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Abstract. Resource elastic scheduling is a key feature of cloud services. The elas-
tic makes cloud services have the ability to flexibly increase or decrease resources
to satisfy user needs, and dynamically allocate resources for cloud services on
demand. The amount of resources to be configured is determined at runtime based
on the changes in workload to flexibly respond to the fluctuating demands of cloud
services. Appropriate resources need to be configured in advance. In this article,
we propose a dynamic resource provisioning framework based on theMAPE loop,
and use a two-tier elastic resource configuration for collaborative work. In order
to implement the proposed framework, we propose an elastic resource scheduling
algorithm based on a combination of the autonomic computing and deep rein-
forcement learning (DRL) to reduce task rejection rate of the virtual machine
(VM) and increase utilization to obtain as much profit as possible. In this paper,
Experimental results using actual Google cluster tracking results show that the
proposed policy reduces the total cost about 17%–58% and increases the profit by
up to not less than 9%, reduces the service level agreement (SLA) violations to
less than 0.4% to better guarantee the quality of service (QoS).

Keywords: Cloud computing · DRL · Resource scheduling · Autonomic
computing

1 Introduction

Cloud computing has emerged as the most popular commerce computing model in
today’s computer industry. Cloud computing can provide users with computing re-
sources such as computing power, storage, and bandwidth as needed. Cloud applications
are software products that run on cloud environments. Generally, each cloud application
consists of one or more cloud services. According to different service patterns that users
need, cloud computing can be divided into three types: Infrastructure as a Service (IaaS),
Platform as a Service (PaaS) and Software as a Service (SaaS). In this paper, we consider
a common three-tier cloud environment which involves three roles: IaaS vendors, SaaS
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providers, and users. IaaS vendors provide their customers access to various comput-
ing resources, such as storage, servers and networking. SaaS providers rent several VM
instances from IaaS vendors to construct their cloud services, and users purchase cloud
services from SaaS providers.

The elastic characteristics of cloud computing enable SaaS providers to adapt to
the changes in the workload of their cloud services by dynamically configuring and
reallocating resources. Ideally, the available resources are as close as possible to current
needs at each time point. However, user requests are potentially uncertain. It is not easy
to determine the appropriate amount of resources for cloud services during execution.
On the one hand, if the number of resources provided by the SaaS provider is greater
than the demand of user requests, it will cause the waste of resources and unnecessary
monetary cost. On the other hand, if the number of resources provided by the SaaS
provider is less than the amount of user requests, the under-provisioned situation may
result in lower revenue and missing potential customers.

In order to deal with the above resource supply problem of cloud applications,
dynamic resource supply is used.Dynamic resource supply is an effectivemethod, and its
basic idea is to supply resources based on changes in the workload of cloud applications.
The goal is to automate the dynamic configuration of resources by minimizing the cost
of renting resources from IaaS providers and meeting users’ SLA. For SaaS providers,
they concern how to maximize their profits and guarantee customer satisfaction during
the execution of their cloud applications.

In this paper, we combine the concepts of autonomous computing and deep rein-
forcement learning (DRL), and propose a cloud elastic resource scheduling algorithm.
IBM has proposed a MAPE (Monitoring, Analysis, Planning, and Execution) control
loop [1], which contains four stages: monitoring (M), analysis (A), planning (P), and
execution (E). We use a two-layer MAPE control loop to better allocate resources for
SaaS providers. The first MAPE control loop is in charge of renting appropriate virtual
machines from the IaaS provider. The second MAPE control loop is responsible for
resource sharing and coordination among cloud services. DRL is an important field of
machine learning. It can simultaneously give play to the representational advantages of
deep learning and the decision-making advantages of reinforcement learning. In the first
MAPE control loop, we use DRL as the decision-making agents that interact repeatedly
with the cloud environment and make resource adjustment decisions automatically. The
main contributions of this paper can be summarized as follows:

• We design a dynamic resource supplying system, which consists of two sets of the
MAPE loop to adjust the supplied resources for cloud services or balance resources
among cloud services.

• WeuseDRLas the decision-making agents to improve the performance of the resource
dynamic provisioning. At the same time, multiple cloud services learn collaboratively,
which effectively accelerates the learning speed.

• For the elastic scaling of cloud resources, we adopt a vertical and horizontal hybrid
method to adjust cloud resources elastically, which has a higher utilization rate and a
lower SLA violation rate.

• We use real workload tracking to conduct experiments under different metrics to
evaluate the performance of our approach.
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The remainder of this paper is organized as follows. Section 2 reviews the related
work. Section 3 formulates the problem and proposes a formal description. The neces-
sary theoretical background is presented in Sect. 4. In Sect. 5, we propose a dynamic
resource supplying framework and the corresponding elastic resource scheduling algo-
rithm. Section 6 presents an evaluation and discusses the experimental results. Section 7
concludes our work and provides future research directions.

2 Related Works

At present, many scholars have done a lot of research on the resource provisioning
in the cloud environment [1–3]. Traditional resource provisioning techniques employ
predefined policies to guide application scaling, and manually specify scaling rules after
an application is deployed. These rules specify a pair of thresholds and change the
number of VMs after triggering the expansion condition [4, 5]. However, the threshold
approach adds or reduces fixed numbers ofVM instances at a certain time,whichmay not
provide suitable resources in time when workload changes. In order to scale the amount
of resource properly, it is necessary to predict workloads of cloud services for better
performance. Prediction algorithm can allocate resources in advance, but the fluctuated
amount of user requests will bring uncertain error [6–8].

With the development of the theory of machine learning, machine learning meth-
ods become more and more attractive in the field of cloud computing. Mazidi et al.
[9] propose a new method based on the K-nearest neighbor algorithm that is used to
analyze and label virtual machines, and statistical methods are used to make expansion
decisions. Wei et al. [10] propose a cloud application auto scaling approach based on
Q-learning method to help SaaS providers make optimal resource allocation decisions in
a dynamic and stochastic cloud environment. Ghobaei et al. [11] propose a cloud service
hybrid resource supply method based on the concepts of autonomous computing and
reinforcement learning (RL), and an autonomous resource supply framework inspired
by the cloud layer model. Li et al. [12] present the resource controllers based on statisti-
cal machine learning which execute on different VMs in cloud environments to achieve
application service level objects (SLOs) under fluctuating time-varying workloads and
unpredictable variations of system situations. Gill et al. [13] propose a based particle
swarm optimization resource scheduling approach which is used to execute workloads
effectively on available resources. Salah et al. [14] present an analytical model based on
Markov chains to predict the number of or VM instances needed to satisfy a given SLO
performance requirement. In our paper, we use a shared resource pool to reduce predic-
tion errors, and DRL-based agents that interact repeatedly with the cloud environment
to make better decisions.

3 Problem Statement

We consider a common three-tier cloud environment which involves three roles: IaaS
vendors, SaaS providers, and users. The user submits tasks to the SaaS provider for
execution. The SaaS provider rents a certain number of VMs from the IaaS provider
and deploys cloud services to complete the requests submitted by users. IaaS providers
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provide almost unlimited resources in the form of virtual machines. The number of user
requests is continuous and fluctuating. The main goal of SaaS providers is to maximize
profits. Therefore, SaaS providers need to rent as few resources as possible and respond
flexibly to workload fluctuations in order to minimize the cost of VM rental and the
penalty caused by SLA violations. However, deciding the suitable amount of VMs for
cloud services during execution is quite difficult.

Notions and variables used throughout the paper are defined in Table 1. In the cloud
environment, the IaaS provider provides M types of VMs. The price of each VM type
m is VPricem. The SaaS provider provides I types of cloud services. Each cloud service
is composed of different types of VMs and the service fee is CPricei. Cloud services
serve user requests continuously. Each user request Reqru contains the arrival time ATr

u ,
the running time RTimeru and the deadline time DLru.

An SLA violation occurs when the SaaS provider fails to guarantee the predefined
user SLA. FTr

u and DLru are the finishing time and deadline time for the user request
Reqru. If the finishing time is greater than the deadline, an SLA violation will occur. The
SLA is defined as:

SLA
(
Reqru

) =
{
Yes(1) FTr

u − DLru > 0
No(0) otherwise

(1)

The Total cost is the cost consumed by the SaaS provider to satisfy all cloud services. It
includes the VM Costs and the Compensation, and it can be described as:

Total Cost = VM Costs + Compensation (2)

VM cost is the total cost of all VMs rented from the IaaS provider:

VM Costs =
∑N

n=1
VM costn (3)

For VM costn, it depends on the VM price VPricem and the initiation VM price
init pricem of type m, and the duration of time for which the VM is on VTimei, which is
calculated as:

VM Costn = (VPricem × VTimen) + init pricem ∀n ∈ N ;m ∈ M (4)

Compensation is the total penalty cost for all user requests, and it is expressed as:

Compensation =
U∑

u=1

Ru∑

r=1

Penalty
(
Reqru

)
(5)

For each user request Reqru, the Penalty is similar to related work [15] and is modeled
as a Linear function can be described as:

Penalty
(
Reqru

) = λr
u × FTr

u − DLru
�t

(6)

where λr
u is the penalty rate for the failed request which depends on the request type,

and �t is a fixed time interval.
The purpose of this paper is to enable SaaS providers to minimize the payment for

using resources from IaaS provider, and to guarantee the QoS requirements of users.
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Table 1. Notations and definitions.

Notation Definition

U Number of users

Useru The uth user

C Total number of requests for all users

Ru The number of requests belongs to uth user

Reqru rth request of the uth user

RTimeru The running time of the rth request of the uth user

ATr
u The time at which the rth request belongs to uth user arrival system

STr
u The start time of the user request Reqru

FTr
u The finish time of the user request Reqru

DLru The deadline time of the user request Reqru
Cloudi ith cloud service offered by SaaS provider

CPricei ith cloud service of cloud service charges

NumVMi(�t) Number of VMs allocated to the Cloudi at the �tth interval

Numi(�t) Number of CPU resources allocated to the VM of the Cloudi at the �tth

interval

Remaini(�t) Number of remaining available CPU resources for the VM of the Cloudi at the
�tth interval

NumReqi(�t) Number of requests for the Cloudi at the �tth interval

AvgReqi Average (Ave) number of requests for the Cloudi

NumRuni(�t) The number of requests being executed by the Cloudi at the �tth interval

NumWaiti(�t) The number of requests blocked by the Cloudi at the �tth interval

Utilii(�t) The CPU Utilization of the Cloudi at the �tth interval

N Number of initiated VMs

M Number of VM types

I The total number of cloud services offered by the SaaS provider

VPricem Price of VM type m

init pricem The initiation VM price of type m

VTimei The duration of time for the nth VM is on

RTimeru The running time of the rth request of the uth user

4 Theoretical Background

This section exposes a brief overview of the autonomic computing and deep reinforce-
ment learning techniques.
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4.1 Autonomic Computing

To achieve autonomic computing, IBM has suggested a reference model for auto-nomic
control loops, which is called theMAPE (Monitor, Analysis, Plan, Execute, Knowledge)
loop and is depicted in Fig. 1. The intelligent agent perceives its environment through
sensors and uses the information to control effectors carry out changes to the managed
element [16].

Fig. 1. The MAPE control loop

In the cloud environment, the MAPE loop can be used to manage cloud resources
dynamically and automatically. The managed element represents cloud resources. Mon-
itor collects CPU, RAM and other related information from managed element through
sensors. The analysis phase analyzes the data received in themonitor phase in accordance
with the prescribed knowledge. The plan stage processes the analyzed data and makes
a certain action plan. In the execute phase, the action requirements are reflected to the
effectors to execute on the managed element. Knowledge is used to control the shared
data in the MAPE-K cycle, constrain each stage and adjust the configuration according
to the indicators reported by the sensors in the connected environment.

4.2 Deep Reinforcement Learning

Deep Reinforcement Learning (DRL) [17] is an important field of machine learning. It
has the representational advantages of deep learning and the decision-making advantages
of reinforcement learning, providing the possibility to solve more complex large-scale
decision-making control tasks. The general framework of deep reinforcement learning
is shown in Fig. 2. The agent uses a deep neural network to represent the value function,
strategy function or model, and the output of deep learning is the agent’s action a. Next,
the agent obtains feedback reward r by performing action a in the environment, and
takes r as the parameter of the loss function. Subsequently, the loss function is derived
based on the stochastic gradient algorithm. Finally, the weight parameters in the deep
neural network are optimized after the training of the network model.
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Fig. 2. Reinforcement learning with DNN

Fig. 3. Resource provisioning framework based on the control MAPE loop.
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5 Framework and Algorithm

In this section, we propose a dynamic resource provisioning framework based on the
MAPE loop, and describe in detail the elastic resource scheduling algorithm used to
control the MAPE loop.

5.1 The Dynamic Resource Provisioning Framework

In order to better rent and manage VM resources, we propose a dynamic resource provi-
sioning framework for the SaaS provider, which is shown in Fig. 3. With the support of
the MAPE loop, each cloud service uses predictive technology and DRL technology to
rent the appropriate number of VMs from IaaS provider. All this happens in parallel and
cloud services do not interfere with each other. When all cloud services complete the
MAPE loop, another MAPE cycle will be started to adjust the resource waste caused by
prediction errors. The sensors collect resource waste of cloud service and user request
blocking. TheMAPE loop implements appropriate strategies to share resources between
cloud services. The effector creates a resource pool based on the decision of the MAPE
loop, and transfers blocking tasks to resources for execution. After deploying the SaaS
provider with various cloud services in the dynamic resource provisioning framework,
the MAPE loop runs until there are no cloud services running in the SaaS provider.

5.2 Elastic Resource Scheduling Algorithm

In this section, we will explain our elastic resource scheduling algorithm for cloud
services in more detail. The algorithm consists of two groups of control MAPE loops.
The first group of MAPE includes Monitoring Phase A, Analysis Phase A, Planning
Phase A, Execution Phase A. It adjusts the number of VMs in advance by predictive
technology and DRL algorithm to achieve horizontal scaling. Because new machines
generally take between 5 and 10 min to be operational, we set it loop every five minutes.
The second group of MAPE includes Monitoring Phase B, Analysis Phase B, Planning
Phase B, Execution Phase B. It loops every one minute, and achieve vertical scaling
by resource sharing, collaborative work and self-adapting management. The proposed
algorithm (see Algorithm 1) will run until the SaaS provider does not receive a new user
request.
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9: end for
10: end if
11: Monitoring Phase B
12: Analysis Phase B
13: Planning Phase B
14: Execution Phase B
15: end for

Algorithm 1: Pseudo code for Autonomic Resource Provisioning
1: begin
2: for k := 0 to K do // k is a time of counter and the number of one-minute intervals is K,
3: if k ≡ 0 mod 5 then
4: for (every cloud service Cloudi in SaaS Provider at the interval Δt) do
5: Monitoring Phase A (Cloudi)
6: Analysis Phase A (Cloudi)
7: Planning Phase A (Cloudi)
8: Execution Phase A (Cloudi)

(1) Monitoring Phase
In monitoring phase A, for each cloud service Cloudi provided by the SaaS provider,
the monitor will collect the number of VMs NumVMi(�t) that the SaaS provider rents
from the IaaS provider, and the user’s request for the cloud service Cloudi, the number
of requests NumReqi(�t) and the number of requests that the cloud service Cloudi
has not started NumWaiti(�t). At the same time, the monitor will also detect the CPU
utilization of the VM of the cloud service Cloudi Utilii(�t). In the monitoring phase
B, for each cloud service Cloudi provided by the SaaS provider, the monitor collects
the remaining resources of the VM leased by each cloud service NumSuri(�t) and the
number of requests for the cloud service Cloudi that have not started NumWaiti(�t). All
the information obtained in the monitoring phase is stored in the database and will be
used in other phases.

(2) Analysis Phase
The analysis phase A obtains the current number of user requests NumReqi(�t) for the
cloud service Cloudi from the monitoring phase A, in order to predict the number of
requests NumReqi(�(t + 1)) for cloud service Cloudi in the next interval �(t + 1). In
this paper, we use the Autoregressive Integrated Moving Average Model (ARIMA) [18]
to predict future demands for cloud service Cloudi, as shown in Algorithm 2.

ARIMA (p, d, q) model first uses the difference method for the historical data Xt

of the non-stationary user request, and performs the smoothing preprocessing on the
sequence to obtain a new stationary sequence {Z1, Z2,…, Zt−d}. The difference method
is expressed as:

�yXt = yXt+1 − yXt t ∈ Z (7)
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We then fit the ARMA(p, q) model, and restore the original d-time difference to get
the predicted data Yt of Xt . Among them, the general expression of ARMA(p, q) is:

Xt = ϕ1Xt−1 + · · · + ϕ1Xt−p + εt − θ1εt−1 − · · · − θqεt−q t ∈ Z (8)

In the formula, the first half is the autoregressive part, the non-negative integer p is
the autoregressive order, ϕ1, …, ϕp is the autoregressive coefficient. The second half is
the moving average part, and the non-negative integer q is the moving average order,
θ1, …, θq is the moving average coefficient. Xt is the related sequence of user request
data, εt is the sequence of independent and identically distributed random variables, and
satisfies V arεt = σ 2

ε > 0.

Algorithm 2: Pseudo code for Analysis Phase A (Cloudi)
1: Input: The number of requests for cloud service Cloudi

2: Output: Prediction value (Cloudi)//Yt

3: begin
4: {X1,X2,…,Xt}←History (Cloudi) // History of the number of request for service 

Cloudi

5: {Z1, Z2,…,Zt-d}←make the tranquilization of {X1,X2,…,Xt} using Eq.(7)
6: prediction value(Cloudi)←Calculate Xt based on {Z1, Z2,…,Zt-d} using Eq.(8)
7: return prediction value (Cloudi)
8: end

Analysis phase B selects cloud services according to certain criteria for resource
transfer in subsequent stages.

(3) Planning Phase
In planning phaseA,weuse aDRL-basedmethod tomake decisions to achieve horizontal
scaling of cloud services and divide the entire process into three states: normal-resources,
lack-resources, and waste-resources. According to algorithm 3, firstly, we obtain the
predicted value of the number of tasks requested in the next interval from the analysis
stage and calculate the cloud service Cloudi resource at time t to meet the CPU load
requested by all tasks at next time (line 2), and then determine the current state based on
it (line 3–5). We randomly choose an action with the probability of ε, otherwise choose
the action with the largest Q value in the network (line 8–9). Then we perform the action
at , boot users to request access to cloud services and observe reward rt (line10–12). We
store pair (Sk , Ak , Rk , Sk+1) as knowledge D (line 13), and take some pairs out of the
knowledge D to optimize the parameters of the network θ .
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In planning phase B (see Algorithm 4), we first build a resource pool that consists of
all unused resources of cloud services (lines 2–5), and then blocked requests of all cloud
services are transferred to the resource pool to execution (lines 6–8). We calculate the
time from the current moment to the next planning stage A and the average number of
task requests per minute to estimate the resources to be reserved for the next planning
stage A, release a certain number of VMs (line 9).
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(4) Execution Phase
In the execution phase A, the VM manager component executes the actions determined
in the planning phase A. The VM manager creates a new VM for the cloud service
Cloudi based on Table 2 or releases the lowest CPU utilization for scale-out action or
scale-in action.

In the execution phase B, based on the determined behavior in the planning phase
B, the resource manager performs task migration, and releases the VM according to the
judgment criteria of the planning phase.

6 Evaluation

In this section, we present an experimental evaluation of the approach proposed in the
previous section. First, we describe the simulation settings and performance indicators,
and then introduce and discuss the experimental results.

6.1 Experimental Setup

We simulate 5 sets of cloud services to work together, and take 5 data segments with
the same length from the load tracking of the Google data center [19] to evaluate our
algorithm. The use of real load tracking makes the results more real and reliable, and
can better reflect the randomness and volatility of user requests. The time interval is
5 min, the data segment lasts for more than 16 h, including 200 intervals. The selected
workload data segments are shown in Fig. 4, corresponding to cloud service 0 cloud
service 1 cloud service 2 cloud service 3 cloud service 4 respectively. In addition, we
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Fig. 4. Workload patterns for cloud service 0, cloud service 1, cloud service 2, cloud service 3
and cloud service 4.

Table 2. Different settings of VMs

VM type Extra large Large Medium Small

Core 8 4 2 1

CPU (MIPS) 20000 10000 5000 2500

RAM (GB) 150 75 37.5 17

Disk (GB) 16000 8500 4100 1600

VM price ($/h) 28 14 7 3.75

VM initiation
price ($)

0.27 0.13 0.06 0.025

assume that the general scheduling strategy is first come first service strategy. There are
four types of VMs offered by an IaaS provider: small, medium, large, and extra-large
and they have different capacities and costs, as shown in Table 2.

For comparison, we conducted a group of experiments with our policy (Proposed).
The contrast polices are as follow:
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1. Constant resource policy (Constant): this policy is allocated with a static, constant
number of cloud service resources.

2. Basic threshold-based policy (Threshold) [5]: this policy sets upper and lower bounds
on the performance trigger adaptations to determines the horizontal scaling of cloud
service resources.

3. RL controller-based policy (RL controller) [12]: this policy uses the workload
prediction method and RL algorithm.

We applied the followingmetrics for a comparison of our policywith other strategies:

Utilization: The utilization of the cloud service Cloudi at the�tth interval is defined as
the ratio of the resources occupied by user requests to the total CPU resources offered
by VMs, at the �tth interval, and is defined as:

Utilii(�t) = Allocated(�t)

Total(�t)
(9)

Wasted Resources: The wasted resources of the cloud service Cloudi at the �tth inter-
val is defined as the difference between the resources occupied by user requests and the
total resources offered by VMs, at the �tth interval, and it can be described as:

Remaini(�t) = Allocated(�t) − Total(�t) (10)

SLA Violation: The percentage SLA violation of the cloud service Cloudi at the �tth

interval for user request Reqru of cloud service Cloudi at the �tth interval, which is
calculated as:

SLAVi(�t) = 1

C

C∑

c=1

SLA
(
Reqru

)
(11)

Load Level: The load level of the cloud service Cloudi at the�tth interval is defined as
ratio of the amount of resources required by the cloud serviceCloudi to meet all requests
to the amount of resources owned by the cloud service Cloudi at the moment, at the�tth

interval, which is calculated as:

Loadi(�t) = Need(�t)

Total(�t)
(12)

Total Cost: This metric is defined as the total cost of all cloud services Cloudi incurred
by the SaaS provider at the �tth interval, and is expressed as:

Total Costi(�t) = VM Costi(�t) + Penalty Costi(�t) (13)

Profit: This metric is defined as the profit gained by the SaaS provider to serve all
requests of cloud services, and is expressed as:

Profiti(�t) = Incomei(�t) − Total Costi(�t) (14)
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Incomei(�t) =
U∑

u=1

R∑

r=1

CPricei × RTimeru (15)

CPricei is the service fee for the user request Reqru on the cloud service Cloudi and
RTimeku is the running time rth request of the uth user.

6.2 Experimental Results

Figure 5 shows the CPU utilizations of the four approaches for 5 workloads at each
interval. The average CPU utilizations under 5 workloads for constant resource-based
policy, basic threshold-based policy, RL controller-based policy, and the proposed policy
are 54.56%, 85.17%, 78.14%, and 88.23%, respectively, as shown in Table 3. From the
results, we observe that basic threshold-based policy, RL controller-based policy and

Fig. 5. Comparisons of CPU utilization of four polices for different cloud services.
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Table 3. The average CPU utilization of four polices for different cloud services

Constant Threshold RL controller Proposed

Cloud service 0 58.62 90.81 81.83 90.68

Cloud service 1 56.07 85.76 80.95 84.23

Cloud service 2 53.34 86.87 77.49 93.57

Cloud service 3 48.57 81.41 73.26 86.37

Cloud service 4 56.20 80.99 77.18 86.31

Average 54.56 85.17 78.14 88.23

the proposed policy are able to utilize resources more fully, and the constant resource-
based policy wastes more resources in 5 workloads for most intervals. This is because
constant resource-basedpolicy statically allocates a lower number ofVMs. If the constant
resource-based policy allocates enough VMs statically, the utilization will always be
100%, and there will be more waste of resources.

Figure 6 shows the waste of resources of the four polices for 5 workloads at each
interval. The average resources remaining under 5 workloads for constant resource-
based policy, basic threshold-based policy, RL controller-based policy, and the proposed
policy are 30535.59, 5512.49, 9849.35 and 4315.68, respectively, as shown in Table 4.
Our proposed policy outperforms other policies by reducing about 22%–86% of the
resources wasting in 5 workloads.

The under-provisioning of resources causes SLA violations, and subsequently, leads
to lower profit and fewer users. Compare with constant resource-based policy and basic
threshold-based policy, RL controller-based policy has prediction-based controller, it is
able to prepare sufficient resources in advance.Moreover, the pro-posed policymaintains
a resource pool to make up for the prediction error of the prediction-based controller to
reduce SLA violation rate. The proposed policy can reduce the SLA violations to less
than 0.5%, as shown in Table 5.

Figure 7 shows the CPU load of the four polices for 5 workloads at each interval. The
averageCPU load under 5workloads for constant resource-based policy, basic threshold-
based policy, RL controller-based policy, and the proposed policy are 55.29%, 89.44%,
78.61%, and 88.27%, respectively, as shown in Table 6. The average value of the standard
deviation (SD) about CPU load under 5 workloads for constant resource-based policy,
basic threshold-based policy, RL controller-based policy, and the proposed policy are
23.31, 24.55, 11.63, and 8.46, respectively, as shown in Table 6. The smaller the standard
deviation, the less volatile the CPU load. The smaller the data fluctuation, the better the
solution to the multi-goal optimization problem of reducing SLA violation rate and
increasing CPU utilization. The proposed policy gets a much higher standard deviation,
so the proposed policy effectively reduced the SLA violation rate and increased the CPU
utilization.

Our method is that multiple cloud services work together, we need to consider all
cloud service costs and compare their sums. As mentioned above, the total cost depends
on the cost of SLA violation and the cost of rented VMs. Our approach wastes the
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Fig. 6. Comparisons of wasted resources of four polices for different cloud services.

Table 4. The average wasted resources of four polices for different cloud services

Constant Threshold RL controller Proposed

Cloud service
0

37243.41 5103.99 11706.33 5074.52

Cloud service
1

39537.41 6221.43 10774.91 7122.11

Cloud service
2

32663.21 5221.75 10315.04 2055.44

Cloud service
3

25715.65 5872.27 9169.47 3648.96

Cloud service
4

17518.29 5143.03 7280.98 3677.36

Average 30535.59 5512.49 9849.35 4315.68
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Table 5. The average SLA violations of four polices for different cloud services

Constant Threshold RL controller Proposed

Cloud service
0

13.30 23.38 3.26 0.00

Cloud service
1

14.16 14.49 2.72 0.00

Cloud service
2

7.57 16.11 1.66 0.31

Cloud service
3

1.01 13.96 3.61 0.40

Cloud service
4

0.00 11.55 6.65 0.30

Average 7.21 15.90 3.58 0.20

Fig. 7. Comparisons of CPU load of four polices for different cloud services.
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Table 6. The average CPU load and the standard deviation of CPU load of four polices for
different cloud services

Constant
(Ave/SD)

Threshold
(Ave/SD)

RL controller
(Ave/SD)

Proposed
(Ave/SD)

Cloud service 0 60.23/25.77 94.89/17.50 82.12/8.77 90.68/6.94

Cloud service 1 57.45/33.67 88.84/21.20 81.15/10.33 84.23/9.64

Cloud service 2 53.92/24.88 90.91/23.04 77.63/11.81 93.65/8.00

Cloud service 3 48.62/17.81 87.59/31.41 74.12/13.40 86.41/8.89

Cloud service 4 56.20/14.43 84.97/29.65 78.04/13.88 86.35/8.86

Average 55.29/23.31 89.44/24.56 78.61/11.64 88.27/8.46

least amount of resources and has the lowest rate of violations, as shown in Table 4
and Table 5. Figure 8 shows the total cost of the four approaches for 5 workloads at
all interval. The proposed policy outperforms other approaches by saving cost about
17%–58% in 5 workloads, as shown in Table 7.

Fig. 8. The sum of total cost at five cloud service for different polices.

Table 7. The total cost of four polices for different cloud services.

Constant Threshold RL controller Proposed

Cloud service 0 42591.21 32392.45 17124.12 15111.93

Cloud service 1 38700.50 26726.88 16034.35 14783.79

Cloud service 2 22593.87 22145.12 12178.67 9819.02

Cloud service 3 12788.99 23848.74 10057.89 7204.37

Cloud service 4 10000.00 15493.29 9309.60 6535.13

Sum 126674.57 120606.47 64704.62 53454.25
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Figure 9 shows the profit of the four approaches for 5 workloads at all interval, and
we observe that basic RL controller-based policy and the proposed policy are able to
make considerable profits, as shown in Table 8. Table 5 shows the proposed policy less
on SLA violations than what RL controller-based policy and guarantee the quality of
cloud service to increased customer retention. Therefore, the proposed policy can make
the most profit in the long term.

Fig. 9. The sum of profit at five cloud service for different polices.

Table 8. The profit of four polices for different cloud services.

Constant Threshold RL controller Proposed

Cloud service
0

9978.23 20750.97 35982.77 39780.51

Cloud service
1

11931.88 23939.15 34598.04 36656.28

Cloud service
2

14750.14 15169.65 25162.92 25904.66

Cloud service
3

11484.88 376.59 14196.51 16590.64

Cloud service
4

12504.54 7016.54 13194.70 15475.38

Sum 60649.68 67252.91 123134.94 134407.46

Based on the above results, we compared the CPU utilization, resources remaining,
SLA violations, CPU load, total cost and profit of four approaches under 5 workloads.
We observed that the proposed approach increases the CPUutilization by up to 3%–34%,
the profit by up to not less than 9% and reduces the waste of resources by up to about
22%–86%, the SLA violations to less than 0.4%, the total cost saving about 17%–58%
compared with the other polices.
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7 Conclusion

In this study, we proposed an elastic resource scheduling algorithm based on a com-
bination of the autonomic computing and DRL. In order to implemented the proposed
approach, we presented a resource provisioning framework that supported the MAPE
control loop, and used a two-tier elastic resource configuration. Our framework could
adjust the number of VMs in advance by workload prediction and DRL algorithm to
achieve horizontal scaling, and achieve vertical scaling by resource sharing, collabo-
rative work and self-adapting management. Experimental results using actual Google
cluster tracking results showed that the proposed approach could increase the resource
utilization and decrease the total cost, while avoiding SLA violations. In the future,
we plan to consider the type of request based on the proposed method to configure a
more suitable cloud service. In addition, some emergency situations such as the sharp
fluctuations of user requests and VM failures will be considered.
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