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Abstract. Chinese character is composed of spatial arrangement of
strokes. A portion of these strokes combines to form phonetic component,
which provides a clue to the pronunciation of the entire character, the
others combine to form semantic component, which indicates semantic
level information for speech context. How closely the connection between
the internal strokes of Chinese characters and speech? In this paper, we
propose Speech2Stroke, a end-to-end model that exploits the phonetic
and morphologic level information of pictographic words. Specifically,
we generate strokes directly from the speech by Speech2Stroke. The
performance of Speech2Stroke is evaluated by the specific stroke error
rate(SER). The SER of the optimal model can achieve 20.61%. Through
the experiments and analysis, we show that our model has the ability
to capture the alignment between audio and the internal structures of
pictographic characters.

Keywords: Deep learning · Stroke of Chinese character · Pictographic
word

1 Introduction

When Chinese people encounter a previously unseen character without any
pinyin or phoneme, but one can still pronounce the character according to its
graphical shape, and guess the meaning. There is a closely connection between
speech and internal graphical components, part of which is a direct result of the
mechanisms of Chinese formation system.

The traditional six writings were first described by Xu Shen in his dictionary
Shuowen Jiezi in the ancient Han dynasty [13], which consists of six kinds of
principles of Chinese formation. One of six writings, pictophonetic compound, is
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by far the most numerous characters. Pictophonetic characters are composed of
at least two components, characters with the same phonetic components share
similar pronunciation. As shown in Table 1, all these simplified Chinese charac-
ters have the same right-hand side part, and their pronunciation is extremely
similar except the tone.

Chinese characters have been regarded as a logographic language, the
logograms of Chinese characters convey fruitful information of their meanings.
Recent researches have proved that internal structural features are beneficial in
the field of natural language processing (NLP): radicals, also as semantic compo-
nents in most cases, are useful in learning Chinese word embedding and language
understanding task[19,20]. Cao et al.[4] decompose the character into units of
smaller granularity, and propose stroke n-grams for Chinese word embedding. Su
and Lee et al. [16] use a convolutional auto-encoder to extract character feature
from bitmap to represent the character glyphs, which shows that glyph embed-
ding enhance word analogy and word similarity tasks. Meng et al. [12] utilize the
Tianzige-CNN structures to extract the semantic glyph-vectors with historical
Chinese scripts, which is proved to improve a wide range of Chinese NLP tasks
due to the rich pictographic information in Chinese character. Unfortunately,
the aforementioned methods only focus on the signific component of character,
however, they neglect the phonetic component.

In this work, given the rich phonetic components in Chinese characters, we
ask a question: can machine learn the relationship between speech and internal
structures of Chinese characters? In our proposed model, we use a similar idea
with [4], which decomposes the character into a sequence of strokes. With such
stroke order information, we design a model that can exploit the sequential
correction with audio input. Specificially, we use a neural network model that
takes a short speech signal as input and predicts a stroke vector representing
the internal structure. To train our model, we use the self-built stroke order
data set, comprised of 32 different types of Chinese strokes, which has more
diversity compare to [4]. Our model simply exploits the natural advantages of
Chinese speech and internal structures of character, without requiring any other
phoneme, e.g., pinyin.

The contributions of this paper are as follows: 1) To the best of our knowledge,
our work is the first to explore a model for generating the internal structural
strokes directly from the mandarin speech. 2) a new task learning for multi-
task learning or transfer learning in mandarin speech recognition and speech
synthesis.

The rest of this paper is organized as follows. In Sect. 2, we begin by intro-
ducing the architecture of Speech2Stroke model in detail. We describe the exper-
imental setup in Sect. 3. We evaluate our models on the test set, and compare the
different architectures and decoding methods in Sect. 4. The paper is concluded
in Sect. 5.
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Table 1. Pictophonetic characters

2 Speech2Stroke Model

We provide an overview of our Speech2Stroke model. As shown in Fig. 1, our
proposed model consists of two main pipelines: 1) character decompose, which
takes Chinese characters as input, and produces a sequence of stroke orders that
correspond to the associated character; 2) a speech encoder, which takes a spec-
trogram of power normalized audio clips as input, and predicts a stroke sequence.
During the training stage, we train our speech encoder with Connectionist Tem-
poral Classification (CTC) loss function in an end-to-end way. During predicting,
we decode the stroke order from the output probability of speech encoder. In
the following sub-sections, we describe each of these components in detail.

Fig. 1. The overall architecture of Speech2Stroke model

2.1 Character Decompose

A Chinese word is composed of a sequence of characters, and a Chinese character
is composed of several graphical components. The characters with the same
component share a similar pronunciation. The shape of the graphical components
can be modeled by the stroke orders, which have finer granularity than radical. In
our work, the strokes are categorized into 32 different types. As shown in Fig. 2,
we use various strokes to depict the curved structure of character, therefore the
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structure information of character can be extracted completely from the stroke
sequences, and we mark each stroke an integer ID from 1 to 32 respectively. The
procedure of decomposing a word into IDs is shown in Fig. 3. First, we divide the
simplified word into characters; then we retrieve the stroke sequence from every
character, and add a blank space into the sequence of the strokes after finish a
character. [1] provides an official guideline about the order for strokes involved
in each simplified Chinese character; finally, we use integer IDs to represent the
stroke sequence.

2.2 Speech Encoder

Let us define the sequence of acoustic feature vectors as X =
[X1,X2,X3, ......,XT ], and denotes a stroke sequence. The
goal of speech encoder is to convert an input sequence X into a transcription Y ,
the most likely stroke sequence Y ∗ is given by:

Y ∗ = arg max
Y

p(Y |X) (1)

Our speech encoder is a neural network fed with spectrogram of power. At
each output time-step t, the speech encoder predicts the probability, p(yt|x),
where yt is the stroke of Chinese or the blank symbol at time-step t. The over-
all model architecture is similar to DeepSpeech2 [2]. As shown in Fig. 4, the
network is composed of convolutional neural network, bidirectional recurrent
neural network, and fully connected network. In the bottom of speech decoder,
the architecture that we experiment with consists of two convolutional layers.
We consider the spectrogram as a picture and apply time-and-frequency domain
2-D convolution operations [15], which can capture the frequency and temporal
features together. Convolution in frequency can model spectral variance due to
speaker variability more compendiously, since it can preserve more of the vocal
characteristics. Following the convolutional layers are one or more bidirectional
recurrent layers, since recurrent network can exploit the sequence dependence
of time series. It is a common sense in speech and language processing that
using a more complex recurrent unit can allow the network to remember more
time dependence, therefore the Long Short-Term Memory (LSTM) units [9] and
the Gated Recurrent Units (GRU) [6] are applied respectively in bidirectional
recurrent layers, though it is computationally expensive to train them. After the
bidirectional recurrent layers, we stack one fully connected layer which can adjust
the output dimension conveniently. The last layer is a softmax layer that com-
putes a probability distribution over the strokes. The parameters of the speech
encoder are updated through the backpropagation through time algorithm [18]
. The cost function of training is CTC loss function. In the following section, we
will detail the CTC loss function and how to decode the best transcription from
the output probability distribution.
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Fig. 2. Shapes of Chinese strokes

Fig. 3. Procedures of the generation of strokes from a word

Fig. 4. Architecture of speech encoder
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2.3 Connectionist Temporal Classification

Connectionist Temporal Classification (CTC) [7] is a popular method for end-to-
end sequence learning, which usually applies in an RNN-based model to optimize
predictions of the transcription sequence, it enables the end-to-end model train-
ing without pre-defined alignment information of training dataset. In the theory
of CTC, let us denote x as the spectrogram frame sequence and y as the label
sequence. CTC proposed a dynamic constrained procedure that adds a blank
symbol φ as an additional label, the blank symbol can model the situation of
pause and adjacent repeated labels in label sequence. The output of softmax of
speech encoder has the same time-steps as the input sequence x, since the length
of y should be shorter than the length of x due to the blank symbol. A CTC path
π is defined as the concatenation of softmax observed labels at all time-steps.
For the propose of mapping the path π to the target sequence y, CTC defines
a many-to-one mapping operation β. β firstly collapses repeating tokens, then
removes all blank symbols from the sequence processed in the previous step. For
example, a sequence of 9 labels such as “aφ ppφ pφ le”, the sequence turns to
“apple” after processing the operation β. The conditional probability of a given
target sequence is defined as the sum of probabilities of all feasible paths through
β, which is the definition of CTC loss function. The formula is defined as follows:

LCTC = − ln P (y|x) = − ln
∑

π∈B−1(y)

P (π|x) (2)

In order to calculate the P (π|x) , CTC makes an assumption that every time-
step output is conditionally independent of previous outputs, the probability of
π is decomposed into the product of posteriors from each frame as:

P (π|x) =
T∏

t=1

P (πt|x) (3)

CTC uses a dynamic programming algorithm to efficiently sum up all the
feasible paths. Therefore, the CTC technique provides practicable guidelines for
training the end-to-end model by directly optimizing the CTC loss function.

2.4 Decoding Approaches

During inference, we use the decoding algorithms to compute the final label
sequence from the output probabilities of CTC. In this work, we use two decoding
approaches: greedy decoding and beam search decoding [8].

The idea of greedy decoding method is simple, assuming that the probability
between time steps is conditionally independent. Therefore, at each time step,
the maximum probability output value is selected as the prediction result. Due
to the many-to-one mapping operation β, the result of greedy decoding method
is an approximate solution, but it is very fast, which reduces the exponential
time complexity to the length-dependent linear time complexity.
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In this work, we also use beam search decoding algorithm, which is one of
the popular decoding techniques for CTC decoding. Actually the beam search
decoding is an improvement on greedy decoding. Beam search is a heuristic
search algorithm that explores a breadth-first search tree by expanding the most
promising node in limited sets. When the beam width is equal to 1, beam search
decoding degrades to greedy decoding. The greater the beam width, the fewer
states of search tree are pruned. Therefore, we can improve the performance of
beam search decoding by increasing the beam width, but the side effects are
increasing decoding time and memory consumption. In practice, it usually needs
to find a trade-off between the beam width and time consumption. Due to the
beam search sacrifices completeness by pruning, the solution of beam search is
also not optimal.

3 Experimental Setup

3.1 Dataset

Our experiments are conducted on self-build Chinese strokes dataset and AISHE-
LL-1 [3] open source mandarin speech corpus. Based on our observation, this is no
publicly available simplified Chinese strokes dataset that has 32 different types
of strokes, so we create the dataset by crawling webpage and manual correction.

The simplified Chinese strokes dataset contains 21964 Chinese characters
and the stroke order of the corresponding Chinese characters. In addition, we
find some interesting things that the length of the stroke order of character
conforms to the normal distribution, and the lengths of most Chinese characters
are distributed between 20–30.

We use the AISHELL-1 corpus dataset which comprises approximately 178
hours of recording from 400 speakers of different accent areas in China. All utter-
ances of AISHELL-1 are encoded at the 16 kHz sampling rate with 16-bit res-
olution. All experiments use spectrogram of power as input features, computed
with a 20ms window and shifted every 10ms. To reduce frequency leakage, we
use a Hamming window function to reduce frequency leakage during the speech
signal pre-processing.

3.2 Evaluation Metric

Since there is no standard metric for evaluating the stroke-based model, in order
to compute the similarity between label strokes order sequence and prediction
sequence, we propose the Stroke Error Rate (SER) which is inspired by the
Word Error Rate (WER) of measuring the performance of Automatic Speech
Recognition (ASR). A standard definition of the SER is as follows:

SER =
Is + Ss + Ds

Ns
(4)

where Ns is the number of strokes in the reference stroke order text, Ss is the
number of strokes substituted, Ds is the number of strokes deleted and Is is the
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number of strokes inserted required to transform the output text into the target.
Fortunately, the numerator of SER is computed with the minimum number of
operations required to convert the output prediction text into reference, which
is known as Levenshtein distance [11]. The larger the number, the more different
between the two stroke text.

3.3 Implementation Details

We reconstruct the speech dataset by replacing the label text with stroke
sequences using the method of Sect. 2.1, the reconstructed dataset is used for
all of our experiments in this work.

The architecture of convolutional layers of speech encoder is the same for all
training and testing experiments, the convolutional block consists of a convolu-
tional layer, batch normalization(BN) [10] layer and Hardtanh activation func-
tion layer, the hyperparameters of the first convolutional layer are as follows: the
spectrogram is treated as one channel picture by convolutional operations, the
number of out channels is 32, size of filters is 41×11 with a stride of 2×2, and
the size of padding is 20×5. Similarly, the hyperparameters of the second layer
are as follows: the numbers of input channels and output channels are 32, size
of filters is 21×11 with a stride of 2×1, and the size of padding is 10×5. In the
Bi-RNN blocks, we test different types of recurrent networks, including common
RNN, GRU, and LSTM. In addition, we explore the impact of different layers
on model performance. Each layer of Bi-RNN blocks has 800 cells. Batch nor-
malization is also applied on each RNN layer. The last one fully connected layer
has 34 hidden units, which represents the number of labels in the training set.

All the models are implemented with the PyTorch library [14], we use stochas-
tic gradient descent (SGD) with a momentum of 0.9 [17] to train our model with
CTC loss function described in Sect. 2.3, and set the batch size to 32 due to the
GPU memory limitations. The initial learning rate is at 3e–4, The learning rate
during training adopts 1/t annealing strategy after finishing every epoch, where
t is set at 1.1. To accelerate the online learning, we train our model with Sorta-
Grad [2] learning strategy. we also apply early stopping [5] to halt the training
of model when the performance is degraded. During inference, we evaluate the
test set using the checkpoint that produced the best SER on validation set.

4 Results

4.1 Evaluation of Various Architectures

Table 2 gives the SER obtained with our model using different types of recurrent
networks in the Bi-RNN block. All results are obtained by beam search decoding
method with a fixed beam size of 32. The convolutional layers and fully connected
layers are fixed in these experiments. This is because CNN is used to extract the
features of spectrogram, and the last layer, a fully connected network, is used for
dimensional adaptation. The core of model is the Bi-RNN blocks, which model
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the temporal connection. As shown in Table 2, experiment E2 indicates that the
GRU-based model has better performance than other RNN types, and we notice
that there is an extremely big gap between E0 and E1, E2. it is revealed that the
RNN-based model cannot handle the long time dependence, then the problem
of vanishing gradient occurs, which makes it impossible to update the weights
and ultimately leads to poor generalization.

Table 2. SER of Speech2Stroke with various RNN types

Exp ID Architecture SER %

E0 8-layer, 5 Bi-RNN 52.915

E1 8-layer, 5 Bi-LSTM 26.183

E2 8-layer, 5 Bi-GRU 20.609

Moreover, Table 3 gives the SER obtained with our model using different
layers of recurrent networks in the Bi-RNN block. As Table 2 indicates GRU-
based model performs best, we fix the RNN type as GRU and change the number
of layers. The results of Table 3 show that experiment D1 has the lowest SER,
when increasing the number of layers from 5 to 7, the performance of D2 is
degraded, which seems to be a symptom of overfitting.

Table 3. SER of Speech2Stroke with various RNN layers

Exp ID Architecture SER %

D0 6-layer, 3 Bi-RNN 27.456

D1 8-layer, 5 Bi-LSTM 20.609

D2 10-layer, 7 Bi-GRU 22.216

4.2 Evaluation of Various Decoding Methods

Table 4 shows the effects of the decoding beam width and the decoding method
on the SER for the test set. The architecture of experiment D1 is applied to
this evaluation. As we see, experiment C0 with SER of 20.857%, which natively
chooses the most likely label at each time step, as expected, beam search decod-
ing method gives better results than greedy decoding. On the other hand, greedy
decoding is much faster than any beam search decoding, 6.4 times faster than,
C1, the fastest beam search based experiment. We can observe extra benefits
when further increasing the beam width. But the price is increasing time con-
sumption. In practice, we need to find a balance between them in different sce-
narios.
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Table 4. SER and decoding time consuming of Speech2Stroke with various decoding
methods. BS-32 denotes beam search with width of 32

Exp ID Decoding method SER % Time (ms/item)

C0 Greedy Decoding 20.857 17

C1 BS-32 20.609 109

C2 BS-128 20.573 458

C3 BS-512 20.547 4677

C4 BS-1024 20.549 8308

Fig. 5. Qualitative results of case 1 Fig. 6. Qualitative results of case 2

4.3 Qualitative Analysis

To better comprehend the quality of the connection between speech and strokes,
we conduct qualitative analysis by illustrating some case studies of decoding
results. As shown in Figs. 5 and 6, we randomly select two examples in the test
set and input the features into Speech2Stroke model, then the model outputs
the sequence of strokes. Due to it is complex to figure out the difference between
strokes, we manual decompile the strokes to characters. The results of Figs. 5
and 6 show that our model can capture the connection between strokes and
speech. Another interesting observation is that words can be determined with-
out an additional language model, which is an advantage of exploiting the inter-
nal structural information. As an example of Fig. 5, (investment) is a
pictophonetic word, whose internal structures can indicate the pronunciation
and context. Therefore, it can determine the (company), this is because
investment is semantically related to company.

5 Conclusion

In this paper, we propose a novel study of generating strokes of Chinese char-
acters from the audio of speech. The experiments have proved that the internal
structures of Chinese characters are strongly connected to speech. We believe
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that generating strokes gives a more comprehensive view of speech-strokes cor-
relation and can exploit the new tasks with internal structure in Chinese speech
research. In the future, we plan to explore the pix-based internal structural infor-
mation from speech.
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