
Delay Constraint Energy Efficient
Cooperative Offloading in MEC for IoT

Haifeng Sun1(B) , Jun Wang2, Haixia Peng3, Lili Song1, and Mingwei Qin4

1 School of Computer Science and Technology, Southwest University of Science
and Technology, Mianyang 621010, China

dr hfsun@163.com
2 Guangdong Key Laboratory of Intelligent Information Processing, Shenzhen

University, Shenzhen 518061, China
3 Department of Electrical and Computer Engineering, University of Waterloo,

Waterloo N2L 3G1, Canada
4 School of Information Engineering, Southwest University of Science

and Technology, Mianyang 621010, China

Abstract. Mobile edge computing (MEC) is a promising approach to
execute delay-sensitive and computation-intensive applications in the
resource-limited IoT mobile devices (IMDs) by offloading computing
tasks to MEC servers. In this paper, we propose a neighbor-aided coop-
erative offloading scheme with delay constraint to improve the energy
efficiency in MEC-based Internet of Things (IoT) networks. The network
consists of a target IMD with some IMD neighbors, and an access point
integrated with an MEC server. The latency-constrained tasks in the
IMD can be partially offloaded to and executed by the selected neigh-
boring IMD or the MEC server. Different from other works, our pro-
posed offloading scheme selects the most energy-efficient one from all
the neighboring IMDs as the offloading helper. Specifically, we formulate
an optimization problem to minimize the total energy consumption while
satisfying the computation delay constraint of each task, and obtain the
most energy-efficient neighbor with the optimized division of tasks by
solving the formulated problem. Moreover, we design an easy neighbor
selection scheme with lower time complexity by the weighted value of
the transmission rate for each neighbor. Numerical results show that the
proposed scheme outperforms benchmark schemes significantly in terms
of energy consumption and the supported maximum task length.

Keywords: Cooperative offloading · Delay constraint · Energy
efficiency · Mobile edge computing · Neighbor selection

This work was supported in part by Doctoral Scientific Research Foundation of
SWUST(16zx7106), Applied Basic Research Programs of Science & Technology Com-
mitte Foundation of Sichuan Province (2019YJ0309), Foundation of Sichuan Educa-
tional Committee (18ZB0611), and National Key Research & Development Project
(2016YFF0104003).

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2021

Published by Springer Nature Switzerland AG 2021. All Rights Reserved

H. Gao et al. (Eds.): CollaborateCom 2020, LNICST 349, pp. 671–685, 2021.

https://doi.org/10.1007/978-3-030-67537-0_40

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67537-0_40&domain=pdf
http://orcid.org/0000-0002-3581-0367
https://doi.org/10.1007/978-3-030-67537-0_40


672 H. Sun et al.

1 Introduction

Internet of Things (IoT) applications have been growing explosively, which are
usually delay-sensitive and computation-intensive, that require high processing
capacities within sustainable time constraints [14]. Although IoT mobile devices
(IMDs) have been becoming more and more powerful in the central processing
unit (CPU), which may still not capable of handling computation tasks within
limited time constraints. On the other hand, computation-intensive applications
require more energy consumption, which shortens the lifetime of MIDs obvi-
ously, and high energy consumption in IMDs poses a significant obstacle for user
experience. The traditional solution is to introduce cloud computing by offload-
ing computation tasks to the cloud platform [1], but which imposes tremendous
traffic load and induces high latency since data are sent to the cloud platform
from plenty of IMDs located in different zones.

Mobile edge computing (MEC), a key technology for the 5th generation (5G)
mobile networks, can relieve the shortcoming of centralized cloud computing
by pushing the computation capabilities to MEC servers located at network
edges, more closer to IMDs, that can provide sufficient computation capacities
for IMDs, as well as reduce the traffic burden in core networks [15]. Researchers
from academia to industry have been widely promoting MEC technologies to
save energy consumption while reduce execution delay of applications in IMDs.
Typically, an IMD can offload its computation tasks to an access point (AP)
integrated with an MEC server providing rich computation resources.

On the other hand, task offloading is not always beneficial in saving energy
of IMDs according to some research results [7]. If the IMD is far away from the
AP with worse communication links, some tasks even consume more energy if
they were offloaded to the MEC server than processed locally due to the com-
munication overhead in energy. But some works show that the relay node situ-
ated between the IMD and the AP can save the communication energy in total
[3,8,10].

For a common scenario of an IMD with some neighboring IMD nodes, select-
ing cooperative nodes for offloading from the neighbors with minimized energy
consumption is of great realistic meaning. In some cases, tasks can be partitioned
into many different segments for execution, thus many neighbor nodes can be
selected as offloading helpers. But in other cases, tasks are indivisible or can only
be partitioned into two segments for offloading, then only one neighbor node can
be selected as the offloading helper.

In this paper, we consider a scheme of selecting the most energy-efficient
cooperative neighbor node as the offloading helper with the execution delay con-
straint. Helped by the selected neighbor node, the minimized energy consump-
tion is realized among all the neighbor nodes of the IMD. To achieve the goal,
we first build a system model to introduce the neighbor-aided cooperative task
offloading processes, then formulate the energy consumption and the delay con-
straint in each process at local, at the cooperative node and at the MEC server,
respectively. Afterwards, we derive the optimization problem to minimize the
total energy consumption and prove it is convex, so it can be effectively tackled



Delay Constraint Energy Efficient Cooperative Offloading in MEC for IoT 673

by conventional methods like toolbox CVX [4]. At last, we perform the numer-
ical results to demonstrate the efficiency of the proposed scheme. In particular,
the main contributions of this paper can be summarized as follows.

1) We consider a scenario of a group of randomly located IMDs, and an AP inte-
grated with an MEC server providing rich computation resources. In which an
IMD can select one neighbor as the offloading helper due to the very limited
number of partitioned segments of its applications.

2) In order to prolong the lifespan of the IMDs, a cooperative scheme of selecting
the most energy-efficient neighbor as the offloading helper with execution
delay constraint is investigated. The system model and the corresponding
optimization problem are presented accordingly.

3) By solving the problem using CVX toolbox, the neighbor with the minimized
energy consumption is confirmed and the segment length for task offload-
ing in each process is decided. Extensive numerical experiments validate the
advantage of our proposed scheme in neighbor selection and segmentation of
tasks for energy saving.

The rest of this paper is organized as follows. In Sect. 2, we review the related
work. We specify the system model and problem formulation in Sect. 3. Section
4 describes the proposed energy-efficient problem and then we get the optimal
solution. Performance evaluations are illustrated in Sect. 5, and Sect. 6 concludes
this paper.

2 Related Work

Saving energy with low execution latency to satisfy the user quality of experience
is of great value in IMDs. Executing programs slowly in IMDs can save energy.
If the clock speed of the CPU is reduced by half, the execution time doubles,
but only one quarter of the energy is consumed [7]. However, it hardly satisfies
the delay constraint by many delay-sensitive applications. Sending computation
to another machine is not a new idea. For example, cloud computing can save
energy for mobile users through computation offloading [13]. But, in the IOT
circumstance with tremendous IMDs, the remote centralized cloud server will
induce bandwidth congestion and thus longer delay. The idea of MEC moves
cloud servers to the network edge, which is smart and effective in dealing with
the shortcoming of centralized cloud server schemes, and has been attracting
tremendous attention of researchers from academia to industry.

On the other hand, according to various cost/benefit studies, only if the
energy consumption for transmitting and receiving data is less than the execution
cost in the IMD system locally. Since the communication distance, the wireless
channel states, the length of task input-bits, the time constraint and so forth will
affect the offloading cost/benefit jointly, energy efficient offloading to optimize
the resource allocation is one of the key problems in MEC.

Some research works reveal that, cooperative offloading can save the energy
consumption aided by neighbor nodes than offloading the partial task directly



674 H. Sun et al.

Fig. 1. System model.

to the MEC server especially in bad communication conditions. The authors
in [10] study an energy-efficient computation offloading scheme with specialized
cooperative nodes, in which N IMDs, M cooperative edge nodes and one cloud
server are considered. Tasks in IMDs can be offloaded to one of the edge nodes
or forwarded to the cloud server directly decided by the formulated energy opti-
mization problem. Cao et al. [3] introduce another scenario of one IMD and
an AP with a neighboring node located between them as the helper to assist
the computation task offloading with energy efficiency, in which time is divided
into four slots for cooperation over the whole block of task computation pro-
cess. Different from these works, in this paper, we consider a scenario of an IMD
surrounded by many neighboring IMD nodes, and the best energy efficient one
will be selected as the cooperative offloading helper due to the tasks can only be
partitioned into limited segments in the applications.

3 System Model

In this section, we introduce a scenario of a target IMD surrounded by many
neighboring IMD nodes in the MEC-based IoT network, then formulate the
energy consumption and delay constraint in local processing, neighbor node pro-
cessing and MEC processing, respectively.

As shown in Fig. 1, we consider a network consisting of an AP integrated
with an MEC server providing rich computation resources, one IMD and a set of
K neighboring IMDs of it as cooperative candidates for helping offload compu-
tation tasks to the MEC server. Since some computation tasks are indivisible or
can only be partitioned into a very limited number of segments for execution, we
consider the case that only one neighbor node is selected as the offloading helper,
achieving the minimized energy consumption with delay constraint. Each seg-
ment of the task can be processed locally, offloaded to one of its neighbor nodes
through D2D links or to the MEC server directly through cellular links for execu-
tion. Further more, segments offloaded to the neighbor node can continually be



Delay Constraint Energy Efficient Cooperative Offloading in MEC for IoT 675

offloaded to the MEC server through cellular links. After the task is performed
at the neighbor or the MEC server, the result will be sent back to the IMD.

In the system, the D2D links and the cellular links are considered to be
deployed over different frequencies, so the D2D links and the cellular links do
not interfere with each other [6,12]. Same with many other research works, we
suppose the D2D links and the cellular links are working with pro-defined fix
bandwidth [9]. We also suppose channels from IMDs to the AP follow the quasi-
static block fading. That is, the channel state remains unchanged during the
offloading period of one computational segment [5]. In addition, costs of delay
and energy consumption for result downloading are not taken into consideration
since the result has much less length [11].

We suppose a set of neighbor nodes of the IMD in the network are denoted by
K = {1, 2, . . . ,K}, and the IMD has the computation tasks of L > 0 input-bits
with the delay constraint T ≥ 0.

Consider the case of partial offloading, a task of L input-bits of the IMD
can be partitioned into four different segments. Let lu ≥ 0, lsu ≥ 0, lk ≥ 0 and
lsk ≥ 0 denote the number of segment input-bits for local computing in the IMD,
offloading to the MEC server from the IMD, offloading to a neighbor node k,
k ∈ K of the IMD, and offloading to the MEC server from k, respectively. Then
we have

L = lu + lsu + lk + lsk. (1)

Note that the segment of lk bits executed on the node k, and the other
segment of lsk bits offloaded from k to the MEC server are both offloaded from
the IMD to its neighbor node k. Then, the total offloaded bits from the IMD to
its neighbor node k is lk + lsk.

The whole processes of task computation and offloading in the system can
be summarized into three stages. The first stage is local processing, the second
stage is neighbor node processing, and third stage is MEC server processing.
In the following section, we will formulate the energy consumption and delay
constraint for each stage in detail.

3.1 Local Processing

In the stage of local processing, it includes computation for the partial task of
lu bits at the local IMD, the offloaded partial task of lk + lsk bits to its neighbor
node k, and the offloaded partial task of lsu bits to the MEC server from the
IMD.

Local Computing. Let cu denote the number of CPU cycles for computing
each task input-bit, fu denote the maximum computation capability (in CPU
cycles/s) at the IMD, and f ′

u denote the computation capability on demand,
respectively. Then the computation latency TC

u in the IMD is

TC
u =

culu
f ′

u

. (2)



676 H. Sun et al.

Since the execution of computation tasks is constrained within the delay
constraint T , each part of the execution tasks is requested to be finished within
T . As a result, the time for executing the computation task with lu input-bits
need to satisfy the requirement TC

u ≤ T . Substituting (2) into the requirement
and we get culu

f ′
u

≤ T . Considering f ′
u ≤ fu, then culu

fu
≤ culu

f ′
u

, and thus we get
the delay constraint as

culu
fu

≤ T. (3)

Let γu denote the effective capacitance coefficient of CPU at the IMD [2].
Then the energy consumption EC

u for local computing at the IMD is [11,16]

EC
u = γucuf ′

u
2
lu. (4)

From (2) and (4) we get, the longer computation latency, the less energy con-
sumption for local computing. In order to get the minimized energy consumption
for the local execution of lu bits, we set TC

u with the delay constraint T , that is
T = TC

u = culu
f ′
u

, and we get f ′
u = culu

T , then (4) can be denoted by

EC
u =

γucu
3lu

3

T 2
. (5)

Computation Offloading to Neighbor Node. Before a neighbor node k
computing the offloaded task bits, the IMD will firstly offload lk + lsk task bits
to the node k with transmit power Pu,k ≥ 0 through the D2D link. Let hu,k ≥ 0
denote the channel power gain from the IMD to k, and B1 the channel band-
width. Accordingly, the achievable data rate (in bits/s) for task offloading from
the IMD to its neighbor node k is

r(Pu,k) = B1 log2 (1 +
Pu,khu,k

σ2
k

), (6)

where σ2
k denotes the noise power at k.

Then the offloading delay TO
u,k and the energy consumption EO

u,k from the
IMD to its neighbor node k are given respectively by

TO
u,k =

lk + lsk
r(Pu,k)

, (7)

EO
u,k =

Pu,k(lk + lsk)
r(Pu,k)

. (8)

Computation Offloading to MEC. Suppose the partial task offloaded from
the IMD to the MEC server through the cellular link with transmit power Pu,s ≥
0, and hu,s ≥ 0 denote the channel power gain from the IMD to the MEC server,
then the achievable data rate (in bits/s) for task offloading from the IMD to the
MEC server is given by



Delay Constraint Energy Efficient Cooperative Offloading in MEC for IoT 677

r(Pu,s) = B2 log2 (1 +
Pu,shu,s

σ2
s

), (9)

where σ2
s denotes the noise power at the MEC server and B2 denotes the

cellular channel bandwidth, respectively.
Accordingly, The offloading delay and the energy consumption from the IMD

to the MEC server are thus

TO
u,s =

lsu
r(Pu,s)

, (10)

EO
u,s =

Pu,sl
s
u

r(Pu,s)
, (11)

3.2 Neighbor Node Processing

The stage of neighbor node processing includes computation for the partial task
of lk bits in the neighbor node k and offloading lsk bits to the MEC server from
k.

Computing at Neighbor Node. Let ck denote the number of CPU cycles
for computing each task input-bit, γk denote the CPU effective capacitance
coefficient, fk denote the maximum computation capability (in CPU cycles/s),
and f ′

k denote the computation capability on demand at the neighbor node k,
respectively. Thus, the computing time TC

k at the neighbor node k is expressed
as

TC
k =

cklk
f ′

k

. (12)

The delay constraint on the neighbor node includes the transmit delay and
the computing delay. Then, we have

TO
u,k + TC

k ≤ T. (13)

Substituting (7) and (12) into (13), and because f ′
k ≤ fk, similarly as in (3),

we get the delay constraint as

lk + lsk
r(Pu,k)

+
cklk
fk

≤ T. (14)

Similarly as in (5), the energy consumption EC
k for local computing at the

neighbor node k is

EC
k =

γkck
3lk

3

(T − TO
u,k)2

. (15)

Substituting (7) into (15) we get



678 H. Sun et al.

EC
k =

r(Pu,k)2γkck
3lk

3

(Tr(Pu,k) − (lk + lsk))2
(16)

Computation Offloading. Suppose the partial task is offloaded from a neigh-
bor node k through the cellular link with transmit power Pk,s ≥ 0, and hk,s ≥ 0
denote the channel power gain from the node k to the MEC server. The achiev-
able data rate (in bits/s) for task offloading from k to the MEC server is thus

r(Pk,s) = B2 log2 (1 +
Pk,shk,s

σ2
s

), (17)

Accordingly, the offloading delay and the energy consumption for task offload-
ing from k to the MEC server can be separately expressed as

TO
k,s =

lsk
r(Pk,s)

, (18)

EO
k,s =

Pk,sl
s
k

r(Pk,s)
. (19)

3.3 MEC Server Processing

Since the purpose of proposed scheme is to minimize the energy consumption
in the MEC-based IoT network and the MEC server has sufficient computation
resources in general, the energy consumption of the computation for the offloaded
segments at the MEC server is not take into consideration. Therefore, the stage
of MEC server processing only includes the offloaded task computing.

We also suppose the partial tasks offloaded to the MEC server from the IMD
and its neighbor node do not need to wait for execution in queue. Let cs denote
the number of CPU cycles for computing each task input-bit, γs denote the CPU
effective capacitance coefficient, fs denote the maximum computation capability
(in CPU cycles/s) at the MEC server, and f ′

s denote the computation capability
on demand, respectively. Then, we have the time that the MEC server computes
the partial tasks offloaded from the IMD and k as

TC
u,s =

csl
s
u

f ′
s

, (20)

TC
k,s =

csl
s
k

f ′
s

. (21)

Similarly as in (3) and (13), the delay constraint at the MEC server includes
the offloading delay and the computing delay for tasks offloaded from the IMD
and from the neighbor node k, respectively. Then, we have

TO
u,s + TC

u,s ≤ T. (22)



Delay Constraint Energy Efficient Cooperative Offloading in MEC for IoT 679

TO
u,k + TO

k,s + TC
k,s ≤ T. (23)

Substituting (10) and (20) into (22), and substituting (7), (18) and (21) into
(23), respectively. Thus we get

lsu
r(Pu,s)

+
csl

s
u

fs
≤ T, (24)

lk + lsk
r(Pu,k)

+
lsk

r(Pk,s)
+

csl
s
k

fs
≤ T. (25)

4 Problem Formulation and Proposed Offloading
Approach

In this section, we formulate an energy-efficient problem with delay constraint
for the neighbor-aided cooperative MEC-based IoT network, then we get the
optimal solution for the problem, and propose an offloading scheme in selecting
the cooperative neighbor with minimized energy consumption. We also present
a simple weighted value cooperative neighbor selection scheme to reduce the
complexity as a comparison.

4.1 Problem Formulation and Optimal Solution

As the MEC server has reliable power supply, we focus on minimize the total
energy consumption caused by offloading and computation at IMDs subjected to
the task’s delay constraint T . The formulation also optimizes the task partition.

We denote the total energy consumption cooperated by a neighbor node k
as Ek, then

Ek = EC
u + EC

k + EO
u,k + EO

u,s + EO
k,s. (26)

Substituting (5),(8),(16),(11) and (19) into (26), we get

Ek =
γucu

3lu
3

T 2
+

r(Pu,k)2γkck
3lk

3

(Tr(Pu,k) − (lk + lsk))2

+
Pu,k(lk + lsk)

r(Pu,k)
+

Pu,sl
s
u

r(Pu,s)
+

Pk,sl
s
k

r(Pk,s)
.

(27)

We design a variable of the IMD’s task partition vector l � [lu, lsu, lk, lsk]. The
delay constraint energy minimization problem is then formulated as

(P1) : min
l

Ek (28a)

s.t. T ≥ 0, (28b)
lu ≥ 0, lsu ≥ 0, lk ≥ 0, lsk ≥ 0, (28c)
(1), (3), (14), (24) and (25),



680 H. Sun et al.

where (28c) is the constant of delay constraint required by tasks at the IMD.
Since lk

3

(lk+lsk))
2 is convex with lk ≥ 0 and lk + lsk > 0, then the term

r(Pu,k)
2γkck

3lk
3

(Tr(Pu,k)−(lk+lsk))
2 in the objective function is jointly convex with respect to

lk ≥ 0 and lk+lsk
r(Pu,k)

< T . So we get (P1) is convex. Thus (P1) can be optimally
solved by the using convex optimization toolbox CVX [4].

By solving problem (P1), we get the minimized energy consumption of each
neighbor node for the neighbor-aided cooperative offloading progress, and then
we can get one neighbor node with the minimized energy consumption among
them. But as we know, the computation complexity is high to solve the convex
optimization problem. We hereby design a weighted value cooperative neighbor
selection scheme.

4.2 Weighted Value Cooperative Neighbor Selection Scheme

For neighbor-aided cooperative offloading, the energy consumption for compu-
tation in each neighbor differs little since the computing power of IMDs are
similar for many cases, while the main difference for energy consumption is in
the process of offloading, so we can only consider the energy consumption for
the offloading process. From (8) and (19) we conclude that the offloading energy
consumption is proportional to the transmit power and the length of offloading
bits, while inversely proportional to the data rate. Suppose the IMDs have iden-
tical transmit power, then we can define the weighted value cooperative neighbor
selection scheme as

k∗ = arg min
k∈K

(αr(Pu,k) + (1 − α)r(Pk,s)), 0 ≤ α ≤ 1, (29)

where α is the coefficient to evaluate the importance between the communi-
cation rates from the IMD to its neighbor node k, and from the neighbor node
k to the MEC server. The time complexity of the scheme is O(n).

Apparently, the vector l and energy consumption E∗ of the neighbor node
k∗ confirmed by (29) can also be got by solving problem (P1).

4.3 Maximum Task Length

The maximum task length discloses how many bits of a task are supported within
the given delay constraint T in the MEC-based IoT network. The maximum
length of the task input-bits for the neighbor node k of the IMD will be derived
when the task is executed at local, at the neighbor node and at the MEC server,
simultaneously. Because in this case, the three nodes can fully take advantage



Delay Constraint Energy Efficient Cooperative Offloading in MEC for IoT 681

of their available communication and computation resources. We then formulate
the problem as

(P2) : max
l

lu + lsu + lk + lsk (30a)

s.t. (3), (14), (24), (25), (28b) and (28c)

Note problem (P2) is a linear program and can thus be efficiently solved for
every neighbor node k via standard concave optimization techniques, and hereby
we can get a neighbor with the maximum task length. The maximum length of
the task input-bits for the neighbor k∗ confirmed by (29) can also be got.

5 Numerical Results

In this section, we provide the numerical results to evaluate the performance of
the proposed two neighbor-aided cooperative offloading schemes compared with
two benchmark schemes. The proposed offloading schemes include

1) Offloading with the best neighbor: The cooperative neighbor with the mini-
mized energy consumption and the maximum task length in the system among
all the neighbor nodes of the IMD are selected by solving problem (P1) and
problem (P2) for each node, separately.

2) Offloading with the neighbor of weighted value: The cooperative neighbor k∗

is selected by solving (29), and the minimized energy consumption as well as
the maximum task length in the system are got by solving problem (P1) and
problem (P2) by setting k = k∗, separately.

The benchmark schemes are

1) Local computing: The IMD executes whole computation tasks locally by itself.
We can get the maximum length of task input-bits by solving Tfu

cu
from (3),

and get the energy consumption EC
u = γucuf2

uL by Eq. (5).
2) Offloading without neighbor: The IMD offloads computation tasks to the

MEC server without corporation of a neighbor. Like the scheme of offloading
with the best neighbor, this scheme corresponds to solving problem (P1) and
problem (P2) by setting lk + lsk = 0 to get the minimized energy consumption
and the maximum task length, separately.

In the simulation set-up, we consider the neighbors of the IMD are randomly
located within the area of a rectangular coordinate system in order to get the
influence of the different locations of the neighbor nodes. Let (cx

k, cy
k) denote

the location coordinates in X-axis and Y -axis of a node k in the rectangular
coordinate system. Then we set 0 ≤ cx

k ≤ 500m and 0 ≤ cy
k ≤ 200m. Therefore,

the whole rectangular area is evenly divided into a grid network of 26∗11 with the
IMD located at (100, 0) and the AP at (400, 0), separately. At last, we randomly



682 H. Sun et al.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.5

1

1.5

2

2.5

Delay constraint, T (sec)

M
ax

im
um

 le
ng

th
 o

f 
ta

sk
 in

pu
t−

bi
ts

 (
M

bi
ts

) Local computing only
Offloading without neighbor
Offloading with the neighbor of weighted value
Offloading with the best neighbor

Fig. 2. Average maximum length of task input-bits versus the delay constraint T .

set 20 neighbor nodes located at different intersections in the whole rectangular
areas.

Let d denote the distance from the transmitter to the receiver, then the
path-loss between any two nodes is β0(d/d0)−ξ, where β0 = −60 db corresponds
to the path-loss at the reference distance of d0 = 10 m, and ξ = 3 is the
path-loss exponent. Furthermore, we set B1 = B2 = 1 MHz, σ2

k = σ2
s = −70

dBm, cu = ck = cs = 103 cycles/bit, Pu,k = Pu,s = Pk,s = 40 dBm [3],
γu = γk = 10−26, fu = fk = 1 GHz and fs = 5 GHz.

Figure (2) shows the average maximum length of task input-bits (Mbits)
versus the delay constraint T . It is observed that the maximum length of task
input-bits increases as the delay constraint becomes longer. In detail, the scheme
of offloading with the best neighbor supports the maximum length of task input-
bits compared with other schemes. The scheme of the neighbor selected by the
weighted value is better than the other two benchmark schemes of local comput-
ing and offloading without neighbor aiding. The reason is the adopted offloading
strategy can assist the IMD by executing more extra parts of the tasks within the
delay constraint. Compared the scheme of local computing only with the scheme
of offloading without neighbor, the latter one can execute more data within the
delay constraint. Tasks can not be finished within the delay constraint when the
length of task input-bits exceeds the supported maximum length, which means
that the proposed scheme of offloading with the best neighbor supports the
longer maximum length as well as the bigger computation capacities.

Figure (3) shows the average minimum energy consumption versus the delay
constraint T with L = 0.02 Mbits. The results demonstrate that the minimum
energy consumption decreases with the prolonged delay constraint. The pro-
posed scheme of offloading with the best neighbor consumes the least energy for
all cases, while the scheme of local computing only consumes the most energy
especially when the delay constraint is smaller. The differences between schemes
become smaller as the delay constraint becomes longer, and eventually almost



Delay Constraint Energy Efficient Cooperative Offloading in MEC for IoT 683

0.02 0.03 0.04 0.05 0.06 0.07
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Delay constraint, T (sec)

A
ve

ra
ge

 e
ne

rg
y 

co
ns

um
pt

io
n,

 (
Jo

ul
e)

Local computing only
Offloading without neighbor
Offloading with the neighbor of weighted value
Offloading with the best neighbor

Fig. 3. Average minimum energy consumption versus delay constraint T .

keep in with the same scale, due to more tasks will be executed locally for the
slack long delay constraint.

0.05 0.1 0.15 0.2 0.25 0.3
0

0.5

1

1.5

2

2.5

3

Length of task input−bits (Mbits)

A
ve

ra
ge

 e
ne

rg
y 

co
ns

um
pt

io
n,

 (
Jo

ul
e)

Local computing only
Offloading without neighbor
Offloading with the neighbor of weighted value
Offloading with the best neighbor

Fig. 4. Minimum energy consumption versus the length of task input-bits (Mbits).

Figure (4) shows the minimum energy consumption versus the length of task
input-bits (Mbits) with the delay constraint T = 0.3s. The simulation results
demonstrate that the minimum energy consumption grows exponentially with
the prolonged length of task input-bits, and the proposed scheme of offloading
with the best neighbor out performs the others at all cases with lower energy
consumption. When the task length is small, the scheme of local computing
achieves the similar performance compared with others due to the task can be
finished with lower CPU execution frequency within the delay constraint. But
when the task length increases, local computing will cost more energy for the



684 H. Sun et al.

increased CPU execution frequency, while the proposed scheme can offload some
parts of the tasks to its neighbor and the MEC server for execution.

6 Conclusion

In this paper, we have investigated how to select the most efficient neighbor for
cooperative offloading with delay constraint in a common scenario of a target
IMD neighbored with some IMDs in the MEC-based IoT network. After building
the system model, we formulate the energy consumption and delay constraint
problems in local processing, neighbor node processing and MEC processing,
respectively. Hereby, an energy-efficient problem with delay constraint for the
neighbor-aided cooperative IoT edge network is formulated. By solving the opti-
mization problem, the neighbor of the target IMD with the least energy consump-
tion is selected. We also present a simple weighted value cooperative neighbor
selection scheme to reduce the complexity as a comparison. Moreover, in order
to get the supported maximum task length in the MEC-based IoT network, we
formulate the task length optimization problem. Numerical results indicate that
the proposed scheme outperforms the benchmark schemes significantly in terms
of the supported maximum task length and the energy efficiency, which is fea-
sible and effective in the MEC-based IoT. In the future, we will research the
scheme of selecting a set of neighbors with energy efficiency and execution delay
constraint.

References

1. Barrameda, J., Samaan, N.: A novel statistical cost model and an algorithm for
efficient application offloading to clouds. IEEE Trans. Cloud Comput. 6(3), 598–
611 (2018)

2. Burd, T.D., Brodersen, R.W.: Processor design for portable systems. J. VLSI Sig.
Process. Syst. Sig. Image Video Technol. 13(2), 203–221 (1996)

3. Cao, X., Wang, F., Xu, J., Zhang, R., Cui, S.: Joint computation and communica-
tion cooperation for energy-efficient mobile edge computing. IEEE Internet Things
J. 6(3), 4188–4200 (2019)

4. Grant, M., Boyd, S.: CVX: Matlab software for disciplined convex programming,
version 2.1 (2014). http://cvxr.com/cvx

5. Guo, S.T., Liu, J.D., Yang, Y.Y., Xiao, B., Li, Z.T.: Energy-efficient dynamic
computation offloading and cooperative task scheduling in mobile cloud computing.
IEEE Trans. Mob. Comput. 18(2), 319–333 (2019)

6. Hu, G., Jia, Y., Chen, Z.: Multi-user computation offloading with D2D for mobile
edge computing. In: 2018 IEEE Global Communications Conference (GLOBE-
COM), pp. 1–6 (2018)

7. Kumar, K., Lu, Y.H.: Cloud computing for mobile users: can offloading computa-
tion save energy? Computer 4, 51–56 (2010)

8. Ning, Z., Dong, P., Kong, X., Xia, F.: A cooperative partial computation offloading
scheme for mobile edge computing enabled internet of things. IEEE Internet Things
J. 6(3), 4804–4814 (2019)

http://cvxr.com/cvx


Delay Constraint Energy Efficient Cooperative Offloading in MEC for IoT 685

9. Peng, H., Ye, Q., Shen, X.: Spectrum management for multi-access edge computing
in autonomous vehicular networks. IEEE Trans. Intell. Transp. Syst. 1–12 (2019)

10. Vu, T.T., Huynh, N.V., Hoang, D.T., Nguyen, D.N., Dutkiewicz, E.: Offloading
energy efficiency with delay constraint for cooperative mobile edge computing net-
works. In: IEEE Global Communications Conference. IEEE, New York (2018)

11. Wang, J., Feng, D., Zhang, S., Tang, J., Quek, T.Q.S.: Computation offloading for
mobile edge computing enabled vehicular networks. IEEE Access 7, 62624–62632
(2019)

12. Wu, Y., Chen, J.C., Qian, L.P., Huang, J.W., Shen, X.: Energy-aware cooperative
traffic offloading via device-to-device cooperations: an analytical approach. IEEE
Trans. Mob. Comput. 16(1), 97–114 (2017)

13. Yang, K., Ou, S., Chen, H.H.: On effective offloading services for resource-
constrained mobile devices running heavier mobile Internet applications. IEEE
Commun. Mag. 46(1), 56–63 (2008)

14. Zhang, N., et al.: Physical layer authentication for internet of things via WFRFT-
based Gaussian tag embedding. IEEE Internet Things J. https://doi.org/10.1109/
JIOT20203001597

15. Zhang, N., Wu, R., Yuan, S., Yuan, C., Chen, D.: RAV: relay aided vectorized
secure transmission in physical layer security for internet of things under active
attacks. IEEE Internet Things J. 6(5), 8496–8506 (2019)

16. Zhang, W., Wen, Y., Guan, K., Kilper, D., Luo, H., Wu, D.O.: Energy-optimal
mobile cloud computing under stochastic wireless channel. IEEE Trans. Wireless
Commun. 12(9), 4569–4581 (2013)

https://doi.org/10.1109/JIOT20203001597
https://doi.org/10.1109/JIOT20203001597

