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Abstract. Online social medias provide convenient platforms for infor-
mation spread, which makes the social network structure plays important
role on online information spread. Although online social network struc-
ture can be obtained easily, few researches use network structure infor-
mation in the cascade of the resharing prediction task. In this paper, we
propose a cascade prediction method (named by CPNSA) involves the
network structure information into cascade prediction of resharing task.
The method is based on the recurrent neural network, and we introduce a
network structure attention to incorporates the network structure infor-
mation into cascade representation. In order to fuse network structure
information with cascading time series data, we use network embedding
method to get the representations of nodes from the network structure
firstly. Then we use the attention mechanism to capture the structural
dependency for cascade prediction of resharing. Experiments are con-
ducted on both synthetic and real-world datasets, and the results show
that our approach can effectively improve the performance of the cascade
prediction of resharing.

Keywords: Cascade prediction + Deep learning + Network structure
influences - Recurrent neural network - Cascade behavior

1 Introduction

Online social networks provide a new type of means for information spreading,
which makes information spreading is affected by the online social networks. The
exposed users are more likely to spread information than the not exposed one,
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and weak ties play a more important role than strong ties [2]. The user more
likely takes retweet action when he received information from multiple social
neighbors, and the information spread farther and faster across clustered-lattice
networks than across random networks [5].

The research of modeling information spreading data can be used in many
fields, such as online social topic detection [4], online post’s influence evaluation
[37], public opinion monitoring [22], and marketing [23]. Information cascade
modeling and prediction is one of these important researches. In this paper, we
focus on the research of modeling information cascade, and improve the precision
of cascade prediction.

There are already so many methods have been proposed from different per-
spectives to solve the cascade modeling issues. The wide used models are inde-
pendent cascade model [6,8], linear threshold model [13], and their variants [3,9].
These models assume that the underlying diffusion pattern is known a priori,
while the real-world data may not be like this. The optimization methods of the
models are so complex that these models handle large-scale data difficultly. Point
process based models are proposed to learn the dependency between the users
who spread information [35,41], those models suppose the information spread
cascade sequence data following the point process. However, the effectiveness of
these models heavily depends on the carefully designed expressions of the point
process, and the optimization methods are complex and difficult to compute in
parallel. To solve these issues, researchers proposed neural network based mod-
els, which do not require an explicit priori assume and can process large-scale
data by using GPU Computing. According to the researches [19,24,29,34,40],
the neural network based models achieve better performances than the non-
neural-network based sequential approaches. Thus, we propose our model based
on the neural network to modeling and predicting information spreading cascade
sequence data in this paper.

Recently, the neural network based model have been proposed to process
the information spreading cascade modeling and predicting task. Wang et al.
[29] proposed an attention-based recurrent neural network model to learn the
cross-dependence influences between the users in information cascades’ sequence
data. But they did not actually use social network structure information. Wang
et al. [30] proposed a sequential neural network based model with social network
structure attention, to incorporate the social network structural information in
information spreading cascade predicting. But they only consider users’ neigh-
borhood information. Due to the sparsity of the network, many legitimate links
are missing [28]. As a result, their model is not sufficient to involve the network
structure information. And because their model make social network adjacency
matrix as input, the model can hardly process information spreading cascade
data across large-scale social network.

To solve these issues, in this paper, we use the social network embedding
method SDNE [28] to get the representations of nodes firstly. SDNE is proposed
by Tang et al., which can well maintain the local and global network struc-
ture by using the first-order and second-order proximity [27]. In this way, we
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can solve the missing links of social network issue, and reduce the calculations
of training by reducing the representation dimension of social network nodes.
Drawing on previous researches, we use the recurrent neural network to model
the information spreading cascade sequence data. Thus, we can get the hidden
representations of information spreading cascade sequences. To merge the social
network structure information with information spreading cascade sequential
information, we introduce a social network structure attention neural network
layer before the output neural network layer. The proposed model is recognized
as CPNSA, which is based on the recurrent neural network for cascade prediction
with social network structure attention.

In the proposed model, we use the obtained users’ social network embeddings
by the SDNE as query vectors. Thus, the model not only considers the histor-
ical sequential state of activated users but also various types of social network
structure information is transmitted during the cascade behavior modeling. In
this way, the model can predict the next activated user precisely. We apply the
proposed method on 6 synthetic datasets and the Digg real-world dataset with
three baseline methods to compare the prediction performance of next activated
users.

It is worthwhile to highlight several contributions of the CPNSA model here:

— We proposed a new model to deal with the modeling and predicting cas-
cades of information resharing tasks, the model is robust by using the neural
network.

— We consider social network structure information via attention mechanism in
cascades of information resharing prediction task, which makes the method
be able to capture nodes’ dependency in network structure.

— Recently proposed network embedding method SDNE [28] is used, which
makes the method be able to involve the first-order and second-order proxim-
ity between nodes. Thus, our model can deal with the missing links in social
network.

— Our model utilizes the result of social network embedding, which reduces
space complexity and more precise than the model using edges directly.

— CPNSA performs better than the other compared algorithms.

2 Related Work

In this part, we present recent researches related to our work, which mainly con-
tains the researches of network structure’s affection on the information diffusion
and neural network based models for information spreading cascade modeling.
Then we show our point of view on the existing information spreading cascade
modeling researches. All these observations indeed motivate the work of this
paper.

Social network structure plays important role on the information spreading,
recent researchers attempt to involve social network structure information in the
information spreading modeling tasks. Huang et al. [12] proposed a method uti-
lizes community information for influence maximization task, the experiments’
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results validate social network structure’s influence on the information spread-
ing. Li et al. [17] investigate the close correspondence between social tie in infor-
mation spreading process. Zhang et al. researched on the social influence and
found that the social users’ retweet actions are influenced by their close friends
in their social ego networks [39]. Weng et al. [31] used social network struc-
ture information to predict memes on the social medias, their proposed model
showed good performance on the prediction task of future popularity of a meme
given its early spreading patterns by using the social network community struc-
ture. Su et al. [26] worked on the social contagious research and showed that
there is an optimal social network community structure can maximizes spread-
ing dynamics. Nematzadeh et al. [21] investigated the social network community
structure effects on information spreading, and they found that global informa-
tion spreading speed can be enhanced by the strong communities in online social
network. Wu et al. [32] worked on the social network multi-community struc-
ture effects on information spreading research, and they found that the social
network multi-community structure can facilitate the online social information
spreading process. Qiu et al. [24] designed an end-to-end framework for feature
representation learning to predict social influence. However, there are few types
of research consider social network structure’s influence in online social network
information spreading cascade prediction models.

Types of research have been proposed to modeling the social network infor-
mation spreading, such as Matchbox model [25,38], multiple additive regression
trees (MART') model [33], maximum entropy classifier model [1], autoregressive-
moving-average (ARMA) model [20], factor graph model [36], conditional ran-
dom fields model [23] and so on. Because of the specific assumptions of the mod-
els, these models can hardly generalized to other datasets. And these models
process large-scale data difficultly because of the complex optimization meth-
ods. Recently, researchers attempt to use deep neural networks to address above
issues inspired by the recent success of deep neural networks in many other
applications. These works mostly use the recurrent neural network (RNN) to
learn the hidden dependences between the retweet users and time patterns of
spreading action. Finally, the models can get the representations of information
spreading cascade. Since these models do not require knowing the underlying
information spreading model, they can process real-world data robust. In this
paper, we also use the deep neural networks to build our model for dealing with
the cascade prediction task.

There are already few models based on the neural networks. Xiao et al. [34]
used two recurrent neural networks to build their model, one recurrent neural
network is used to interprets the conditional intensity function of a point process,
and the other recurrent neural network is used to learn the time patterns.

Zhang et al. [40] used neural network embedding method to transport the
tweet contents, the social network user interests, the similarity information
between the tweet content and social user interests, social user information and
author of tweet information into neural network representations. They proposed
an attention mechanism to encode the interests of the social users. Their model
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finally to predict whether a tweet will be retweeted by a user. Wang et al.
[29] showed that each cascade generally corresponds to a diffusion tree, causing
cross-dependence in cascade, so they proposed an attention-based recurrent neu-
ral network to capture the cross-dependence in cascade. Liu et al. [19] followed
independence cascade model, they defined parameters for every social user with
a latent influence vector and a susceptibility vector. The proposed model can be
used to learn information spreading cascade dynamics. However, these models
not actually use social network structure information. Wang et al. [30] proposed
a diffusion model based on recurrent neural network, and involved the social
network structure information by proposed a social network structure attention.
But their model take social network adjacent matrix as input, which make the
model can hardly process large-scale social network and difficult to handle the
missing links in social networks. Liu et al. [18] proposed a cascade prediction
model with community structure enhanced, but their model only focused on the
community structure information.

Thus, in this paper, we use social network embedding tool to get a low
dimensional representation for users, which can solve the missing links issue. We
choose SDNE [28] to get social network embedding, since SDNE can learn local
and global social network structure information. To merge the social network
structure information with the information spreading cascade sequence data, we
propose an social network structure attention layer to restrict the information
spreading cascade representation.

3 Proposed Method

3.1 Problem Definition

In this paper, we focus on the task of further take retweet action users prediction
and retweet time of the user prediction. The input data of our proposed model
are social network structure data and information spreading cascade sequence
data. The social network and information spreading cascade are defined as the
following:

Definition 1. Social Network. A social network contains nodes and edges, and
the edges represent the relationships between the nodes. We denote the set of
nodes as V, the set of edges as E and the social network as G = (V, E). Thus
the number of nodes is |V| and the number of edges is |E|, where | - | represent
the size of the set.

Definition 2. Information Spreading Cascade. A information spreading cas-
cade is a set of sequence information spreading data, it contains retweet users and
retweet time. We denote the cascade as S = {(t;,v;)|v; € V) t; € [0,4+00),t; <
tit1,1 = 1,2,..., N}, it start from a original post user and the post time, and
the retweet users and the corresponding retweet time are ascendingly ordered by
time. We denote N as the number of users take part in the information spreading
of the post, and denote the retweet data at time ¢; as (t;,v;), where v; represents
the i—th retweet user.
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Given the above definitions, we formulate our problem in the following part.
The input data of our proposed model contains a social network G = (V, E),
and a collection of F' information spreading cascades denote as @ = {5 f}?:l‘
For one of the observed cascade, we denote the sequence data up to the k—th
retweet behavior as S<j. Our proposed model take the data input and learn the
information spreading patterns. The trained model can be used to calculate the
probability of the next take retweet action user vyy; and the action time £, ;.
Thus, the probability of the next take retweet action user can be represented as

P(vrs1]S<k)-

3.2 Model Framework

Our proposed model is based on recurrent neural network, which can process
the large-scale data easily. And we proposed an new social network structure
attention to merge the social network structure information with the informa-
tion spreading cascade sequence data. The proposed model is named by CPNSA,
to solve the information spreading cascade prediction problem. The rationale of
our model is that we use the recurrent neural network to learn the historical
cascade sequential state of retweet users and retweet time. At the same time, we
use the social network structure attention to learn the social network structure’s
effects on the information spreading actions. Based on these ideas, we propose a
new deep learning-based cascade behavior modeling framework containing social
network structure information. The system framework of the method is shown in
Fig. 1. CPNSA mainly uses recurrent neural network (RNN) to model sequence
dependence. In order to incorporate the impact of network structure, we pro-
pose a social network structure attention model to involve both local and global
network structure.

Sequence Modeling. Our model employs two recurrent neural networks
(RNNs) to model the user sequence and time sequence respectively. In each
RNN;, a hidden state is used to memorize the summarized history. In each step
k of a cascade, the node vy is represented as a low-dimensional vector v € Rdv
through a mapping matrix We,,,,. The node embedding vector is represented
as vy = WL . with the dimension d,. Then, the hidden state representation

emuv
of nodes’ activity at step k can be h,(go) = RNN(vk,h;(Bl) by using RNN. In
addition, for the timing input ¢;, we using inter-event duration t; — tx_1 as the
temporal features t;. The hidden state representation of time sequence at step
k can be h,(fl) = RN N (ty, h,(clzl) by using RNN. h(()o) and hél) are initialized as
all zero vector.

Social Network Structure Attention. Considering that the influences of
nodes in a social network are different, it is important to identify those key
users and help extract representations of cascades. Wang et al. [30] proposed a
network structure attention based on RNN. However, the query vector in [30] was
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Fig. 1. Our recurrent neural network based model can be trained end-to-end. Users
are converted to low-dimensional vectors by the user embedding layer, then feed into
RNN network, and we can get hidden state vectors h(lo), hQO), s hzo). Time series are
extracted as inter-event duration, and feed into recurrent neural network, finally we
can get hidden state vectors h:(ll), hél), . hg). We can get users’ embedding vectors via
SDNE [28]. Then the hidden state vectors h%o), hgo), ey hzo) can be transformed by using
the social network structure attention layer, and concatenated with the hidden state
vectors of time features feed into linear and activation layers, we can get the cascade’s
representation. Then two prediction layers are used to output the predicted activated
node, and the associated timestamp. Cross-entropy and square loss are respectively
used for event type and timestamp prediction.

computed complexity and can only utilize oversimplified neighbor information
of network structure. Also that, many legitimate links are missing due to the
sparsity of networks, which causing the Wang’s model hardly model the data
precisely. As a result, our model CPNSA is developed to consider both local and
global social network structure information.

Thus, we use the social network embedding method SDNE [28] to represent
the frist-order and second-order proximity of users into low-dimensional vectors.
In this way, the global and local social network structure information can be
involved in the social network embeddings. Given the network G of the training
set and testing set, composed of N nodes and E edges, SDNE can learn highly
non-linear network structure by using multiple nonlinear mapping functions to
map the input data to a highly nonlinear latent space. SDNE also uses both
the second-order and first-order proximity to capture the global and local net-
work structure. Due to the sparsity of networks, SDNE imposes more penalty
to the reconstruction error of the non-zero elements than that of zero elements.
Fo(ll)owing SDNE, we minimize the loss function to obtain embeddings of nodes
H'*:
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L= EQnd + a‘clst + ﬂ‘creg (1)

following the SDNE’s definitions, we denote the Ls9,4 as the second-order prox-
imity loss, and the L4 as the first-order proximity loss. We denote the L4
as an L2-norm regularizer term in this paper. The a and the (§ represent the
balance parameters.

Given the social network nodes’ embeddings, we compute the effection of
node at step ¢ on the node at step k£ by using attention with the embedding of
h}(€0) as query vectors, like the Eq. (2):

o exp(hgco)A(hge))T)
Tt = Sk hO AmENT
Zj:lemp( i Al j 7))
(e)

where h;” is the social network structure embedding of node at step i, A is
a parameter matrix, 7 ; is effection of node at step i on node at step k. We

(2)

denote h,(f) as the final hidden representation of node sequence at step k, just
like Eq. (3):

k
b =3 g b (3)
=1

Next Activated Node and Time Generation. The hidden representation
of cascade at step k is given by merge the hidden representations h,(fl) and h,(f):

hi** = §(W7 (h{" @ h{’) + by,) (4)

where W is the weight, by, is the bias, @ is the connection operation and ()
represents the activation function, and in this paper we use the PReLLU activation
function.

Next Activated Node Generation. The model adds a linear layer and an
activation layer to project the hidden representation into the same space with
the node embedding showed in Eq. (5):

B = 6(W L0 5% + broae) %)

node

where W2 . is the weight, and by,eqe is the bias. Finally, we calculate cosine
similarities between the hidden vector h°* with the embedding vectors of all
the nodes, and use a softmax layer to generate the probability distribution of

next infected node as follow:

pZOde = softmax(hZOdeWT ) (6)

emuv

where pp°? € RN, N is the number of nodes.

Next Activated Time Generation. Based on the hidden representation of
cascade at step k, we can generate the time inter-event duration between step
k + 1 and step k by adding a linear layer following Eq. (7)

thor —te = Wi hi™ + b, (7)
where WtT is the weight, and by is the bias.
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3.3 Optimization

We introduce our learning process of the model as bellow. Given a collection
of cascades @ = {S f}?:v we treat the cascades are independent on each other.
Thus, we can learn the model by maximizing the joint log-likelihood of observing
Q@ in Eq. (8):

F Nf—l

Loss(Q) = " 37 togn((tes1,0ns1)lew s S<i) (®)

f=1 i=1

which is the sum of the logarithmic likelihood for all the individual cascades. We
exploit backpropagation through time (BPTT) for training our model. In each
training iteration, we vectorize activated nodes’ information as inputs, including
nodes’ embedding, nodes’ embedding calculated from network structure infor-
mation and inter-event duration temporal features. At last, we apply stochastic
gradient descent (SGD) with mini-batch and the parameters are updated by
Adam [14]. To speed up the convergence, we use orthogonal initialization method
in training process [10]. We also employ clips gradient norm for the parameters
to prevent overfitting.

4 Experimental Setup

In this section, we introduce the data sets, the comparison methods, and the
evaluation metrics used in the experiments to quantitatively evaluate the pro-
posed framework.

4.1 Data Sets

Our experiments are conducted on two types of data sets—synthetic data and
real-word data.

Synthetic Data. The data generation consists of two parts: network generation
and cascade generation. We use two network generation tools to generate net-
works. The first network generation tool is following from previous work [29,30],
we apply Kronecker graph model [16] to generate random network (RD) with
the parameter matrix [0.5 0.5; 0.5 0.5]. We construct a network with default
1024 users and avenge 20°. The second network generation tool is the LFR
benchmark proposed by Lancichinetti et al. [15], which is the popular used syn-
thetic networks containing community structure generator. We set the average
degree of nodes to be 20, the maximum degree of nodes to be 50, power-law
exponent for the degree distribution to be 2, power-law exponent for the com-
munity size distribution to be 1. Then we generate two networks contain 500
nodes (LFR500) and 1000 (LFR1000) nodes separately. In the cascade gener-
ation part, for each activated node, we set the activation time of an activated
user following a certain time distribution. Similar with Wang’s setup, we choose
two-time distributions for sampling: 1) mixed exponential (Exp) distributions,
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controlled by rate parameters in [0.01, 10]; 2) mixed Rayleigh (Ray) distribution,
controlled by scale parameters in [0.01, 10] [29]. The cascade generation progress
uses breadth-first to search for next activated node, and the progress will stop
until the overall time exceeds the threshold w or no node is activated. We set
w = 100. Finally, six synthetic data sets are generated by different combinations
of network scale and propagation time distributions, denoted by (RD, Exp),
(RD, Ray), (LFR500, Exp), (LFR500, Ray), (LFR1000, Exp), and (LFR1000,
Ray). We generate 20 cascades per node in each dataset and randomly pick up
80% of cascades for training and the rest for validation and test.

Real World Data. The Digg dataset proposed by Nathan et al. is used in this
paper. The dataset contains diffusions of stories as voted by the users, along
with friendship network of the users [11]. We drop the cascades with size larger
than 1,000, as the large cascade rarely occurs in practice and may dominate the
training process [29]. We randomly pick up 80% of cascades for training and the
rest for validation and test.

4.2 Comparison Methods

For comparison with the proposed model, we evaluate the following methods on
the data sets.

RNNPP [34]: The method of RNNPP takes a recurrent neural network (RNN)
perspective to point process and models its background and history effect. The
model can be used to predict event timestamp, main-type event and sub-type
event. In this paper, we consider nodes as main-types and do not use the sub-type
event prediction layer.

Recurrent Marked Temporal Point Processes (RMTPP) [7]: The
method of RMTPP views the intensity function of a temporal point process
as a nonlinear function of the history, and uses a recurrent neural network to
automatically learn a representation of influences from the event history. The
RMTPP can be applied in activated nodes timestamp and activated nodes pre-
diction for information cascade.

Sequential Neural Network with Structure Attention (SNNSA) [30]:
The SNNSA is a recently proposed method to model information diffusion, which
can capture the structural dependency among users by using attention mecha-
nism. However, the method only considers local network structure.

4.3 Evaluation Metrics

Our task is predicting next activated node, and next activated timestamp, given
previously cascade information. Since the number of potential nodes is huge,
we can regard the prediction task as a ranking problem with users’ transition
probabilities as their scores [29]. Each model outputs the infection probability
distribution over all users and the actual infected user is expected to get the
highest probability [30]. Thus, we evaluate the proposed method and comparison
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method by accuracy on top k (Acc@k) and mean reciprocal rank (MRR) which
are the widely used metrics. For timestamp prediction, we use the root-mean-
square error (RMSE) which measures the difference between the predicted time
point and the actual one.

5 Experimental Results

5.1 Synthetic Data Results

Table 1, Table 2, and Table 3 show the prediction comparisons of next activated
node on baselines and our proposed model respectively for ACCQ5, ACC@10,
and MRR metrics. As we can see, our proposed method CPNSA performs con-
sistently and significantly better than other baselines on Acc@5, Acc@10, and
MRR in all datasets. The results indicate that our proposed method can better
predict next activated node. It is interesting to see that SNNSA performs bet-
ter on (Rd, Exp) and (RD, Ray) datasets. This phenomenon demonstrates that
although SNNSA involves network structure information via attention mecha-
nism, the method does not fully consider network structure information, such as
community structure.

Table 1. Predictive performance ACCQ5 for predictions of next activation node on
baselines and our proposed model named by CPNSA.

Method | 500, Exp | 500, Ray | 1000, Exp | 1000, Ray | Rd, Exp | Rd, Ray
RNNPP |0.0793 0.1796 | 0.0756 0.1388 0.0800 |0.1337
RMTPP | 0.3486 0.3308 0.3443 0.3094 0.6807 |0.7144
SNNSA |0.3466 0.2851 0.2835 0.2357 0.7135 | 0.6566
CPNSA | 0.8268 |0.7912 |0.8930 0.8903 0.7428 |0.8569

Table 2. Predictive performance ACC@10 for predictions of next activation node on
baselines and our proposed model named by CPNSA.

Method | 500, Exp | 500, Ray | 1000, Exp | 1000, Ray | Rd, Exp | Rd, Ray
RNNPP |0.1253 0.2142 | 0.0937 0.1604 0.0395 | 0.1389
RMTPP | 0.4600 0.4508 0.4533 0.4117 0.7208 0.7925
SNNSA |0.4790 0.4217 | 0.4090 0.3515 0.8116 | 0.7792
CPNSA | 0.8367 |0.8144 |0.8950 0.8938 0.7825 0.8773

Table 4 shows the prediction comparisons of next activation timestamp on
baselines and our proposed model. The evaluation metric is RMSE. We can see
that all the methods perform similarity. The available implementation does not
allow SNNSA to compute the next activation time.
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Table 3. Predictive performance MRR for predictions of next activation node on
baselines and our proposed model named by CPNSA.

Method | 500, Exp | 500, Ray | 1000, Exp | 1000, Ray | Rd, Exp | Rd, Ray
RNNPP |0.0768 0.1566 | 0.0757 0.1215 0.0254 | 0.1312
RMTPP | 0.2303 0.2208 0.2263 0.2063 0.4982 0.4736
SNNSA |0.2339 0.1960 | 0.1910 0.1579 0.4764 | 0.4309
CPNSA |0.8222 |0.7921 | 0.8958 0.8896 0.7055 |0.8359

Table 4. Predictive performance RMSE for predictions of next activation time on
baselines and our proposed model named by CPNSA.

Method | 500, Exp | 500, Ray | 1000, Exp | 1000, Ray | Rd, Exp | Rd, Ray
RNNPP | 7.0813 0.2359 3.1739 0.1958 12.1832 |0.6288
RMTPP | 6.0980 |0.2344 |2.7998 0.1944 11.6363 | 0.5842
SNNSA |- - - - - -
CPNSA |6.5452 0.2829 3.0073 0.2317 10.9942 | 0.6866

5.2 Real Data Results

Table 5 shows the prediction comparisons of next activated node on Digg dataset.
We perform all the algorithms on NVIDIA Tesla 32G GPU server. SNNSA algo-
rithm runs out of memory. As we can see, CPNSA performs consistently best.
SNNSA uses the whole adjacency matrix of the network, while our model uses the
result of network embedding. As we know, the dimension of network embedding
is far less than the adjacency matrix of the network. Thus, the space complexity
of SNNSA is much larger than ours.

Table 5. Predictive performance of next activated node on Digg dataset.

Method | ACC@5 | ACC@10 MRR
RNNPP | 0.0088 |0.0107 0.0076
RMTPP | 0.0179 |0.0298 0.0161
SNNSA |- - -
CPNSA |0.7712 | 0.7644 |0.7437

Table 6 shows the prediction comparisons of next activated time on Digg
dataset. We use RMSE as the evaluation metric. All the methods perform sim-
ilarity. The results of SNNSA is not shown because of the not available imple-
mentation.
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Table 6. Predictive performance of next activated time on Digg dataset.

Method | RNNPP | RMTPP | SNNSA | CPNSA
30863.83 | 30862.12 30862.53

6 Conclusion

In this paper, we work on the cascade prediction task involving network struc-
ture information in the recurrent neural network framework (RNN) via attention
mechanism. Different from traditional modeling methods, RNN is a convenient
and effective tool for cascade predicting, avoiding strong prior knowledge on
diffusion model and being flexible to capture complex dependence in cascades.
Besides, recent researches find that network structure, such as community struc-
ture, always effects cascade behaviors. Thus we first embedding local and global
network structure into nodes’ representation vectors and using an attention
mechanism in RNN to involve network structure information for capture the
network structure effects in cascade.

We evaluate the effectiveness of our proposed model on both synthetic and
real datasets. Experimental results demonstrate that our proposed model outper-
forms state-of-the-art modeling methods at the next activated node prediction
task. Additionally, CPNSA performs better than SNNSA on both synthetic and
real datasets, implying that our method not just involves neighborhood structure
information, our method can also capture community structure effects.
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