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Abstract. Flocking is a common behaviour observed in social animals
such as birds and insects, which has received considerable attention
in swarm robotics research studies. In this paper, a homogeneous self-
organised flocking mechanism was implemented using simulated robots
to verify a collective model. We identified and proposed solutions to the
current gap between the theoretical model and the implementation with
real-world robots. Quantitative experiments were designed with differ-
ent factors which are swarm population size, desired distance between
robots and the common goal force. To evaluate the group performance
of the swarm, the average distance within the flock was chosen to show
the coherency of the swarm, followed by statistical analysis to investi-
gate the correlation between these factors. The results of the statistical
analysis showed that compared with other factors, population size had
a significant impact on the swarm flocking performance. This provides
guidance on the application with real robots in terms of factors and
strategic design.

Keywords: Swarm robotics · Flocking · Self-organised · Collective
behaviour

1 Introduction

In nature, there are various collective motions commonly found in living organ-
isms and social animals, such as shoals of fish [8], flocks of birds [3] and swarms of
wildebeest [26]. Inspired by these collective motions, swarm robotics [20] was pro-
posed as a research topic which provides collective strategies for a large number
of simple robots to achieve collective behaviour. This collective behaviour poten-
tially provides promising solutions to some problems in real life, such as, balanc-
ing the exploitation of renewable resources [15], fault detection [24], exploration
in extreme environments [10] and coordination control of multiple autonomous
cars [9]. To achieve these collective behaviours, a large and growing body of liter-
ature has investigated to model the swarm systems and to design relevant cooper-
ation means. Considerable works have been undertaken from various angles for
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different scenarios, such as distribution [6] and energy consumption [28]. Sev-
eral coordination tasks have established, such as flocking [27], exploration [4],
aggregation [1], foraging [23] and transportation [21]. Flocking is one the most
important scenarios which has many real-world applications, e.g. in precision
agriculture [5].

Cooperation strategies have a pivotal role in achieving flocking behaviour,
hence, a number of strategies have been developed based on various disciplines
to present collective motion and group behaviour. For example, Jia et al. [11]
used a dominance matrix to compare between heterogeneous and homogeneous
systems to propose a flocking framework with particles in different levels based
on their contributions. In another study [7], disk graph and Delaunay graph
methods were used to present connectivity with various distances. Also, mean-
field game model was presented by partial differential equations to describe the
system dynamics based on state and distributions [6]. The study by Thrun et al.
proposed a cluster analysis that used the projection method based on the topo-
graphic map [25]. These strategies can be divided, on the basis of its framework,
into two main categories: homogeneous and heterogeneous [11]. A heterogeneous
group of swarm robots contains various types of robots with different roles and
responsibilities, while in a homogeneous swarm, every individual follows the same
strategy to achieve a common task, hence there are no behavioural or physical
differences between the individuals in a swarm.

Developments of the strategies for flocking behaviour in a swarm system
have led to a growing trend towards the real-world application of multi-robotic
systems. Due to the limitations of real robots’ hardware in practical scenarios,
and based on the swarm robotics criteria defined by Şahin [19], each robot in a
swarm system interacts with its direct neighbours within a specific range, sensing
radius, to make decisions only based on its neighbours’ stages. Direct commu-
nication in a swarm without having an extra observer is one of the challenges
of implementing swarm scenarios using real mobile robots [13]. Some research
studies [1,17] rely on the acquisition of the location of each robot from an extra
observer, whereas some [2,11] regard each robot as an abstract particle without
considering physical structures e.g. weight, size, motor speed and sensor range.
Such approaches, however, can not realistically address the situation in which the
group operation is influenced by the physical and hardware design constraints.

In one of the previous research studies [2], it has been theoretically demon-
strated that Active Elastic Sheet (AES) is a self-propelled mechanism where
swarm particles can successfully achieve collective motions. Due to the simplic-
ity and robustness property of AES, in this paper, we chose this mechanism to
demonstrate flocking behaviour of a homogeneous swarm. To combine hardware
and collective control algorithms, the motion model was applied to a swarm
of simulated robots by carefully considering the hardware limitations of the real
robots. Hence, in this work, local communication relays on sensor values to make
sure that the robots keep the desired distance from its neighbours. Each robot
only detects the distance to its neighbour without acquiring the neighbour’s
identification, therefore, each robot is able to make decisions without an extra
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observer, in the whole process. Since the model of each individual robot includes
all the physical properties which are carefully implemented by the control algo-
rithm, the study here can be considered the first step from an abstract model to
the progression with real robots. Simulated experiments were performed to anal-
yse the group performance of the swarm flocking with the AES model. Followed
by these qualitative experiments, the group behaviours were evaluated using a
specified metric, i.e. the average distance between the robots in the swarm, and
the results were statistically analysed to identify the effects of the chosen factors
including time, population size and external (common) force. This information
will potentially help follow-up studies to address several cautions of implemen-
tation using real swarm robots in real-world applications.

The rest of this paper was organised as follow. In Sect. 2, we introduced
the collection formation and flocking mechanism. Following that, in Sect. 3, we
explained the experimental setup and robotic platform. In Sect. 4, we discussed
the experimental results and analysed effects of different parameters in collective
swarm performance. Finally, in Sect. 5, we drew conclusions and discussed the
future research direction in which the swarm robots might be involved.

2 Flocking Mechanism

The AES model [2] was originally developed and investigated using particles
without hardware structures proposed. In this study, we utilised this model con-
sidering the hardware structure of physical robots. Constraints for each robot on
position, ṗi, and rotation, φ̇i, are shown in Eqs. (1) and (2). The movement of
each robot is controlled by two different forces: i) the goal force, Fg , and ii) the
collective force, Fi . The goal force aims to steer the entire group moving towards
a desired direction, while the collective force is used to keep robots within an
expected distance to avoid the collision.

ṗi = [Fg + α(Fi + Dr ξ̂r) · n̂i] · n̂i, (1)

φ̇i = [Fg + β(Fi + Dr ξ̂r)] · n̂i
⊥, (2)

Fgd = γdd, (3)

Fgp = γpv̂i, (4)

where coefficients α and β are related to linear speed and rotation of the collective
movement. n̂i, n̂i

⊥ are unit vectors, where n̂i has the same direction as the
heading of the robot, while n̂i

⊥ is perpendicular to the heading direction. Dr is
the noise value in the process of detecting distances between robots. ξ̂r is a unit
vector with a random direction, so that noise is applied in a arbitrary direction.
φi is the angle which the robot i is expected to rotate. The clockwise direction
is defined as positive and counterclockwise is negative for φi. γd and γp are the
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corresponding weight coefficients of goal forces. v̂i is related to the desired group
speed along the self-propulsive direction, which is proportional to the goal force,
Fgp . Fgd relies on the distance between the robot location and goal d. These
two sub-forces are shown as Eq. (3) and Eq. (4). The goal force, Fg , consists of
Fgp and Fgd .

Each individual robot gets information about surrounding robots using their
n sensors. The summation of sensors’ values is presented as a collective force,
Fi , shown in Eq. (5):

Fi =
n∑

j=1

− krij

lij ||rij || (||rij || − lij) , (5)

where rij is the vector from the centre of the robot i to its neighbour j. Therefore,
||rij || is the distance between robot i and j. lij is the desired distance between
the two robots. The difference between the absolute value of rij and lij is the
error of collective motion. k

lij
is a parameter which acts like a spring constant,

involving the amount of force that robots generate according to the collective
distances.

In terms of implementation of to the simulated robots, the process of flocking
scenario is shown in Fig. 1. To begin this flocking scenario, each robot has an
individual controller which is implemented by its own microcontroller. The robot
uses six sensors to gain the surrounding information. These sensor readings are
||rij || in Eq. (5). To steer the group of robots to a goal point or direction,
we applied the desired distance, d, for each robot. Fg and Fi have the same
order of magnitude. After obtaining the force information, the controllers start
to calculate total forces and correspondingly change the robot kinematics. The
transformation from force to robot kinematics will be described in the Sect. 3.2.
Once the motion property of each robot had been decided, the collective motion
commences. Finally, the swarm collectively move to the goal position.

3 Experiments

3.1 General Foundation

Webots [14] is an open-source simulation software developed at the Swiss Federal
Institute of Technology. With a 3D interface, the simulator provides numerous
robotic modules and various objects, hence it is convenient to design swarm
robotic systems. We used a miniature mobile robot e-puck [16] which is a popular
swarm robotic platform and it has been utilised in many swarm robotics studies.
The e-puck robot is equipped with two differential driven wheels for its actuation,
and eight infra-red (IR) sensors for proximity measurements which are mainly
used in our experiments for decision making. Figure 2 shows an e-puck model
and its top view in Webots.

From the top view, each e-puck has eight horizontally symmetrical sensors,
but not vertically symmetrical, as there are two more sensors in the front part.



Self-organised Flocking with Robotic Swarm 7

Fig. 1. (a) First step: each robot detects neighbours using sensors, which is also the
data collection for calculation of collective force, Fi . Every robot has a controller to
collect and calculate their own data. (b) Second step: In every individual controller,
total force is calculated based on Fg and Fi using the AES model. This is also a step for
each robot deciding how to change their kinematics. (c) Third step: controllers change
the speed of actuators to change the robots’ motion. (d) Fourth step: flocking motion
achieved. The picture is a screenshot of an experiment, where the swarm collectively
moved to an expected direction along the yellow arrow. (Color figure online)

Since the forces in the AES model depend on the sensor values in the experi-
ments, the distribution of sensors has a significant impact on decision-making for
each robot. Asymmetrical distribution of sensors gives rise to unbalanced forces.
To balance the distribution of force, six sensors are chosen which are marked
with red colour in Fig. 2 (a), correspondingly n = 6 in Eq. (5). Due to the
fixed hardware design, the distribution of sensors is still slightly asymmetrical.
According to the provided documentation1, the infra-red sensors in each e-puck
have a deviation of noise which obeys a Gaussian random distribution.

In each robot, the maximum rotation speed of the motor is 6.28 rad/s. With
20.5 mm wheel radius, the maximum speed of an e-puck is 0.25 m/s. Thanks to
the fully integrated cross-compilation in Webots for the e-puck, less modification
is needed for the controller from simulation to the real robots implementation.

1 http://www.cyberbotics.com.

http://www.cyberbotics.com
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Fig. 2. (a) Top view of an e-puck robot with upward heading direction. The red lines
extended from proximity sensors represent the perception ranges. Given the zero angle
as the positive x direction and moving anticlockwise is taken as positive, the orientation
of sensor {0, 2, 3, 4, 5, 7} are {73◦, 0◦, 300◦, 240◦, 180◦, 107◦}. The intervals between
them are not all the same, which will lead to the unbalanced weight from different
directions. (b) 3D model of e-puck in Webots. The e-puck is differentially driven by
two motors. (Color figure online)

Compared with the particle based simulations, this simulation is closer to the
real-world scenarios and the controllers can be easily transferred to the real
robots.

3.2 Individual Robot Test

Precise tracking performance of an individual robot is the foundation of accurate
group behaviour. Since each robot basically makes decisions based on multiple
forces in the AES model, we designed an individual robot test to improve the
motion of a single robot before group experiments. The robot needed to make a
trade-off between agility and accuracy under a force with an arbitrary direction.
In this test, the relevant parameters γp needed to be tuned, so that the robot
makes reliable decisions.

In Fig. 3(a), the pose of the robot i is described as (xi, yi, θi). In Fig. 3(b),
xi and yi represent the expected movement of the robot which is related to the
projection of pi onto the x and y-axes. Forward velocity, v̂i, and angular veloc-
ity, wi, are two variables to describe the kinematics of the robot. Equation (6)
presents the transformation from the kinematics to the pose of the robot:

ẋi = ||v̂i|| cos θi, ẏi = ||v̂i|| sin θi, θ̇i = wi. (6)

Since e-puck is a typical differential wheeled robot, its motion depends on
the speeds of both left and right wheels. The forward velocity of the e-puck is
given by the average speed of both wheels, while the rotational velocity is related
to the differences between the speed of two wheels. Therefore, the position and
orientation of an e-puck can be presented by:
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Fig. 3. (a) An e-puck and its state: the red arrow at the top of the robot indicates
the heading of e-puck. vi and wi denote the forward velocity and angular velocity of e-
puck i. The forward velocity is in the same direction as the heading of e-puck. Angular
velocity is positive when e-puck rotates clockwise. (b) The coordinate of an e-puck:
the x-axis is along the rotation axis of the wheels. The heading of e-puck is in the
same direction as the y-axis. The black circle with the dashed line denotes the range of
sensor measurement. The blue arrow denotes the force acting upon the e-puck, which
is projected onto x and y-axis for calculation. All the forces are calculated according to
this coordinate. In this figure, the force is from the nearby robots. By comparing this
force and expected one, the robot was changing its kinematics. In the background, the
swarm of mobile robots wandered to the goal as a coherent group in an open space.
(Color figure online)

ẋi = r(
wr + wl

2
) cos θi, ẏi = r(

wr + wl

2
) sin θi, θ̇i = r(

wr − wl

l
), (7)

where wr and wl denote rotational speeds of right and left wheels respectively,
l is the distance between the wheels, and r is the radius of the wheels.

Then, the transformation between pose goal and the angular velocity of
wheels can be derived by combining Eq. (6, 7):

[||v̂i||
wi

]
=

[
r
2

r
2

r
l − r

l

] [
wr

wl

]
. (8)

According to the specification of the e-puck, r = 20.5 mm and l = 52 mm,
the rotational speeds of the left and right wheels follow:

wl = 487.8049 ||v̂i|| − 1.2683wi, (9)

wr = 487.8049 ||v̂i|| + 1.2683wi. (10)

A coordinate of a robot designed for the change of kinematics is shown in
Fig. 3(b). The origin is the centre of the e-puck and y-axis is along with the
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robot’s heading. We projected a force onto the x-y plane. The projection has
been included here for two reasons: i) the forces are vectors in the AES model and
projection can transfer the information to desired pose (xi, yi, θi) which will be
mentioned below and ii) it is simple to be implemented in C/C++ programming
language.

According to the AES model, v̂i and wi are related to Fi and Fg , which can
be calculated as:

||v̂i|| = m ||Fi + Fg || , wi = n∠(Fi + Fg ) , (11)

where parameter m and n were tuned empirically to make sure each e-puck
rapidly adjust its speed and heading, which is the fundamental of group
behaviour.

3.3 Swarm Robots Test

In this section, we aimed to apply the AES model for the swarm. In order to
test the group’s behaviour with different kinds of initial situations, the start
orientation of each agent was randomly set θ ∈ [−π,+π]. The distances between
nearby robots were less than half of the sensor range to make sure robots were
able to detect their neighbours.

According to the AES model, there are two forces that mainly affect the
collective motion. One is the collective force, Fi , and the other is the goal force,
Fg . Collective force depends on the relative positions of the neighbours, which
can be calculated by summing the errors between sensor values, rij , and desired
distances, lij . For each robot, six forces responding to six sensor values are
added up to find the resultant force, Fi , and each sensor value is regarded as
a vector. The direction of the vectors are from the centre of the e-puck to the
corresponding sensors, which are along the red lines in Fig. 2(a). The blue arrow
in Fig. 3(b) is an example which illustrates the total collective force in the group
test. In terms of the goal force, the magnitude of Fg is a constant value, which
pulls the swarm toward a pre-set direction.

Dot products are used to calculate the scalar projection of the forces onto a
horizontal unit vector n̂i and a vertical unit vector n̂i

⊥ in Eqs. (1) and (2). In our
work, the angles between n̂i and forces depend on the distribution of sensors in
each e-puck coordinate system. There are seven projections calculated for each
e-puck, including six forces from sensors and a goal force, Fg . The component of
the total force acting in the horizontal direction was calculated by summation of
the component of all forces in n̂i direction as presented in Eq. (5). The component
of the total force in the vertical direction was calculated in the same way using
n̂i

⊥. Prior to applying the goal force, the coordinate transformation was adopted
because Fg are in the global coordinate frame, while the set of Fi controller on
the e-puck is in robot coordinate frame.

Collective and goal forces have weight parameters α, β and γp, γd, wl, respec-
tively. These parameters influence the forces that are applied to the robot, for
example, an increase in γp leads to a bigger force to pull the swarm toward
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a direction and vice versa. As a homogeneous robotic model, each robot was
deployed the same controller to achieve decentralised collective motion. In this
study, each experiment contained 336 positions for each e-puck. With the estab-
lished individual behaviour and the calculation of forces, the flocking behaviour
has been achieved. The source codes for all implementations are available on
GitHub2.

3.4 Metrics

Flocking behaviour is a simultaneous motion where a group of robots move
toward a target direction. The likelihood of individuals remaining in the group
depends on the coherency of the swarm. Here, we focus on the cohesiveness
of the swarm. To evaluate the swarm coherency, the average distance between
the swarm members is calculated as a metric in this study, which is a common
method has been used in many research studies, e.g. in [17,18]. The average
distance in this paper is the mean value of the distances between robots, which
can be calculated as:

ds =
2
∑N−1

i=1

∑N
j=1 ||rij ||

N(N − 1)
, (12)

where N is the number of robots in the group.
Analytical experiments were conducted to show the impact of several factors

including forces, population size and desired distance on the ds. Table 1 gives
a summary of the details about factors, including different number population
sizes N ∈ {4, 6, 9, 12} robots, goal forces γp ∈ {2000, 3000} and desired distance
of lij ∈ {120, 150}. The desired distance lij here is dimensionless, because the
value is related to sensor values. 16 sets of experiments were run and each set
of experiments were repeated 10 times. To facilitate calculation of the metrics,
ds, it is important to accurately ascertain each robot’s location at each sampling
time.

Table 1. Sets of experiments for analysis of factors in each population size.

γp , lij 4 6 9 12

γp = 2000 , lij = 120 Set1 Set2 Set3 Set4

γp = 2000 , lij = 150 Set5 Set6 Set7 Set8

γp = 3000 , lij = 120 Set9 Set10 Set11 Set12

γp = 3000 , lij = 150 Set13 Set14 Set15 Set16

2 https://github.com/swacil/Flocking.

https://github.com/swacil/Flocking
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4 Result and Discussion

In order to identify the impacts of factors N , lij and γp on the group performance,
a series of tests were selected from the above experiments, in which only the
object factor is an independent variable and other factors are fixed. Box-plots
were used to show the distributions of distances with different populations N ,
sensor sensitivity lij and group force γp.

4.1 Effects of Time

Each experiment took 22 s and contained 336 sample points for each e-puck.
In an attempt to simplify data analysis and comparison, every 28 data was
averaged to represent the average distances, ds, in every two seconds. As shown
in Fig. 4(a), the median of the ds held steadily around the initial value for the
first 14 s that indicates the swarm was able to maintain the coherency as the
initialisation within this period of time. However, distribution of the obtained
results (size of boxes) increases over time hence it is evident that the maximum
ds increases, namely ds had a greater chance to reach the maximum value of a
test at the end of the experiment. During the experiments, the swarm spread
apart as time goes on.

Fig. 4. (a) Box plots of average distance during experiments with Fg = 3000, lij =
120 using 12 robots within 22 s. (b) Box plots of average distance during experiments
with Fg = 2000, lij = 120 using swarms with different population sizes.

4.2 Effects of Population

Figure 4(b) shows the swarm coherency, ds, with γp = 2000, desired distance of
lij = 120 and varying swarm size of N ∈ {4, 6, 9, 12} robots. Considering the
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results of the experiments with the same goal force and the desired distance, the
minimum and maximum ds see declines as the population increase. It can be
clearly observed that the median ds decreases as population increases. All in all,
the swarm with a larger population yields better group performance when other
factors are the same.

4.3 Group Force

To compare group performance under different group forces, the data of the first
and third row in Table 1 was chosen. The ds with lij = 120 within 19 s are shown
in Fig. 5. Comparing the ds with γp = {2000, 3000}, there is a dramatic rise of
the median and maximum ds in all experiments, while the minimum ds saw a
decline apart from the swarm with 6 robots. Overall, the bigger force triggers
larger ds, resulting in worse coherency regardless of population size.

Fig. 5. Box-plots of average distance during experiments with lij = 120 and N ∈
{4, 6, 9, 12} robots using different goal forces.

4.4 Desired Distance

Desired distance, lij , is the target distances between the robots, which is directly
related to a specific sensor value in the simulation. We varied lij and kept γp =
2000 in the first and second row of experiments in Table 1. Figure 6 illustrates
that a bigger desired distance leads to larger ds for small population size. In
contrast, bigger desired distance contributes to smaller ds when the swarm has
a larger population sizes.



14 Z. Ban et al.

Fig. 6. Box plots of average distance during experiments with Fg = 2000 and N ∈
{4, 6, 9, 12} robots using different desired distances.

4.5 Statistical Analysis

To compare the influence of the aforementioned factors, statistical analysis was
made using the data in Table 1. According to the result of Kruskall-Wallis test,
the data were normally distributed. As a common data analysis method, Analysis
of Variance (ANOVA) test [22] was adopted to assess if the factors have a statis-
tically significant effect on group behaviour. In the F-test, the three parameters:
force, desired distance and population size are the factors and ds is the result to
represent the group behaviour. According to the properties of F-distributions,
traditionally, p = 0.05 is chosen as a significance level [12]. When the p-value
is less than the significance level, the null hypothesis is rejected and the corre-
sponding factors have significant impacts on the result.

Results of the ANOVA are shown in Table 2. The number of robots plays
the most significant role in coherency because p-value of the population size
is far less than 0.5 (pp ≈ 0.000). Increasing the population size contributes to
better group performance significantly. Though desired distance has an impact
on the coherency of the swarm, the influence is less than the population size
and force. Force has the least impact on coherency with pp ≈ 0.691. Compared
with a swarm with fewer robots, large-sized swarms tend to have more coherent
performance even under different goal forces and desired distances.

4.6 Discussion

This study showed that, an increase in population size of a swarm improve the
collective performance. This is one of the main criteria of swarm robotics [19],
which has been also reported in many studies [1,10,17,18]. This shows that the
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Table 2. Results of analysis of variance (ANOVA).

Factors p-value F-value

Force (Fg) 0.912 0.015

Desired distance (lij) 0.691 0.381

Population (N) 0.000 (<0.001) 33.039

increased inter-robot interactions due to the higher population size resulted in
improvement of collective behaviour of the swarm.

Also, it is interesting to note that the robots’ ID is not necessary for all
experiments during the decision-making process. Since the model here is decen-
tralised and every controller of the robot is independent, each individual enables
to make decisions with stochastic neighbours by sensor detection.

In some of the previous works [9,17], collective motion of a swarm relies on
an extra observer, such as a camera or simulation platform. A portion of robots
make decisions according to the specific robots’ information which provides by
the extra observer. Compared with these works, we provide a solution with less
requirement of equipment and better tolerance for the change of neighbours
when the accuracy of the group performance is less regulated.

The decision-making fully relies on sensors in this study, hence the sensitivity
of sensor affects group performance. One source of weakness in this study which
could have affected the group behaviour is sensor distribution. As mentioned in
Sect. 3.1, e-puck has asymmetry sensor distribution which led to the unbalance
of sensor values between the front and back. Also, this study did not consider
an environment with obstacles and only focused on the flocking behaviour in an
open space. Besides, the scope of this study was limited in terms of evaluation of
group performance. Average distance is the only metric to describe the density
of the swarm. The speed of group motion and group size were the paucities of
the study.

5 Conclusion

This work was undertaken to implement a collective motion model using a real-
istic simulated robot swarm. We evaluated the influence of several factors on
the swarm performance by quantitative experiments. The simulated robots were
able to achieve flocking behaviour as a single, cohesive group. The results of the
study demonstrated that the population size plays a significant role in flocking
behaviour. The insights gained from this study may be of assistance to applying
an abstract model to the real-world robotic applications. A natural progression
of this work is to transfer the simulation to a real robotic scenario. A further
study will investigate the application of this flocking mechanism in the inspection
of farms for precision agriculture.
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pheromone system for swarm robotic applications. In: The 2018 Conference on
Artificial Life: A Hybrid of the European Conference on Artificial Life (ECAL)
and the International Conference on the Synthesis and Simulation of Living Sys-
tems (ALIFE), pp. 608–615. MIT Press (2019)
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