all t ∈ {1, 2, · · · , T} and some Q[0] ≤ Q0.
The message transmissions are conducted in a narrow-band block fading

environment. The fading coefficient between S and D at time slot t is denoted
by h[t], which remains fixed in each time slot, but changes across different slots.
To simplify the problem, we assume that the channel gain |h[t]| can be discretized
into L different levels, the set of which is denoted by H = {g1, g2, · · · , gL}. At
time slot t − 1, if |h[t − 1]| = gi, then at the next time slot t, the channel
gain changes to |h[t]| = gj (i, j ∈ {1, 2, · · · , L}) with transition probability
Pr{|h[t]| = gj

∣∣|h[t − 1]| = gi} = pi,j . We consider a stationary environment
such that the channel transition probabilities remain fixed, but are unknown
at both the source and destination. Due to the mobility of the vehicles, the
source has only a delayed channel knowledge. Specifically, at time slot t − 1, the
destination estimates the channel coefficient using the training sequence sent by
the source. Assume the estimation is sufficiently accurate. At the end of the slot,
D feeds its estimation result (and also D’s decoding status) to S. Hence at the
beginning of time slot t, S knows only h[t − 1].

Based on available knowledge regarding channel and queue conditions, and
the past transmission status of the two types of messages, at the beginning of
any time slot t, S chooses to use one of M codebooks to encode its message
to a unit-power signal x[t]. Let the set of data rates of the M codebooks
be R = {R1, R2, · · · , RM}. In addition, S selects a power level from set
P = {P1, P2, · · · , PN} to send the signal. As a result, at time slot t, the received
signal at D can be expressed as

y[t] =
√

P [t]h[t]x[t] + n[t], (3)

where P [t] is the transmit power, and n[t] denotes additive white Gaussian noise
(AWGN) with power N0. The mutual information between S and D is thus (with
bandwidth B)

I[t] = B log2

(
1 +

P [t]|h[t]|2
N0

)
. (4)
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Further, the source S can choose its encoding action, i.e., whether encoding
only one type of messages or both types. Specifically, if R[t] ≥ r, then S has
two choices to form x[t]. First, both types of messages are transmitted. In
this case, x[t] represents r bits of a type-1 message and R[t] − r bits of type-2
message (i.e., reducing the queue length by b[t] = R[t]−r bits). Second, only the
type-2 message is encoded so that x[t] represents R[t] bits of type-2 message (i.e.,
reducing the queue length by b[t] = R[t] bits). Certainly, if the chosen data rate
R[t] < r, there is only one encoding action: All the R[t] bits in x[t] are from the
type-2 message, so that the queue length is reduced by b[t] = R[t] bits. We use
a binary indicator σ[t] = 1 to denote the encoding action that S transmits both
messages (including the case b[t] = 0, i.e., only a type-1 message is encoded),
and use σ[t] = 0 to denote that S transmits only the type-2 message.

Due to the imperfect CSIT, the transmission of x[t] may not be successful.
Assume that the M channel codes adopted by S are sufficiently strong. Then
if R[t] ≤ I[t], the destination D can correctly recover the transmitted source
message. Otherwise, if R[t] > I[t], correct decoding is not possible. Use binary
indicator ψ[t] to represent these events. At the end of each time slot t, the
destination D feeds ψ[t] = 1 (decoding success) or ψ[t] = 0 (decoding failure) to
S. (By this means, φ[t] in (1) can be found by φ[t] = ψ[t]σ[t].)

We aim to find an energy-efficient transmission strategy, such that the
V2V link can choose its encoding action, transmission power and rate based
on its queue state and delayed channel knowledge, to satisfy the desired
message delivery requirements in each transmission block with maximized
energy efficiency η, defined as the ratio of sum effective data rate to sum
power consumption. Mathematically, we aim to solve the following optimization
problem.

maximize : η =
R̄

P̄
=

∑T
t=1 ψ[t]R[t]
∑T

t=1 P [t]
(5)

s.t. : (1) and (2) (6)
P [t] ∈ P, R[t] ∈ R, σ[t] ∈ {0, 1}. (7)

This stochastic optimization problem is hard to solve, especially due to
unavailability of perfect knowledge regarding CSIT and environment dynamics.
We propose to apply the deep reinforcement learning technique to fulfil the task.

3 MDP Formulation

To solve the energy-efficient transmission design problem for the considered delay-
ware V2V communications, we first define a finite episodic MDP that reflects the
optimization problem (5). Afterwards, a DQN algorithm is adopted to solve the
MDP. Following the aforementioned transmission process, each episode represents
one transmission block with T time slots. At the beginning of time slot t (t ∈
{1, 2, · · · , T}), the agent (the decision-maker, i.e., in our case, the source S)
takes an action aaa[t], based on the environment state sss[t − 1] observed at the end
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of the time slot t − 1. At the end of time slot t, the agent receives a reward r[t]
from the environment as a response to its action, and also observes the updated
state sss[t]. The procedure continues until the completion of a block at time slot
T . An MDP is specified by five elements: state space, action space, rewards,
transition probabilities, and discount factor. We elaborate them as follows.

3.1 State Space

The state space of our MDP is defined as:

S =
{
sss|sss =

[
sm1, sm2, sch, sbk

]}
, (8)

where sm1 represents the reliability state of type-1 messages, sm2 represents the
queue state of type-2 messages, sch represents the channel state, and sbk is the
block state.

In particular, at the end of any time slot t ∈ {1, 2, · · · , T} (i.e., after taking
action aaa[t]), the value sm1 reflects how much the reliability requirement (1) has
been satisfied and is defined as the total number of type-1 messages that have
been successfully delivered so far:

sm1 [t] =
t∑

i=1

φ [i] = sm1 [t − 1] + φ [t] , (9)

with initial value sm1 [0] = 0.
The value sm2 reflects how much the latency requirement (2) has been

satisfied and is set as the current queue length:

sm2 [t] = Q[t] = max{sm2 [t − 1] − b[t], 0} + a[t]. (10)

sm2 [0] can be any value in set {0, 1, · · · , Q0}, since there may be data waiting
in the queue before a new block starts.

The value sch reflects the channel quality:

sch[t] = |h[t − 1]|. (11)

The initial state sch[0] can be chosen arbitrarily from H. Clearly, for transmission
decision-making at time slot t, sch[t] represents delayed CSIT.

Finally, the value sbk is set as the number of remaining time slots in the
block:

sbk[t] = T − t = sbk[t − 1] − 1, (12)

with initial value sbk[0] = T . The block state sbk[t] represents the urgency level
of taking actions to guarantee the QoS requirements of the two types of messages
while achieving the maximum energy efficiency upon completion of the block.

The size of the state space can be extremely large, since sm2 is unbounded. We
notice that if any sm2[t] > Q0, the latency constraint (2) is violated and overflow
occurs. Carrying on transmissions in the block does not help and thus such a
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situation should be avoided. This is also the case when 1
T

(
sm1[t] + sbk[t]

)
< φ0,

since the reliability constraint (1) cannot be satisfied regardless of the remaining
actions. Therefore, to reduce the size of state space and enable efficient training,
we define an extra “abnormal terminal state” sss+. At the end of any time slot
t, if either sm2[t] > Q0 or 1

T

(
sm1[t] + sbk[t]

)
< φ0 occurs, the state enters sss+

and the episode ends. By this means, the size of the state space is limited to
1
2 (T − T · φ0 + 1) × (T + T · φ0 + 1) × |H| × (Q0 + 1). In fact, it is possible to
further decrease the state space by (possibly non-linearly) quantizing the ranges
of sm1 (i.e., [0, T ]), sm2 (i.e., [0, Q0]), sbk (i.e., [0, T ]) into K1, K2, and K3

sub-regions, respectively. Tuning the parameters K1, K2, K3 leads to trade-off
between performance and training complexity.

3.2 Action Space

The action space of our MDP is defined as

A =
{
aaa|aaa =

[
apw, art, am1, am2

]}
. (13)

The values apw and art represent the power level and data rate the agent chooses
from P and R respectively to send signal, i.e., at the beginning of time slot t
the source selects apw[t] = P [t] ∈ P, and art[t] = R[t] ∈ R.

am1 and am2 are binary indicators that reflect the encoding action.
Specifically, when art is chosen to be art[t] > r, setting am1[t] = 1 and am2[t] = 1
means that both type-1 (with rate r) and type-2 (with rate art[t] − r) messages
are sent (equivalent to σ[t] = 1). If only type-2 messages are encoded (with
rate art[t]), one has am1[t] = 0 and am2[t] = 1 (equivalent to σ[t] = 0). In
addition, if art[t] = r, the source either transmits the type-1 message (indicated
by am1[t] = 1 and am2[t] = 0, equivalent to σ[t] = 1) or the type-2 message
(indicated by am1[t] = 0 and am2[t] = 1, equivalent to σ[t] = 0). Finally, if
art[t] < r, only the type-2 message can be encoded and one has am1[t] = 0 and
am2[t] = 1 (equivalent to σ[t] = 0). Therefore, the size of action space is less
than 2MN .

3.3 Rewards

The rewards reflect how good the chosen actions are in terms of achieving the
optimization objective (5) while guaranteeing the constraints in (6). It is the basis
for the agent to learn a good policy. To this end, we form the reward R by four
parts: energy efficiency reward Ree, reliability reward of type-1 messages Rm1,
latency reward of type-2 messages Rm2, and penalty for entering the abnormal
termal state Rab.

Specifically, at the end of time slot t (t ∈ {1, 2, · · · , T}), the energy efficiency
reward of taking action aaa[t] in state sss[t − 1] is defined as the incremental energy
efficiency, i.e.,

Ree[t] =
∑t

i=1 ψ[i]art[i]
∑t

i=1 apw[i]
− Ree[t − 1], (14)
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where the initial value Ree[0] = 0 and if for any t,
∑t

i=1 apw[i] = 0, we set
Ree[t] = 0. By this means, at the end of the transmission block, the accumulative

reward is
∑T

t=1 R
ee[t] =

∑T
i=1 ψ[i]art[i]

∑T
i=1 apw[i]

=
∑T

i=1 ψ[i]R[i]
∑T

i=1 P [i]
, which is the achievable

energy efficiency. Maximizing
∑T

t=1 R
ee[t] is the same as maximizing the original

objective function (5).
The reliability reward of type-1 messages is defined as the incremental

successful transmission ratio of the messages, i.e.,

Rm1[t] =
∑t

i=1 ψ[i]am1[i]
T

− Rm1[t − 1], (15)

in which the initial value Rm1[0] = 0. The accumulative reward after T time

slots is
∑T

t=1 R
m1[t] =

∑T
i=1 ψ[i]am1[i]

T =
∑T

i=1 φ[i]

T . Maximizing this value is the
same as maximizing the actual ratio of delivering type-1 messages defined in (1).

The latency reward of type-2 messages is defined as the reduction of the
queue length (as a fraction of Q0) resulted from taking action aaa[t]:

Rm2[t] = −
(

sm2[t]
Q0

− sm2[t − 1]
Q0

)
. (16)

Maximizing the accumulative reward at the end of the block
∑T

t=1 R
m2[t] =

−Q[T ]
Q0

minimizes the final queue length.
Finally, a penalty is imposed if at the end of any time slot t the system enters

the abnormal terminal state, since the transmission requirements are violated.
This penalty is set to

Rab[t] =
{−Γ for sss+

0 otherwise , (17)

where Γ is a large positive number.
The total reward of our MDP at time slot t is set to

R[t] = γ1R
ee[t] + γ2R

m1[t] + γ3R
m2[t] + Rab[t], (18)

where γ1, γ2, and γ3 are weighting parameters with γ1+γ2+γ3 = 1. We can tune
these parameters to specify our preference in maximizing the achievable energy
efficiency, maximizing successful transmission ratio of the type-1 messages, or
minimizing the queue length at the end of each transmission block. The special
case of setting γ2 = γ3 = 0 leads to the original optimization problem (5).

3.4 Transition Probabilities and Discount Factor

The probability that state sss enters state sss′, providing reward R, after the agent
takes action aaa, is:

paaa
sss,sss′,R = Pr

{
sss′,R

∣∣sss,aaa
}

, ∀sss,sss′ ∈ S, aaa ∈ A. (19)
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Certainly such transition probabilities are unknown. since the channel
transmission probabilities are not available. The MDP has to be solved by a
model-free algorithm.

Since our MDP is episodic and we consider the rewards attained in different
time slots to be equally important, the discount factor is set to be 1. The total
return is thus

G =
T∑

t=1

R[t]. (20)

Solving the MDP is to find the strategy that maximizes G.

4 Deep Reinforcement Learning Algorithm

We apply DQN, which is a model-free reinforcement learning method that
combines the Q-learning algorithm with DNNs, to solve the finite MDP presented
in the above section.

Q-learning is a tabular off-policy reinforcement learning algorithm that
establishes a Q-table to infer the optimal policy, i.e., the optimal mapping from
states to the probability distribution over actions. Each element in the Q-table
Q̃(ssst, aaat) represents the value of an action-value function q(ssst, aaat), the expected
return of taking action aaat in state ssst, and then following policy π:

q (ssst, aaat) = Eπ

[
Gt =

T∑

i=t+1

Ri

∣∣∣∣ssst, aaat

]
. (21)

During the training process, for each sampled training episode, Q-learning keeps
updating the Q-table according to

Q̃ (ssst, aaat) ← Q̃ (ssst, aaat) + α
(
Rt + γ max

aaa∈A
Q̃ (ssst+1, aaa) − Q̃ (ssst, aaat)

)
, (22)

in which action aaat is sampled from an ε-greedy policy according to the Q-table,
Rt and ssst+1 are respectively the observed reward and new state, γ is discount
factor, and α ∈ [0, 1] represents learning rate. Upon convergence, the optimal
policy can then be derived from the Q-table.

The issue with conventional Q-learning is that when the state space and/or
action space are large, the storage and update of Q-table demand large memory
space and long convergence time in the training process [9]. DQN targets
this problem by applying DNNs to approximate the action-value functions.
However, this may further cause convergence and stability problems [12]. First,
small updates to the action-value function q(ssst, aaat) may change the on-going
policy significantly, which may mislead the agent to prefer a set of actions
with correlated data. To handle this issue, reference [13] proposes the target
network technique, which implements two networks with the same architecture
but different network weight updating frequencies.

In addition, the input data of the DNNs are often highly correlated due to
the ε-greedy sampling policy. The environment transfers from each state to a
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Table 1. Simulation parameters

Parameter Value

Type-1 message reliability requirement φ0 {0.6, 0.7, 0.8}
Type-2 message queue length limit Q0 {10, 8}
Transmit power levels P {0, 1, 2, 4, 8, 16, 32}
Transmit rates R {0, 1, 2, 3}
Abnormal terminal state penalty −Γ −10

Initial states of the two messages (sm1[0], sm2[0]) (0, 0)

certain set of next states with high probability. Hence gradient decent may be
conducted frequently based on similar and correlated inputs. Such a fact can
cause strictly sub-optimal or unstable training results. Experience replay [12]
stores the agent’s experiences at each time slot in a data-set. In each episode, a
batch containing fixed pieces of experience is selected randomly. The correlation
between experience is broken.

The complete algorithm that we apply to solve our MDP is constructed
following that in [12]. In the next section, we implement it, using Tensorflow
[?], on an example problem. Our experiments apply DNNs with 5 layers. The
input and output layers consist of 4 and 35 neurons respectively, taking the state
at each time slot and the corresponding action-value of each available action as
inputs and outputs. Each of the three hidden layers has 20 neurons. The learning
rate is chosen to be α = 0.005 and the mini-batch size is 300. The optimization
method is Adam [?].

5 Performance Evaluation

We use computer simulation experiments to demonstrate the effectiveness of
our method (termed DQN scheme). In the simulations, the block size is set to
T = 10 slots. Both bandwidth and noise power are normalized to be B = 1
and N0 = 1. The two types of messages respectively have fixed and Poisson
distributed rates with r = 1 and E[a[t]] = 0.6 bit/slot. The channel gains
are assumed to be H = {0.359, 0.644, 0.866, 1.073, 1.286, 1.525, 1.830, 2.355},
approximately corresponding to the 1

16 , 3
16 , · · · , 15

16 percentiles of a standard
Rayleigh distribution respectively. The channel transition probabilities are set
to pi,i = 0.5 ∀i ∈ {1, · · · , 8}, pi,i±1 = 0.2 ∀i ∈ {2, · · · , 7}, pi,i±2 = 0.05
∀i ∈ {3, · · · , 6}, p1,2 = p8,7 = 0.4, p1,3 = p8,6 = p2,4 = p7,5 = 0.1. The remaining
parameters described in Sects. 3 and 4 are displayed in Table 1. The size of
the state space of our MDP is 3960 and for each state there are maximally 35
possible actions to choose. Enumerating all combinations of actions to find the
optimal policy is very computationally expensive.

We compare our DQN scheme with four baseline methods. The first follows
the scheme proposed in [4] and is termed Lyapunov optimization (LO) scheme.
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Accurate instantaneous CSI at the source is assumed to be available. The
Lyapunov optimization theorem is applied to transform the reliability and
latency requirements (1) and (2) into a penalty term to the objective function.
This allows the sequential optimization problem to be solved greedily in each
time slot. The method is essentially for continuous power and rate allocation
problems with large block length. To apply it in our problem, the parameters
are first carefully selected to make sure that the penalty term is sufficiently large.
The demanded reliability level of type-1 messages and queue length of type-2
messages within the limited block length are hence guaranteed. The power and
rate pair in P and R that is closest to its solution is chosen to conduct the
transmission.

The other three approaches do not assume accurate CSIT and carry out
their transmissions in heuristic fashions. First, an FR (fixed-rate) scheme always
transmits with rate R[t] = 2 using the smallest power level according to the
delayed channel knowledge. If the reliability requirement (1) is not yet satisfied,
both type-1 and type-2 messages are transmitted (each with rate 1 bit/slot).
Otherwise, only type-2 messages are sent with rate 2 bit/slot. Although the
transmission rate is chosen to be larger than the expected sum delivery rate of
the two messages, 1.6 bit/slot, due to the lack of accurate CSIT, transmission
errors may occur. This limits the transmission rate of the type-2 message to be
small and thus may cause increasing queue length and then potential overflow.

The EQ (empty-queue) scheme targets addressing the above issue by always
trying to empty the source queue. Specifically, if the reliability requirement (1)
is not satisfied, both type-1 and type-2 messages are transmitted, with rates 1
bit/slot and min{Q[t−1], 2} bit/slot respectively, using the smallest power level
derived according to the available channel knowledge. Otherwise, after sufficient
type-1 messages are delivered successfully, only type-2 messages are sent with
rate min{Q[t − 1], 3} bit/slot. Compared with the FR scheme, the EQ scheme
intends to reduce the possibility of overflow. But it may send messages with
a high data rate and easily lead to unsuccessful transmission (due to channel
outage). Further, the method does not naturally guarantee the requirements (1)
and (2) to be satisfied, either.

To ensure the performance requirements of the two messages without
accurate CSIT, a WS (worst-case scenario) scheme works similarly to the EQ
scheme, but chooses its power level according to the worst-case scenario (the
smallest channel gain that has non-zero transfer probability from the observed
value). For example, if the delayed channel gain is 1.286, the power is chosen by
assuming that the true value of the unknown channel gain is the worst case 0.866.
Clearly, the scheme always satisfactorily delivers the two types of messages, at
the cost of potentially a low achievable energy efficiency. For fair comparison,
we generate 105 test blocks of channel gains and arrival rates of the type-2
messages. The average achievable energy efficiency and the number of successful
transmission blocks of the five schemes are compared.

We choose the weighting parameters in (18) as γ1 = 1 and γ2 = γ3 = 0,
i.e., our DQN scheme aims to solve the original energy efficiency maximization
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Fig. 2. Learning curve for six example states.

Fig. 3. Energy efficiency comparisons.

problem (5). The training of our algorithm is conducted using 106 episodes
(blocks). We randomly select 6 out of the 3960 possible states. For each update
of the DNN weights, these 6 states are input to the network and each generates
35 outputs (i.e., approximated action-value functions). The average, over all 35
actions, of the outputs associated with these states are displayed in Fig. 2. From
the figure it is seen that our algorithm successfully converges. In what follows,
we discuss the results obtained using the 105 test blocks.

Figure 3 illustrates the average achievable energy efficiency of the
five schemes with three different sets of QoS requirements: (φ0, Q0) =
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Fig. 4. Satisfaction of transmission constraints.

(0.6, 10), (0.7, 8), (0.8, 10). If for any test block, a transmission scheme results
in violation of the requirements (1) and (2), the energy efficiency attained by
this scheme in such a failed block is treated as zero (and hence reduces the
overall average test energy efficiency). The numbers of successful transmission
blocks (i.e., the constraints (1) and (2) are both satisfied) are displayed in
Fig. 4. It can be seen from Fig. 3 that the proposed DQN scheme obtains
much better performance than the WS scheme, due to its ability of learning
the environment changing dynamics and then finding a good solution for the
sequential decision-making problem (5). There is no need to always prepare
for the worst-case scenario and thus the energy efficiency can be significantly
improved. The performance of the DQN scheme is comparable to the LO scheme,
even though only delayed channel knowledge is available for making transmission
decisions.

In addition, Fig. 3 shows that the FR scheme and EQ scheme may attain
even higher energy efficiency. But one can see from Fig. 4 that both approaches
lead to violation of the transmission requirements of the two types of messages.
Therefore, their high achievable energy efficiency (derived using only the
successful transmission blocks) does not serve as the evidence of their usefulness.
Clearly, our DQN scheme provides satisfactory performance for all test blocks.
Under different QoS requirements, its achievable energy efficiency also changes.
This implies that policies are learned to be adaptive to different environments.
This is different from the LO and WS schemes that always apply the same
transmission strategy. The above observations clearly show the advantages of the
proposed transmission design. Note that in our paper, we consider the energy
efficiency defined in (5) as the objective for a delay-aware V2V communication
system. One can follow the designing process and extend the system model
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to other scenarios with different performance metric, e.g., minimized power
consumption. As mentioned earlier, changing the choices of γ1, γ2, and γ3
in (18) also provides tradeoff between the overall designing objective and the
performance of individual messages.

6 Conclusion

We have investigated applying machine learning to assist in cross-layer
transmission design for delay-aware V2V systems. A typical scenario, in which
multiple types of messages are transmitted between a vehicle source-destination
pair with imperfect transmitter-side channel knowledge, has been considered. We
have shown that by transforming an energy-efficiency maximization problem
to a finite MDP, we can solve it efficiently through advanced reinforcement
learning techniques, with achievable performance much better than several
heuristic solutions. The advantages of combining machine learning with wireless
communication design has been demonstrated. In this paper, we have focused
on discretized state and action spaces. Systems with multiple source-destination
pairs and continuous state/action spaces are currently under investigation.
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