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Abstract. In the era of deep learning, data annotation becomes an essen-
tial but costly work, especially for the biomedical image segmentation
task. To tackle this problem, active learning (AL) aims to select and anno-
tate a part of available images for modeling while retaining accurate seg-
mentation. Existing AL methods usually treat an image as a whole dur-
ing the selection. However, for an intensive cell image that includes simi-
lar cell objects, annotating all similar objects would bring duplication of
efforts and have little benefit to the segmentation model. In this study,
we present a patch-wise active learning method, namely FocAnnot (focal
annotation), to avoid such worthless annotation. The main idea is to group
different regions of images to discriminate duplicate content, then evaluate
novel image patches by a proposed cluster-instance double ranking algo-
rithm. Instead of the whole image, experts only need to annotate specific
regions within an image. This reduces the annotation workload. Exper-
iments on the real-world dataset demonstrate that FocAnnot can save
about 15% annotation cost to obtain an accurate segmentation model or
provide a 2% performance improvement at the same cost.

Keywords: Active learning · Intensive cell image · Duplicate
annotation · Semantic segmentation

1 Introduction

Semantic segmentation is a fundamental and challenging task in computer vision.
Given a single image, it aims to distinguish and localize each predetermined object
at the pixel level. Owing to the rapid development of deep learning in recent years,
advanced data-driven models such as fully convolutional network (FCN) [17] and
Deeplab [4] can automatically discriminate multiple objects in an intricate image
with promising results, which are faster and more accurate than old approaches.
Many applications have introduced semantic segmentation techniques to enhance
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Fig. 1. Overview of our approach. All annotated and unannotated images are parti-
tioned into patches before sending to the loop. Six steps are executed in order and
repeated until reaching stop criteria.

automation level, such as remote sensing monitoring, autonomous vehicles, and
auxiliary diagnosis [1,3,7,27]. Besides the superiority of the model structure and
learning algorithm, the success of deep learning also relies on high-quality labeled
data. Unfortunately, this data requirement cannot be satisfied in many practical
problems, for instance, the biomedical image segmentation task. Annotating this
kind of images is very costly and time-consuming because only pathologists are
able to identify tissues or lesions, and mark their contours.

To this end, active learning (AL), which intends to maximize the model per-
formance with minimum cost in labeling data, becomes an emerging research
hotspot. In other words, an AL method iteratively runs a query strategy to
select the most valuable samples for the annotation and helps classifiers achieve
high accuracy from limited data points [2,14,22]. Many studies have introduced
how to combine AL to the biomedical image segmentation task to reduce anno-
tation cost [6,19,20,29]. In this work, we focus on the intensive cell image, within
which cell objects are close together. We observe that cells in this kind of image
have relatively fixed and similar contours. Thus, existing AL methods that run
an image-level query strategy during the data selection would bring duplicate
annotation because similar objects provide limited information in model train-
ing. This inconsistency raises an interesting problem: Is the image-level query
strategy efficient enough for the intensive cell image segmentation? Based on
the observation, we assume that further cost reduction can be achieved by mea-
suring different regions of images separately and only selecting the most critical
regions within images for the annotation.

Consequently, we present a patch-wise active learning method named FocAn-
not (focal annotation) for the intensive cell image segmentation, as illustrated in
Fig. 1. There are six steps in a selection iteration. In Step 1, annotated images
are partitioned into patches with fixed size to initialize an encoder-decoder con-
volutional network (ED-ConvNet) for image segmentation. The unannotated
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candidates with the same patch size are then fed to the trained ED-ConvNet
to get segmentation results (Step 3.2), as well as their latent representations
mapped by the encoder part of ED-ConvNet (Step 2). After that, a cluster-
ing method is adopted to cluster candidates into distinct groups (Step 3.1). In
Step 4, we propose a novel query strategy that integrates candidate information
at both instance and cluster level generated in Step 3. Based on query results,
we select valuable regions within images to experts for the annotation (Step 5).
Finally, these new samples are added to enlarge the annotated dataset in Step 6.
The selection procedure is repeated until reaching predefined conditions.

The main contributions of this work can be summarized as follows:

– We propose FocAnnot, a patch-wise active learning method, to reduce dupli-
cate annotation and save cost in the intensive cell image segmentation task.
FocAnnot measures distinct regions within an image and only asks experts
to annotate a part of valuable regions.

– We propose a cluster-instance double ranking query strategy consisting of two
cluster-based criteria that estimate the importance of different image patch
groups, and an instance criterion incorporated with traditional uncertainty
for the patch selection.

– FocAnnot is evaluated on a real-world cell-intensive dataset. Up to 15% cost
saving or 2% performance improvement can be achieved in the segmentation
task.

The remainder of this paper is organized as follows. In Sect. 2, we review the
related work on biomedical image segmentation and active learning. Section 3
describes the details of the proposed FocAnnot. Experimental results on a real-
world dataset are reported in Sect. 4, and conclusions are given in Sect. 5.

2 Related Work

Active Learning. The main task of AL is to design a query strategy that mea-
sures the value of unlabeled data for different task objectives [6,10,14,16]. Recent
studies can be concluded in three categories, i.e., single model, multi-model, and
density-based methods. In the class of single model, the most informative sam-
ples are picked according to the probabilistic outputs of a trained classifier.
This strategy is also known as uncertainty sampling [8,30]. Similarly, the multi-
model approach, or query-by-committee, also leverages predicted labels but in an
ensemble way. A sample with the most disagreements among multiple classifiers
is considered as an informative instance [12]. Kullback–Leibler (KL) divergence,
entropy, and top-k best are some criteria in common use that measure amount
of additional information brought by selected data. The density-based method
aims to find data points that are uncertain as well as representative. The idea is
re-ranking queried samples based on the similarity to their neighbors or directly
querying from the pre-clustered sets [23]. Moreover, Zhou et al. [34] use a pre-
trained CNN to predict augmented data based on the assumption that images
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generated from the same seed are expected to have similar predictions. Entropy
and KL divergence are employed to evaluate uncertainty and prediction consis-
tency among augmented images, respectively. The study in [18] incorporates the
generative adversarial network into the AL framework to generate informative
data, while [15] introduces a learnable query strategy that estimates expected
error reduction by a regressor. Yang et al. [29] applies uncertainty sampling to
choose several candidates and discards duplicate selections with high similarity.
Their proposed suggestive annotation method achieves state-of-the-art segmen-
tation performance in an intensive cell image dataset.

Biomedical Image Segmentation. Automatic segmentation brings benefits to
the medical field that enhances lesion identification, surgery planning, and eval-
uation of treatment effects. Recent advances in biomedical image segmentation
have covered many organs, such as liver [11], brain [21], and prostate [33]. There
are also many efforts on other human tissues, including cells [26], nucleus [28],
and melanoma [32]. Technically, most of the state-of-the-art segmentation models
are based on the convolutional neural network (CNN) with an encoder-decoder
architecture. The encoder network applies convolution and down-sampling oper-
ation to images, which compresses raw inputs to learn latent features. The
decoder network then deconvolves and up-samples latent features to predict each
pixel in images. Many studies have designed new components to improve the
robustness and generalization of CNN models. Ronneberger et al. [24] build skip
connections between the down-sampling and up-sampling path to enhance the
sharing of local information. Dilated convolution [31] is adopted to increase the
receptive field, which works as the alternative to pooling operation but reduces
the model size. Jointly learning knowledge from multi-scale data is an effec-
tive strategy as well, for instance, multiresolution inputs [5], multi-scale latent
representations [4], and sequential structure of multiple networks [9].

3 Our Approach

Well-annotated data empowers segmentation models to achieve promising results
but is also costly, especially for the biomedical image. With the constraint of
annotation costs, active learning aims to retrieve the most valuable images
from the unannotated dataset for the specific tasks. We suppose annotators are
experts who provide high-quality labeling. Hence our task becomes to get simi-
lar segmentation performance of full supervision by selecting limited data with
minimum cost. To this end, we propose FocAnnot, a patch-wise active learning
method that only assigns parts of the region within an image to human anno-
tators, to further reduce annotation costs of intensive cell images compared to
existing image-level AL methods.

3.1 Overview of FocAnnot

The overview of our approach is shown in Fig. 1, including six steps. Images are
first partitioned into small patches before sending them to the loop. The details
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Fig. 2. Architecture of the ED-ConvNet implemented in this work. The symbols C
and ω denote the number of classes and the number of kernels, respectively.

will be described in the next section. Initially, annotated image patches are fed
to ED-ConvNet for network training. The encoder of ED-ConvNet learns latent
representations of patches in low dimensional space and the decoding part makes
predictions to each pixel. After that, we put all unannotated patches into well-
trained ED-ConvNet. Besides decoding results, outputs of the encoder network
are taken as well (patch descriptors for short). As mentioned earlier, cells within
an image are similar. Instead of the overall profile, we focus on the local difference
and group high-level features of patches, i.e., patch descriptors, into clusters in the
third step. Each cluster can be regarded as regions with similar types of contents.
Based on this, we propose a double ranking query strategy from perspectives of
the image patch itself (instance-level) and its kind (cluster-level). Patches with the
highest-ranking are selected for labeling and moved to the annotated dataset in
the last two steps. Again, parameters of ED-ConvNet are updated by the enlarged
training set. FocAnnot runs all these steps sequentially until predefined conditions
are achieved, for instance, budget or accuracy of segmentation.

Furthermore, we illustrate an implementation of the ED-ConvNet constructed
in FocAnnot. As shown in Fig. 2, ED-ConvNet contains a simple block design that
executes a 3 × 3 convolution followed by a batch normalization [13] and ReLU acti-
vation, in two iterations. In the encoding part, a max-pooling layer is set between
each of two blocks. An image patch is processed in such stacked layers and its
patch descriptor is obtained, that is, the outputs of the second “Block (512)” in
this example. The internal outputs of blocks are copied to the decoder network as
one of the inputs in corresponding blocks. The decoding part has a symmetrical
structure to the encoder network that uses bilinear interpolation for up-sampling
to reconstruct image patches. At last, a 1 × 1 convolution layer is applied to pre-
dict the class of each pixel and gives final segmentation results.

3.2 Image Partitioning and Clustering

This preprocessing step aims to alleviate the problem of duplicate annotation
in existing image-level AL methods. For cell-intensive images, the same types of
biomedical objects are similar, with partial differences. Hence we can partition
images into patches to focus on details at the region level. The advantage of
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patch-wise learning is that each patch is considered to be of different impor-
tance. Compared to the image-wise annotation, experts are only required to
annotate the most valuable regions in an image and ignore other parts, which
save expenses.

We assume patch size and step size are two critical factors affecting outcomes,
i.e., trade-offs between cost and accuracy. Patch size controls the integrity of par-
titioned objects. It should be neither too big nor too small, which goes against the
idea of patch-wise learning or loses object information, respectively. Step size aims
to increase the richness and novelty of partitioned objects. Similarly, small step
size is not desirable because it increases the computational efforts of the query.

Fig. 3. Two strategies for image patches partition. Each patch is square with the side
length of l, and ρ is ratio of overlapping between neighbors.

In this study, we set two partition strategies for cell-intensive images, as shown
in Fig. 3. Patch size l and overlapping rate ρ are two parameters to control the par-
titioning. The patch size denotes the side length of each rectangular region while
ρ indicates how many overlaps are between two adjacent patches. Figure 3a illus-
trates a seamless strategy that outputs 24 patches of 128 × 128 pixels. We zoom in
a subregion involving four patches (bold black box) and show them on the right
side of the image. Complete objects are scattered in different patches, but they
are almost distinguishable from the background. In other words, the appropriate
patch size has a limited impact on task difficulty. Figure 3b shows the overlapped
partition strategy with ρ = 0.5. We add red lines to the same subregion to demon-
strate the boundaries of additional patches. On the right side, extra five patches
are obtained by half overlapping, which enriches the novelty of the unannotated
dataset. It also helps alleviate the potential object integrity problem brought by
the seamless strategy. Nevertheless, the side effect is the time of the sample query
in Step 4 will increase because of the doubled data. In both two strategies, remain-
ing areas on the bottom and rightmost of an image (gray shadows) will be dropped
or expanded. An image is padded to fill the missing by mirroring regions if the
required size is smaller than l/2, otherwise just clipping the area for alignment.

After partitioning, we are able to measure different regions separately to
avoid duplicate annotation by the image-level selection. Various types of patches
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are categorized into groups based on their similarity by calculating Euclidean
distance between their patch descriptors and group centers:

‖F − M‖2 (1)

where F and M are channel-wise average pooling of a patch descriptor and the
centroid of a group, respectively. In the remainder of this article, we use F to
denote the patch descriptor.

To improve query efficiency, we adopt the mini-batch k -means algorithm
for the clustering. The number of groups depends on the complexity of cell
objects. We have mentioned that the contours of some cells are quite simple.
So a small k is enough to distinguish different types of patches for most cases.
Detailed performance comparisons of the group number will be discussed in the
experiment.

3.3 Cluster-Instance Double Ranking

Many criteria have been studied to determine which images are valuable for the
annotation. Among them, uncertainty and diversity are two concepts to evaluate
so-called “worthiness”. The term uncertainty indicates how confident predictions
are given by a model, while diversity considers the degree of dissimilarity among
samples. Most of the current works focus on query strategy at the instance
level but ignore the cluster structure. In this study, we propose two cluster-wise
criteria that measure patch types based on uncertainty and diversity. At the
instance level, we also propose a Wasserstein distance-based diversity criterion
incorporated with an instance uncertainty criterion.

For an image patch xn, pj(xn) denotes the predicted probability of each
pixel belonging to the j -th object by the trained ED-ConvNet. The segmentation
results are close to 0.5 if the model does not have enough knowledge, for example,
representative training data, to identify a patch. This kind of patch is informative
and can be regarded as a candidate for the annotation. It is a good choice to
use entropy to capture the degree of information involved in samples. The higher
value suggests more uncertainty of a patch to the model. Thus, we define instance
uncertainty (IU) as:

Hn = −
C∑

j=1

pj(xn) log(pj(xn)) (2)

where C is the number of predefined objects.
Besides, we also want to select a couple of samples, among which are dissim-

ilar. Two patches with high uncertainty could also cause duplicate annotation
if they provide similar information. In our case, a patch descriptor can be seen
as a probability distribution of high-level features. Thus, we introduce Wasser-
stein distance as a diversity measurement that estimates differences between two
probability distribution P and Q. Compared to KL divergence, Wasserstein dis-
tance is a symmetric metric and satisfies the triangle inequality, which is suitable
for the similarity calculation. Another advantage of Wasserstein distance is the
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ability to measure two distributions with little overlap. For example, two patch
descriptors would show quite different distribution even in the same group with
similar IU. Jensen–Shannon divergence [34] is hard to measure the diversity of
patches in this situation, while Wasserstein distance provides a better estima-
tion. Let Ω be a metric space with distance function D and collection Z(P,Q)
denotes all possible joint distributions on Ω × Ω. The τ -Wasserstein distance is
formalized:

Wτ (P,Q) =
(

inf
ζ∈Z(P,Q)

∫

Ω×Ω

D(u, v)τ dζ(u, v)
)1/τ

(3)

Here ζ is a joint distribution of P and Q, and (u, v) is a data point sampled
from ζ. Specially, we calculate Wasserstein distance between patch descriptors to
measure the diversity. Supposing Fn and Fn′ are two d-dimensional descriptors
of image patches xn and xn′ , the instance diversity (ID) is defined as their
2-Wasserstein distance:

Wn,n′ = min
V∈G(d)

(
d∑

m=1

‖Fn,m − Fn′,Vm
‖2

)
(4)

where G(d) is all permutations of indices {1, . . . , d}, and V is one of the permu-
tations. The Euclidean norm is adopted as the distance function.

With IU and ID, each image patch can be scored and ranked. Only the first
few candidates with the highest scores are selected. To get better results, the
reweighting technique is applied for rank adjustment during the selection. For
an image patch xn, its score is defined as the uncertainty of model predictions
weighted by average diversity to other Q candidates:

Sn = Hn × 1
Q

Q∑

q=1

Wn,q (5)

Besides criteria at the instance level, we further describe two measurements
that consider the characteristics of clusters. After applying the mini-batch k -
means algorithm, patches with similar contents are grouped to the same cluster.
We suppose that the degree of aggregation, or density, is relevant to the amount
of information involved in a cluster. A dense cluster is less-informative because
patch descriptors in corresponding metric space tend to be compact. On the
contrary, a large distance between patch descriptors implies more novelty and
uncertainty in a sparse cluster. To estimate informativeness of a cluster, we
denote cluster uncertainty (CU) by the average distance of a single group:

I(c)
a =

1
|K(c)|

∑

Fn∈K(c)

‖Fn − Mc‖2 (6)

where Fn is a patch descriptor in the cluster K(c), and Mc is the cluster centroid.
The | · | indicates the size of a set.
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Similar to the instance diversity, clusters should be dissimilar as well. Directly
excluding limited clusters is infeasible. Alternatively, we determine the number
of candidates to be provided in each group. A cluster that is far from others is
asked for more patches because it is quite different from other groups and has
a higher probability of providing valuable data. For a cluster K(c), the mean
distance to other centroids are defined as the cluster diversity (CD):

I(c)
r =

1
k − 1

k∑

v=1

‖Mc − Mv‖2 (7)

Instead of uniform sampling, we select the most valuable image patches
from clusters proportionately based on the importance. Two cluster-wise criteria
defined on Eq. (6) and Eq. (7) are parameterized by λ to give an estimation of
cluster importance:

I(c) = λI(c)
a + (1 − λ)I(c)

r (8)

At last, the proposed cluster-instance double ranking query strategy is
described in Algorithm 1. The importance I(c) of each cluster is calculated and
normalized. Recall that

∑k
c=1 I(c) = 1, which means I(c) can be treated as the

probability of a cluster to provide informative data. For the double ranking strat-
egy, we use I(c) to confirm the number of required patches in each ranking step.
In the first round, we filter out less informative data and retain Q(c) patches
from cluster K(c) based on IU. Corresponding reweighted scores S(c′) of only
Q(c) patches are then calculated in the second step. Finally, we pick top T (c)

rankings from refined cluster K(c′) for the annotation.

Algorithm 1
Cluster-instance double ranking query strategy
Input:

Patch descriptors in k groups K(1), . . . , K(k);
The number of uncertain patches Q;
The number of required patches T in a query

Output:
Set of selected patches A for the annotation

1: A = ∅

2: for c = 1, . . . , k do
3: Compute I(c) of K(c) by Eq. (6), (7), (8)
4: Normalize(I(c))
5: T (c) = I(c) × T
6: Q(c) = I(c) × Q
7: Let X(c) = {xn|Fn ∈ K(c)} where xn is the image patch of Fn

8: H(c) = {Hn|xn ∈ X(c)} by Eq. (2)

9: K(c′) = TopRank(K(c), H(c), Q(c))

10: S(c′) = {Sn|H(c′),Fn ∈ K(c′)} by Eq. (5)

11: A = A ∪ TopRank(K(c′), S(c′), T (c))
12: end for
13: return A
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4 Experiment

We implemented our FocAnnot in Python using deep learning framework
PyTorch and machine learning framework Scikit-learn. All experiments run on
an Ubuntu server with eight cores of 2.20 GHz Intel Xeon E5-2630 and two
NVIDIA GTX 1080 Ti GPU.

4.1 Dataset

The proposed active learning method is evaluated on a real-world cell-
intensive dataset provided by the 2015 MICCAI Gland Segmentation Chal-
lenge (GlaS) [25], which contains 165 images of colon histology. As an example,
Fig. 3 shows several glands involved in an image. According to the rules of GlaS,
images are divided into a training set with 85 images and two test sets with 80
images in total (60 in Part A and 20 in Part B, P-A and P-B for short). In order
to eliminate influence by such man-made split, we also generate a random train-
test split from 165 images (Mixed for short) using 80% images as the training
set and the remaining 20% for testing. All experiments will run on the three
different train-test pairs.

Table 1. List of seven query strategies for comparison.

#Strategy Partitioning Clustering Criteria

1 ✗ ✗ IU

2 ✗ ✗ SA

3 ✗ ✗ ED-ConvNet-SA

4 ✓ ✗ IU

5 ✓ ✗ IU+ID

6 ✓ ✓ IU+ID

7 ✓ ✓ IU+ID+CU+CD

4.2 Experimental Settings

In Algorithm 1, we set Q = 5% and T = 2.5% for a single selection, that is,
FocAnnot queries 5% patches as candidates once from the training set and half
of them are finally selected for the annotation. In each round, ED-ConvNet is
retrained on the newly updated dataset, and then the segmentation performance
is evaluated on the test set without image partitioning. In the experiment, the
annotation cost is calculated as the number of pixels in the selected images. The
parameter λ of Eq. 8 is fixed to 0.5. We repeat the train-test step until half of
the training set is selected. Furthermore, we intend to explore the influence of
parameter settings on the model performance, such as patch size, overlapping
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rate, and the number of clusters. Totally 12 combinations of l = {64, 128, 256},
ρ = {0, 0.5}, c = {3, 5} are investigated on GlaS dataset. Two metrics, i.e.,
Dice coefficient and volumetric overlap error (VOE), are used for performance
evaluation. Among them, Dice is preferred by the biomedical image segmentation
task, so we choose it as the primary metric in comparisons. Formally, Dice and
VOE are defined as:

Dice =
2 × |y ∩ y′|
|y| + |y′| (9)

V OE = 1 − |y ∩ y′|
|y ∪ y′| × 100% (10)

Here y and y′ are the ground truth and predicted segmentation result, respec-
tively. The | · | is the number of pixels involved in this image. The larger Dice
value or smaller VOE value indicates better performance of the model.

In Table 1, we list seven query strategies, including the state-of-the-art
method in this scenario (suggestive annotation [29], SA for short), its variant
ED-ConvNet-SA (replacing FCN in SA by our implemented ED-ConvNet) and
our proposed criteria. Strategies 1–3 are baselines using the whole image while
strategies 4–7 run a patch-wise selection. Specially, the comparison of strategies
1 and 4 investigate the effectiveness of image partitioning based on the tradi-
tional IU criterion. For strategies 2 and 3, we don not set contrast tests because
SA and ED-ConvNet-SA both require a similarity computation with 1

2O(N2)
time complexity, which is unacceptable on partitioned patches. In strategy 5,
the proposed instance diversity is incorporated with instance uncertainty as a
new selection criterion. In addition to the instance-level strategy, patches are
selected from clusters equally in strategy 6, and proportionately in strategy 7.
Note that query strategy 7 is a full implementation of cluster-instance double
ranking strategy described in Algorithm 1.

Fig. 4. Comparisons between seven query strategies evaluated on three train-test pairs.
Red and blue dash lines are segmentation performance of ED-ConvNet and FCN mod-
ule in SA using full training data, respectively.
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4.3 Results

We run seven query strategies listed in Table 1 using the same experimental
settings. In strategies 4–7, the side length l, overlapping rate ρ, and group number
k are set to 128, 0.5, and 3, respectively. For results in Fig. 4, the annotation
cost of full-size images and image patches is aligned to the same scale based on
the number of revealed pixels. It needs to be emphasized that the number of
training images in Mixed is different from P-A and P-B, so the percentage of
selected data cannot be compared directly. In the following, we first summarize
our observations.

Strategy 1 vs. 2 vs. 3: Performance of Baselines. As we can see in Fig. 4a
and Fig. 4b, SA indeed improves the segmentation performance compared to
traditional IU. Surprisingly, in Fig. 4c, SA fails on mixed data and even perform
worse than IU criterion. We believe the man-made interference in the provided
train-test split leads to over-fitting and reduces the generalization of SA. In
strategy 3, we replace all FCNs in SA by our ED-ConvNet to get its variant, i.e.,
ED-ConvNet-SA. Again, ED-ConvNet-SA cannot surpass IU on Mixed with less
than 40% data. This also explains the limited generalization of the SA-based
strategy. From a model point of view, the results show that ED-ConvNet-SA
outperforms original SA in all three testing sets, which validates the robustness
and effectiveness of ED-ConvNet.

Strategy 1 vs. 4: the Benefit of Image Partitioning. Different from tradi-
tional strategies querying at the image level, we introduce the image partitioning
approach to generate dozens of patches that separates informative regions from
the whole image. Strategy 4 achieves considerable improvement (∼6% better
in P-A & P-B and ∼4% better in Mixed) and even slightly better than ED-
ConvNet-SA. This result answers our question in Sect. 1: the image-level query
strategy is not good enough for the intensive cell image segmentation task. We
can get better performance by selecting parts of valuable regions within an image
rather than the whole.

Strategy 4 vs. 5: the Effect of Instance Diversity. We compare the pro-
posed instance diversity criterion that reweights IU, to IU-only on image patches.
Results show that our reweighting approach improves the Dice score to a certain
extent. The reason is that the ID criterion avoids selecting too many uncertain
image patches with high similarity, aka duplicate annotation. This helps refine
the selection procedure to obtain more diverse patches.

Strategy 5 vs. 6 vs. 7: the Effect of Cluster-Wise Selection. In addition to
image partitioning, we also explore the effect of clustering in the selection. Strat-
egy 6 applies the mini-batch k -means algorithm and select image patches equally
from clusters. It improves almost 1% Dice score compared to non-clustering strat-
egy 5. As for the proposed cluster-instance double ranking algorithm in strat-
egy 7, it has a further improvement for about 0.8%. This verifies the advantages
of cluster importance estimation described in Eq. 8.

In general, FocAnnot is able to select less than half of the data to surpass FCN
of full supervision. It also approximates (in Mixed) or even outperforms (in P-B)
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Fig. 5. Changes of averaged cluster uncertainty and cluster diversity during the selec-
tion.

ED-ConvNet using full training data. Specially, strategies 6 and 7 can achieve
similar performance as ED-ConvNet-SA by selecting only 25% training data and
obtain a good enough model with 30% data. All these experiments indicate that
the combination of instance-level and cluster-level criteria is more potent than
the image-level query strategy.

4.4 Visualization and Discussion

In Fig. 5, we visualize the changes in cluster uncertainty and cluster diversity
during the selection on average. In the first few rounds, CU and CD are increasing
and reach a peak when obtaining 15% of training data. This indicates that
cluster-level criteria may not help much in the beginning. FocAnnot mainly
depends on instance-level criteria to select valuable image patches at that time.
After that, the segmentation model has learned enough knowledge to distinguish
distinct patch descriptors. We can see that CU and CD decrease, which means
cluster-level criteria begin to work at this stage. Representative image patches are
continuously selected from groups. Hence clusters become denser and closer to
each other. More concretely, CU and CD have a rapid drop between 15% to 25%
and reach a relatively low position at 30%. This supports the previous conclusion,
that is, the proposed query strategy can quickly improve segmentation accuracy
and tends to be stable with around 30% training data.

FocAnnot has been proved effective and our query strategy is superior to the
competitor. Moreover, we would like to investigate the model generalization in
different parameter settings. As shown in Table 2, 12 parameter combinations
are grouped into three categories based on patch sizes. The overlapped partition
approach is always better than the seamless partition. We believe overlapped
patches enrich local details of images and provide more valuable choices during
the selection. Based on the overlapped setting, k = 3 is preferred except for
two comparisons in P-A. Three clusters are enough to describe structures of cell
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Table 2. Analysis of parameter combinations based on query strategy 7 with 50%
selected training data. The best performances in each group are in bold. The underline
indicates the setting outperforms all other combinations.

Parameters Dice VOE (%)

l ρ k Mixed P-A P-B Mixed P-A P-B

64 0 3 0.857 0.805 0.854 24.40 31.51 24.72

64 0 5 0.852 0.806 0.843 24.92 31.47 26.51

64 0.5 3 0.876 0.836 0.861 21.24 27.36 23.82

64 0.5 5 0.866 0.839 0.855 22.76 26.81 24.55

128 0 3 0.856 0.802 0.848 24.17 32.00 25.63

128 0 5 0.867 0.815 0.869 22.69 30.00 22.60

128 0.5 3 0.893 0.848 0.876 18.85 25.40 21.30

128 0.5 5 0.887 0.852 0.872 19.80 24.68 22.02

256 0 3 0.875 0.792 0.855 21.49 32.55 24.66

256 0 5 0.870 0.820 0.860 22.22 29.24 23.67

256 0.5 3 0.891 0.857 0.887 18.87 23.87 19.63

256 0.5 5 0.886 0.843 0.864 19.81 26.30 23.31

objects in this dataset because their contours are less complicated. Too many
categories would lead to ambiguous groups instead. The selection of patch size is
critical. As we discussed in Sect. 3.2, a small patch size will lose content details
and degrade model performance, for example, l = 64 vs. l = 128. On the other
hand, a larger size brings limited benefits to the segmentation as well. Thus, a
moderate size, i.e., l = 128, could be a good trade-off to reduce annotation cost
with an acceptable accuracy at the same time.

In Fig. 6, we show the ten most valuable images selected by SA. Then, we
mark ten patches per image in red, which are considered important based on
FocAnnot. All these images are from the training set of Mixed, and the following
names are their origin ID of GlaS. We observe that our query strategy prefers
some interesting patterns:

– Most of the regions are located on the object boundaries, especially crossing
two glands (#4, #50, #58, #84 in the training set). This pattern benefits the
segmentation task on biomedical images with multiple and intensive objects.
The model pays more attention to detailed differences among close glands.

– Contours with rough shape are identified and recommended for the annota-
tion (#10, #19, #29 in the training set and #42 in test Part A). It is natural
to select rare types of contours to improve model generalization and so our
method does.

– Poorly differentiated epithelial cell nuclei and lumen in malignant glands are
also useful to the model (#10, #29, #58 in the training set). This type
of patch shows one of the most significant differences between benign and
malignant glands in clinical practice.
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Fig. 6. Visualization of top 10 valuable images selected by SA. For each image, the
first 10 queried patches by FocAnnot are marked as red rectangles. The blue curves
show contours of glands.

According to these particular regions, more effective active learning methods can
be developed by applying well-designed constraints.

5 Conclusion and Future Work

We have proposed a patch-wise active learning method, namely FocAnnot, for
the intensive cell image segmentation problem based on an encoder-decoder con-
volutional network. The key idea is to partition images into patches and clus-
ter them based on their high-level features. Hence, we can evaluate each patch
separately to avoid duplicate annotation of similar cells within an image. Two
criteria, i.e., cluster uncertainty and cluster diversity, are proposed to estimate
the importance of each group. We also present an instance diversity criterion
incorporated with the instance uncertainty to seek valuable data within clus-
ters. The experimental results on a real-world cell-intensive dataset demonstrate
that our method is able to reduce an additional 15% annotation cost or improve
2% segmentation performance compared to the competitor.

In the future, we would like to extend our query strategy in a multi-scale
manner that combines local content with global knowledge. We are also inter-
ested in introducing object detection techniques to replace the hard partitioning
approach with arbitrary size.
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learning. In: Székely, G., Hahn, H.K. (eds.) IPMI 2011. LNCS, vol. 6801, pp. 25–36.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22092-0 3

13. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In: International Conference on Machine Learning,
pp. 448–456 (2015)

14. Konyushkova, K., Sznitman, R., Fua, P.: Introducing geometry in active learning
for image segmentation. In: ICCV, pp. 2974–2982 (2015)

15. Konyushkova, K., Sznitman, R., Fua, P.: Learning active learning from data. In:
NeurIPS, pp. 4228–4238 (2017)

16. Lin, C.H., Mausam, M., Weld, D.S.: Re-active learning: active learning with rela-
beling. In: AAAI (2016)

17. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic
segmentation. In: CVPR, pp. 3431–3440 (2015)

https://doi.org/10.1007/978-3-319-46723-8_18
https://doi.org/10.1007/978-3-319-46723-8_18
https://doi.org/10.1007/978-3-642-22092-0_3


FocAnnot: Patch-Wise Active Learning 371

18. Mahapatra, D., Bozorgtabar, B., Thiran, J.-P., Reyes, M.: Efficient active learning
for image classification and segmentation using a sample selection and conditional
generative adversarial network. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C.,
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