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Abstract. Swarm robotics is mainly inspired by the collective behaviour
of social animals in nature. Among different behaviours such as forag-
ing and flocking performed by social animals; aggregation behaviour is
often considered as the most basic and fundamental one. Aggregation
behaviour has been studied in different domains for over a decade. In
most of these studies, the settings are over-simplified that are quite
far from reality. In this paper, we investigate cue-based aggregation
behaviour using BEECLUST in a complex environment having two cues
–one being the local optimum and the other being the global optimum–
with an obstacle between the two cues. The robotic validation of the
BEECLUST strategy in a complex environment is the main motivation
of this paper. We measured the aggregation size on both cues with and
without the obstacle varying the number of robots. The simulations were
performed on a custom open-source simulation platform, Bee-Ground,
using MONA robots. The results showed that the aggregation behaviour
with BEECLUST strategy was able to overcome a certain degree of envi-
ronmental complexities revealing the robustness of the method. We also
verified these results using our stock-flow model.
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1 Introduction

Aggregation is a common behaviour observed in different species ranging from
amoeba to insects [11]. In aggregation individuals of a species gather in one area
with or without an environmental cue [16]. Aggregation is the basis and a pre-
requisite for many complex swarm tasks, e.g. flocking and foraging [10,27]. There
are two types of aggregation behaviour in nature: cue-based aggregation and self-
organised aggregation [11]. In cue-based aggregation, there is a cue present in
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the environment where animals gather [8]. The cue represents the optimal loca-
tion in terms of temperature, humidity or such. For example, young honeybees
tend to gather in optimal areas with temperatures between 34 ◦C and 38 ◦C [17]
while flies gather in hot and humid locations [14]. Hence, in cue-based aggrega-
tion environment plays a very important role and in most cases, environment is
very complex having multiple cues, obstacles and predators that animals have to
tackle. These make aggregation a very challenging task even for the animals. In
self-organised aggregation, there is no cue in the environment. Animals gather
in random locations without any particular external cue in the environment [15].

Researchers in swarm robotics study aggregation behaviour to better under-
stand aggregation behaviour in biology [29] or to replicate it artificially with
robots [8] since aggregation behaviour is the basis of most of the behaviours in
swarm robotics [8,10,25,27,33]. Among different approaches, BEECLUST algo-
rithm proposed by Schmickl et al. [29] that mimics the thermotaxis behaviour of
honeybees is one of the simple yet a very elegant approach to cue-based aggre-
gation in swarm robots.

Cue-based aggregation in swarm robotics can be traced back to the 1990s
with Kube and Zhang’s [22] pioneering experiment on robot aggregation around
a light source. Since then, there have been many studies such as [18] proposing an
aggregation scenario based on the infrared transmitter. In a recent study on the
effects of environmental changes on the performance of swarm robotic aggre-
gation [8] using real mobile robots, it has been shown that the BEECLUST
algorithm is an efficient mechanism for cue-based aggregation with optimal per-
formance in dynamic and complex environments. The study also proposed a
probabilistic aggregation model to represent the influence of swarm parameters,
e.g. population and arena size, on the aggregation size. Another study [30] pro-
posed two macroscopic models based on the BEECLUST algorithm to predict
the aggregation behaviour in a dynamic environment. Mathematical modelling is
an efficient tool for predicting the behaviour of a swarm system. It is used to pre-
dict the collective behaviour of a group by analysing the random behaviour of the
individuals [32]. In other studies [13,19,20], different models for predicting the
macroscopic behaviour of swarms have been proposed. Another study [21] pro-
posed a mathematical model which can account for peculiarities of energy trans-
fer among swarm robots. In addition, modelling approaches from other research
fields have also been used to study the modelling of swarm robotics problems.
One such research study [23] used a chemical reaction network to model the inter-
action between individuals in robot swarms. In another study [30], Stock-Flow
model was used, borrowed from macro-economics, to predict the performance of
a cue-based swarm aggregation.

Most of the previous studies which are based on real-robot implementations
used small swarm populations, and the duration of the experiments were very
limited [4,8,25]. There are relatively few studies on the aggregation of swarm
robots in a complex environment with multiple cues and obstacles. In this
paper, we studied the aggregation of large number of robots using BEECLUST
algorithm in an environment with two cues having different intensities and an
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obstacle. We investigated the effects of the environmental factors on aggregation.
The robotic validation of the BEECLUST strategy in a complex environment is
the main motivation of this paper. We also improved a mathematical model [30]
and used it to predict the aggregation size on different settings. The simulation
was based on the open-sourced robot MONA [3] and open-sourced simulation
platform Bee-Ground [1].

The rest of this paper was structured as follows: in Sect. 2, we introduced
the aggregation method. In Sect. 3, the stock-flow model was discussed. In Sect.
4, we presented the realisation of aggregation using Bee-Ground. In Sect. 5, we
discussed the results of the experiments. In Sect. 6, we concluded the paper and
discussed future research directions.

2 Aggregation Method

The aggregation method used in this study is based on BEECLUST [31]. It
imitates the thermotaxis behaviour of young bees that aggregate at an optimal
zone with temperature between 34 ◦C to 38 ◦C. Previous studies demonstrated
that the BEECLUST algorithm successfully imitates the aggregation behaviour
of bees on the optimal zone [6,8,9,28]. In most cases, the cue has been mod-
elled by a light or sound source instead of a heat source due their simplicity in
implementaion.

Based on the BEECLUST algorithm (depicted in Fig. 1), a robot moves for-
ward in the environment until it encounters an object. It checks if the object is
an obstacle or another robot.

– If it is an obstacle, the robot turns to avoid the obstacle and moves forward.
– If it is another robot, it stops and waits for a particular amount of time. The

waiting time w(t) in Eq. (1) depends on intensity of the cue. The stronger
cue results in a longer waiting time.

When the waiting time finishes, the robot turns randomly and moves forward
again. The waiting time, w(t), is calculated by:

w(t) = wmax · S(t)2

S(t)2 + μ
. (1)

The waiting time, Eq. (1), was adopted from the previous studies [5]. S(t)
denotes the sensory reading. The sensor range is from 0 and 255. wmax is the
maximum waiting time, and μ is a parameter which changes the steepness of the
waiting curve. The constants wmax and μ were chosen empirically: wmax = 60 s
and μ = 5000.

3 The Stock-Flow Model

The origin of the stock-flow model can be traced to work in the mid-twentieth
century. It was used to study the dynamic relationship between the flow of
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Fig. 1. Flowchart of the BEECLUST aggregation algorithms

income and expenditure and changes in national assets in the US economy [12].
In a recent work [30], this model was used to predict the aggregation of swarm
robots in presence of two cues.

To model the aggregation behaviour in this study, we adopted the proposed
model in [30] and used VensimTM [2] software for the numerical modelling. In
this model, ‘stock’ is the total number of robots in the arena.

These robots can be divided into three aggregation states, 1) the number of
free robots F (t), 2) the number of robots aggregated on the left source (weak
source) at time t is Aleft(t), and 3) the number of robots aggregated on the right
source at time t is Aright(t). This is a constant value that does not change over
time. The structure of our model is depicted in Fig. 2.

We have two sources hence two aggregations in our setting. The robots shift
between each states at a certain rate. The rate at which robots join the aggrega-
tion on the left source at time t is Jleft(t). Meanwhile, the rate at which robots
leave the aggregation on the left source at time t is Lleft(t).

Therefore, the rate of change the number of robots on the left source is:

Aleft(t)
dt

= Jleft(t) − Lleft(t). (2)

The leave rate Lleft(t) can be described as:

Lleft(t) =
Aleft(t)
wleft(t)

. (3)

wleft(t) is the waiting time for a single robot on the left source at time t,
which depends on the sensor value S(t) obtained at the position where the robot
stopped moving.
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Fig. 2. Developed Stock-Flow model for aggregation

We modeled Lleft(t) with slight changes to the previous model proposed
in [30]. The applied changes showed improvement in predicting the system, due
to the following reasons:

1. After the waiting time is over, the robots randomly turn at an angle and
continue moving forward. However, there is a high probability for at least
one of them to stop immediately again. This occurs when both robots face
each other again after a random rotation, or one of them face the other robots
in the aggregation. Therefore, their position would not change at this moment
and the robot can not leave the aggregation.

2. In more complicated situations in a large aggregation, the internal robots
near the centre of the aggregation are not able to leave the group regardless
of turning angles. This is because of the surrounding robots that are still in
their waiting period.

In our model, we used a function Pleave(t) to describe the probability of which
robots can leave the aggregation which based on the size of the aggregation. In
this paper, the function Pleft,leave(t) is the probability of which robots can leave
the left aggregation. We fitted the function Pleft,leave(t) based on the observed
results [4,7] from preliminary experiments. It is calculated as:

Pleft,leave(t) = 0.25 ∗ (−(
π

2
)−1 arctan(

Aleft(t)
100

− 3.5) + 1) . (4)

The rate Lleft(t) in our model is described as:

Lleft(t) = Pleft,leave(t)
Aleft(t)
wleft(t)

. (5)
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Moreover, the joining rate Jleft(t) which is calculated from the number of
robots which join the aggregation on the left hand side per second at time t is
calculated by:

Jleft(t) = γleftF (t)Φleft(t)Pdetect, (6)

where γleft is a fraction of a free robot appearing in the left hand side of the arena
assuming that free robots are evenly distributed and Φleft(t) is the probability
of a robot meeting another robot in the arena. The area of the arena on the left
hand side is 65.4% of the total arena, while the right-hand side area is 34.6% of
the total arena. Thus, γleft = 65.4%.

F (t) is the total number of free robots in the arena. Pdetect is the probability
of a robot to identify a robot-to-robot collision which is assumed:

Pdetect = 0.5. (7)

On the other hand, Φleft(t) can be calculated through geometric consider-
ations, mainly the ratio of the area covered by the robots to the total area of
arena.

The area covered by a single robot is:

kaggr = πr2robot. (8)

The space covered by a free moving robot in time t is related to its speed
and area, which is described by:

kmov(t) = πr2robot + 2rrobotvt, (9)

where v represents the robots’ speed (v = 0.02 m/s).
We assume that the free robots are evenly distributed across the arena, so

the number of the free robots in the left side is γleftF (t).
Therefore,

Φleft(t) =
γleftF (t)kmov(t) + Aleft(t)kaggr

γleftkarena
, (10)

where karena represents the total area of the arena.
The probabilities for the right-hand side of the arena are calculated similar

to the left-hand side. Hence, the change rate of the free moving robots F (t) in
the arena can be described as:

F (t) = Lleft(t) + Lright(t) − Jleft(t) − Jright(t). (11)

4 Experimental Setup

4.1 Simulation Platform

We developed a simulation platform, Bee-Ground, on Unity real-time develop-
ment platform and using an open-source tool, Unity Machine Learning Agents.
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Compare to other mainstream robotic simulation platforms such as
ARGoS [26], Webot [24], Stage [34], Bee-Ground is able to simulate long-
term operations of swarm robots in various complex and dynamic environments
including obstacles and multiple sources. This is because it performs multi-layer
and multi-scenario simulations simultaneously 40 times faster than the real-time
without losing sampling resolution. Moreover, thanks to the built-in physics
engines in Unity, our simulation platform, Bee-Ground, can realistically repro-
duce the operation of multiple robots in complex environments.

Figure 3 illustrates a randomly selected aggregation experiments with an
obstacle between two sources.

(a) t = 0 s

(b) t = 600 s

(c) t = 3600 s

Fig. 3. A sample simulation in Bee-Ground with swarm population of N = 200 robots
in obstacle size with 60% of arena width. The right-hand side cue is the global optimal
and the left hand side cue is a local optimum.

All experimental parameters, e.g. arena dimensions, obstacles’ configuration
and sources are defined by input array files. In this paper, we used a model of
MONA robot [3] as shown in Fig. 4.
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Fig. 4. Mona - an open-source robotic platform for swarm robotics.

Fig. 5. Four different obstacle sizes in Bee-Ground with {36%, 60%, 84%, 92%} of arena
width.

4.2 Arena Setup

The arena size was 440 cm in length and 200 cm in width. It was surrounded by
walls which stop the robots from moving out of the arena. An obstacle with dif-
ferent lengths were set up in the middle of the arena between the two sources. In
this paper, we used five different obstacle lengths, Lo ∈ {0, 72, 120, 168, 184} cm
corresponding to no-obstacle, 36%, 60%, 84% and 92% of arena width, respec-
tively (Fig. 5).

Two gradient-based heat sources were utilised as cues in this study (Fig. 3).
The one on the left side, the local optimum, had a temperature of 125 unit (out
of 255) at the centre point with a radius of 40 cm. The heat source on the right-
hand side, the global optimal, had a temperature of 255 unit (out of 255) at the
centre point with a radius of 60 cm.
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4.3 Initialisation

All the robots were randomly placed on the left side of the arena to keep them
away from the global optimal. They moved according to the BEECLUST algo-
rithm during the simulations. Each simulation lasted for 3600 s and all the exper-
iments were repeated 20 times. Table 1 shows the list of parameters and variables
were used in this study.

Table 1. Parameter of Experiments

Parameter Description Range/Value

La Length of arena 440 cm

Wa Width of arena 200 cm

Lo Length of obstacles {72, 120, 168, 184} cm

Wo Width of obstacles 8 cm

rcL Radius of the left cue 40 cm

rcR Radius of the right cue 60 cm

rr Radius of robot 3.25 cm

vr Robot forward speed 2 cm/s

ωturn Turning speed 1 rad/s

rs Radius of robot IR sensory system 8 cm

tw Waiting Time after collision 0 to 60 s

4.4 Experimental Configurations

We implemented aggregation with two different settings, without an obstacle
and with a variable size obstacles.

Without Obstacles. In this setting, a group of N ∈ {100, 150, 200, 250, 300}
robots were deployed. At the beginning, the robots were randomly placed on the
left side of the arena. We tracked the number of robots which are aggregated on
both left and right-hand cues during the experiments.

With Obstacles. In this setting, N = {200, 300} robots were used. We also
set four different obstacle sizes—36% (Lo = 72 cm), 60% (Lo = 120 cm), 84%
(Lo = 168 cm) and 92% (Lo = 184 cm)—sequentially. We observed the size of
aggregations on both cues.

5 Results

In both configuration, the solid orange lines in the graphs show the median value
of the number of robots that were aggregated on the main cue (global optimum
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on the right-hand side). The orange shades in each population indicate the lower
quartile value to the upper quartile value. Also, the solid blue lines in the graphs
show the median value of the number of robots that were aggregated on the
weak cue (local optimum on the left side). The blue shades indicate the lower
quartile value to the upper quartile value.

5.1 Without Obstacles

Figure 6 illustrates aggregation size on the main cue from experiments without
obstacle. The five simulations showed a similar trend. The number of robots
in the main aggregation increased to a stable value monotonically. Increasing
the number of robots increased the size of aggregation. However, there was a
significant difference in the time they reached the final number of aggregations.
The group of N = 300 robots took approximately 910 s to reach 70% of the final
aggregation size on the main cue (right-hand side). Meanwhile, the group of N =
100 robots took approximately 400 s to reach 70% of the final aggregation size
on the main cue. The time had an approximate exponential relationship with
the total swarm size.

It was not obvious, however worth mentioning that the ratio at which the
final aggregation size to the total number of robots (Aright

N ) increased slightly as
the number of robots increased (Fig. 6).
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Fig. 6. Ratio of aggregated robots and the time to reach 70% aggregation size of
N = {100, 150, 200, 250, 300} robots without obstacles at global optimal source

Figure 7 shows the observed aggregation size on the main cue during 3600 s
experiments with different population sizes N . Also, the predicted values from
the our model were indicated with grey colour dashed lines.
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Fig. 7. Size of aggregation at the global optimal source with swarm population of
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N = {100, 150, 200, 250, 300} robots without obstacles
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Figure 8 illustrates the size of aggregation on the small cue (left hand size)
during 3600 s. The results revealed that the situation in the local optimum source
was more complex. In the beginning, the number of robots aggregated in this
area reached a peak and then fell back to a stable value (minimum size) which
was not shown on the right-hand side cue (in Fig. 7). There was a proportional
relationship between the aggregation sizes and the number of robots in the first
half time of the experiments. However, as the size of the aggregation stabilized,
this proportional relationship gradually disappeared or became less obvious. The
observed results show that in the simulation of N ∈ {200, 250, 300} robots, the
final sizes of the aggregation were almost the same. There was also no significant
difference between N ∈ {100, 150} robots.

5.2 With Obstacles

Figure 9 illustrates the size of aggregation with N = 200 robots in experiments
with different obstacle sizes of Lo ∈ {36%, 60%, 84%, 92%} of arena width. The
grey dotted lines show the aggregation results in a no-obstacle environment
with the same number of robots in each group (as the control). In the global
optimal source, we found that the size of the obstacles affected the aggregation
time; the larger the obstacle, the longer it took the robots to aggregate. In the
arena divided by obstacles with 36% and 60% of the arena width, the final
aggregation size reached a stable value that was almost the same as that in the
no-obstacle arena. In arenas divided by 84% and 92% obstacles, the aggregation
size increased very slowly and did not reach a stable value within the duration
of 3600 s.

Figure 10 shows the aggregation size during 3600 s on the left cue (local opti-
mum). It was found that the size of the obstacle affected the peak value of
the aggregation size. Hence, in the experiments with the obstacles of 92% of
the arena width, the number of aggregated robots was close to the maximum
number of robots that could be aggregated in this area. Aggregation size and
obstacle length had an inverse relationship, which the number of aggregated
robots decreased as the obstacle size increased. In the arena divided by obsta-
cles with 36% and 60% of the arena width, the final aggregation size was the
same as in the no-obstacle area. However, in experiments with longer obstacles,
84% and 92% of the arena width, a stable value in the N = 200 robots was
doubled and trebled as the others.

Figure 11 reveals the aggregation size for N = 300 robots with different
obstacle sizes. The results were almost similar to the aggregation size observed
with N = 200 robots.

Similarly, Fig. 12 shows the size of aggregation on the local optimum (left
side cue) for experiment with N = 300 robots in presence of different obstacles
lengths. Results from 36% and 60% showed a similar behaviour as shown in
results with N = 200 robots.

However, in two extremely difficult situations with the obstacles lengths of
84% and 92% of the arena width, we did not expect that robots can success-
fully aggregate at the global optimal source during the t = 3600 s experiments.
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Fig. 9. Size of aggregation at the global optimal source with population of N = 200
robots in obstacle sizes with {36%, 60%, 84%, 92%} of arena width
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Fig. 10. Size of aggregation at the local optimum source with population of N = 200
robots in obstacle sizes with {36%, 60%, 84%, 92%} of arena width.
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Fig. 11. Size of aggregation at the global optimal source with population of N = 300
robots in obstacle sizes with {36%, 60%, 84%, 92%} of arena width.
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Fig. 12. Size of aggregation at the local optimum source with population of N = 300
robots in obstacle sizes with {36%, 60%, 84%, 92%} of arena width.
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Therefore, we just calculated the ratio in which robots overcame the obstacles.
In experiments with N = 200 robots, 44.5% robots (89 of 200 robots) overcame
the obstacles in 84% of the arena width. Meanwhile, this ratio in case of N = 300
robots is 39.7% (119 of 300 robots). The similar situation observed in the exper-
iments with obstacles in 92% of the arena width in both groups. The ratios were
19% (38 of 200 robots) and 14.3% (43 of 300 robots) respectively.

6 Discussion

6.1 Arena Without Obstacles

Each group of our simulations showed that the global optimal source could even-
tually attract more robots to aggregate than the local optimum source. Although
the capability of BEECLUST in finding the global optimum was demonstrated,
the speed and efficiency of completing the aggregation were different. The total
number of robots affected the aggregation speed in the global optimal source.
The larger the number of robots, the slower the gathering speed of the robot. It
is due to increase in number of inter-robot collisions.

In our stock-flow model, we discussed the Pleave(t) function, the probability
that a robot leaves an aggregation. It changed as the size of the aggregation
changed. The larger the aggregation, the lower the probability that the robot
would leave, and vice versa. Therefore, it was found that when there were two
cues in the arena, the larger cue reduced the aggregation ability of the smaller
cue because of the change of this probability because of the following reasons:

– As the size of aggregation in the bigger cue grows, free robots have a higher
probability of entering larger aggregation. This probability increases contin-
uously. As a result, more robots join and the number of free robots becomes
smaller.

– Also, the rate at which robots enter the smaller cue becomes smaller. Each
robot that leaves the smaller cue has a higher probability of joining the
aggregation in the bigger cue. Hence, the aggregation size in the smaller cue
decreases continuously results in the rate at which robots leave it increases.

Our model’s prediction and simulation results of the aggregation size were
close. The difference was at the beginning of the experiments, that was, the
robots’ initialisation position. In the model, we set the robots in random positions
uniformly, however, we initialised the robots on the left hand side.

We found that the probability of a robot leaving the aggregation had a sig-
nificant effect on the aggregation results in complex environments. We currently
have only an approximate function Pleave(t). There are relatively few related
studies about this phenomenon.

6.2 Arena with Obstacles

It is shown that the length of the obstacle influenced the aggregation speed and
ratio in the global optimal source on the right-hand side. The larger the obstacle,
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the slower the aggregation speed of the robot. It also affected the peak value of
the number of aggregated robots in the local optimum on the left hand side.

It was unexpected that the presence of an obstacle, under certain circum-
stances, had a positive impact on the aggregation size. For example, in the
group with N = 200 robots, the final aggregation performance in small obstacle
experiments, Lo ∈ {36%, 60%} were better than those in without obstacles. Our
view is that the obstacle reduced the possibility for free robots on the right-hand
side to leave the area.

On the other side, the number of robots was not always a positive factor for
aggregation. In the experiments with 84% and 92% obstacles, the group with
N = 300 robots performed worse than the one with N = 200 robots. That
observed behaviour showed the higher the number of robots in the arena, the
fewer the number of robots that can cross the passages (on top and bottom)
made by the long obstacle. We observed the different stages of the experiment
and found that the robots continually hovered near the passage, thereby reducing
the possibility of other robots crossing the obstacle.

6.3 BEECLUST Algorithm in Complex Environment

The BEECLUST algorithm performed efficiently in the dual-cue environment
with no obstacle, which was also reported in previous studies [8,31]. It coordi-
nated individuals in the arena to find a global optimal source by following simple
inter-robot interactions. Furthermore, when there were obstacles in the arena,
the algorithm helped robots to successfully overcame the obstacle. Although
the robots took longer to reach the peak of aggregation size in the arena with
obstacle, the final aggregation size were similar to the no-obstacle configuration.

However, we have not observed if the algorithm can overcome a very complex
situation e.g. a large obstacles during the specific experiment time, t = 3600 s.
It still showed a trend that robots attempted to aggregate towards the global
optimal source.

6.4 Simulation Platform: Bee-Ground

Our experiments proved that our simulation platform, Bee-Ground, is an effi-
cient, flexible and realistic platform for the simulation of swarm robotic sce-
narios. It is an open-source platform [1] on GitHub. This platform is suitable
for simulating more complicated environments such as a continuously changing
environment and multiple cues.

7 Conclusion

A bio-inspired aggregation scenario, BEECLUST, was utilised to implement
a bio-inspired swarm aggregation. The results showed that although the
BEECLUST algorithm is a simple system, it was a successful algorithm in con-
trolling a large swarm in a complex environment. The results demonstrated the
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feasibility of the aggregation in finding the global optimal source in the presence
of multiple sources. It was illustrated that the robots could overcome a certain
degree of environmental complexities, thanks to the robustness of swarm systems.
Meanwhile, in a complex environment with limited access, the swarm popula-
tion was not always a positive factor to the final aggregation size at the global
optimal source. For the future work, we will investigate effects of multi-layer
environmental complexity using real robots. Also, a probabilistic macroscopic
model based on [32] will be proposed to predict the collective behaviour of the
swarm with additional environmental factors.
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