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Abstract. The mobile edge computing (MEC) paradgim is evolving as
an increasingly popular means for developing and deploying smart-city-
oriented applications. MEC servers can receive a great deal of requests
from equipments of highly mobile users, especially in crowded scenes,
e.g., city’s central business district (CBD) and school areas. It thus
remains a great challenge for appropriate scheduling and managing
strategies to avoid hotspots, guarantee load-fairness among MEC servers,
and maintain high resource utilization at the same time. To address this
challenge, we propose a coalitional-game-based and location-aware app-
roach to MEC Service migration for mobile user reallocation in crowded
scenes. Our proposed method includes multiple steps: 1) dividing MEC
servers into multiple coalitions according to their inter-euclidean distance
by using a modified k-means clustering method; 2) discovering hotspots
in every coalition area and scheduling services based on their correspond-
ing cooperations; 3) migrating services to appropriate edge servers to
achieve load-fairness among coalition members by using a migration bud-
get mechanism; 4) transferring workloads to nearby coalitions by back-
bone network in case of workloads beyond the limit. Experimental results
based on a real-world mobile trajectory dataset for crowded scenes, and
an urban-edge-server-position dataset demonstrate that our method out-
performs existing approaches in terms of load-fairness, migration times,
and energy consumption of migrations.
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Crowded scenes · Hotspot discovery · Mobile trajectory · User
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1 Introduction

Mobile edge computing (MEC) refers to the concept of processing data at mobile
edge network. The edge is similar to a distributed cloud with proximity close
to end users. It is usually built upon small-scale data centers close to the data
sources to guarantee low latency, high reliability, and scalability [8,11]. As shown
in Fig. 1, services in edge nodes are situated close to users and an edge server
(ES) can only contact the users that fall into its coverage area. Due to user
mobility and the constraint of the user-server proximity, in practice, server-side
services need to be migrated from their original nodes to new ones to main-
tain the user-server proximity. In reality, population in motion in crowded areas,
e.g., supermarkets, can lead to unbalanced distribution of highly mobile users
[20], and thus edge servers can receive quite different amounts of requests from
users even when they are located at nearby areas [21]. For example, a sub-
way station usually attracts a lot of users while a park or a bookstore near
the subway usually attracts much fewer. Consequently, edge servers deployed
in the station can show higher load than those in the park or bookstore. A
smart strategy that is capable of handling user mobility and migrating tasks
from highly-loaded servers to ones with low load is thus in high need [2]. An
ES should deal with load peaks and very spiky patterns s. Moreover, MEC
servers are generally equipped with lightweight computing components and lim-
ited storage. This exacerbates the challenge to avoid hotspot effects on ESs, and
load-fairness among MEC servers, as well as appropriate utilization rates of edge
servers [1,2]. Thus, user reallocation from highly-loaded ES to lowly-loaded ES
should be performed by service migration [3,5]. To overcome these limitations,
we propose a novel coalitional game-theoretic approach to location-aware MEC
service migration (CGL-SM) for crowded scenes. It includes a coalition forma-
tion strategy and mechanisms for load-balancing. The coalitions are formed by
using a modified k-means algorithm, where its payoff is proportional to load-
fairness of the ESs in the corresponding coalition. Load-balancing is maintained
through service migrations among ESs in the coalition and avoiding hotspots by

Fig. 1. Mobile users upon MEC Sys-
tem

Fig. 2. Mobile User’s Service Migration
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using an ES workloads detection mechanism. To validate our proposed method,
we carry out a case study based on a well-known edge users allocation dataset
(EUA dataset) [25] and a crowded-scene mobile user trajectory dataset [29]. We
show that our method beats its competitors in terms of: 1) workload-fairness of
the involved ESs in highly-crowded and highly-overloaded situations; 2) number
of service migrations performed; 3) energy consumption of migrations.

2 Related Work

Most existing works in this direction focus on the edge user allocation problem
in the MEC environment [7,15,19,27], or location prediction of mobile users for
MEC systems [17,21,22]. Some work [3] has researched crowded scenes from the
perspective of computer graphics. However, how to migrate services upon MEC
infrastructures in crowded scenes is less considered and studied. Robicquet et al.
[28,29] provided a mobile trajectory dataset in crowded scenes by drone in the
Stanford campus, as shown in Fig. 4 and 5. Some work has researched hotspot
discovery issues. For example, Anchuri et al. [23] have researched hotspot dis-
covery problem in service-oriented architecture, however, it is not in a specific
scenario. Huang et al. [14] have researched the roadside hotspot in edge comput-
ing based on internet of vehicle from the perspective of protecting security from
attacks, and their method is based on a Stackelberg game approach. This is the
most similar research that is also focusing hotspot issues in edge, however, their
proposed method is mainly for the purpose of avoiding internet attacks and thus
service migration is not considered.

In a crowded scene, a single MEC server is inadequate and a group of MEC
servers is usually required for cooperative tasks [12]. Generally, user requests and
mobile resource allocation technology could be applied in this scenario [23,30].
A number of works considered focus on D2D communications to appropriately
allocate user requests with multiple MEC servers. For example, He et al. [13]
considered using D2D communication for task offloading and resource manage-
ment in a multi-user and distributed mobile edge cloud resource environment.
However, in a highly mobile environment, D2D is not a mainstream solution due
to the fact it tends to lose connectivity stability when load is high [4].

Recently, service migration is regarded as a highly effective means for load
balancing, and task offloading with mobile users. As can be seen in the example
illustrated in Fig. 2, a mobile user moves freely and it is assumed generally that
their moving area is a circle (note that this assumption is widely used in related
works [19,27]). By radio access network, edge servers could cooperate to execute
tasks collectively. For example, Pang et al. [7] developed a loosely coupled fog
radio access network model leveraging low-end infrastructures such as small cells’
power to achieve ultralow latency by exploiting the joint-edge-computing and
near-range communications techniques. Some incooperative-game-based model
is usually used for user reallocation or resource reallocation. He et al. [19] pro-
posed a game-theoretic approach that formulates the edge users allocation prob-
lem as a potential game. Decreasing System-cost is taken as the metric for service
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migrations among edge servers, and the less system-cost is better. Wang et al.
[15] formulated the service migration problem as a Markov decision process.
Their formulation captured general cost models and provided a mathematical
framework to design optimal service migration policies. Locations of mobile users
in service migration are also researched frequently. Wu et al. [20] promoted a
user-centric location prediction approach by leveraging users’ social information.
They considered that each user is with private location information that is not
shared to others, and proposed a factor-graph-learning model that takes into
account not only user’s social and network information, but also inter-user cor-
relation information. Tan et al. [21] proposed a location-aware load prediction
which deals with user mobility by correlating load fluctuations of edge datacen-
ters in physical proximity. Yin et al. [22] presented a decision-support framework
for provisioning edge servers for online services providers.

Fig. 3. Crowded Scene and Hotspot in an ES Coalition Area (Color figure online)

3 System Model

3.1 Crowd Model Scenario

If a large number of users gather toward the same destination, such as a subway
station, a school gate or a plaza, then a crowded area Oc emerges. Figure 3(a)
shows an illustrative example of the gathering pattern, where highly mobile users’
paths are bidirectional and users move periodically towards and away from Oc.
Figure 3(b) shows the ES coalition graph with such patterns, where crowded
areas are marked with blue lines and hotspot areas are marked with red lines.
As various existing works [20,28] did, we consider that the coverage area of the
MEC ESs is larger than the hotspot area. Figure 3(c) demonstrates that ES2 and
ES4 are marked red and they are affected by crowds of users. Therefore, they
should transfer some workloads to other ESs in the same coalition. If all ESs in
the same coalition have no remaining capacity, then the workload is transferred
to a nearby coalition by backbone network [24].
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Fig. 4. Deathcircle Scene in Stanford Fig. 5. Trajectories in Deathcircle

3.2 Service Migration Model

Originally, an application user ui can be allocated to an ES ej only if it is covered
by ej , i.e., COV (ej). It is usually covered by many ESs, however, it will choose
the nearest one originally as shown in (1):

u1 ∈ COV (ej1), COV (ej2), COV (ej3)

ui −→ ej1, s.t. dj1i < dj2i < dj3i
(1)

where dj1i is the distance between ej1 and ui. si could be migrated to the ES
in another coalition when ui is at the boundary of any two coalitions. traj is
the set of trajectories of all users, which is also the input of Algorithm 2 below.
Each user’s movement is decided by its corresponding mobile trajectory as given
in (2). traji denotes the moving trajectory of ui’s location: yt

i , and it can be
denoted by:

traj = {traji | ui ∈ U}
traji = { yt

i = <LOt
i , LAt

i> | t ∈ T} (2)

where LOt
i and LAt

i denote the longitude and latitude values at time point t, U is
the set of users, T denotes all time slices, Ns the number of all services. According
to [20], we use the following model to estimate service migration overhead. We
consider that every service have a budget Bm. A unit migration budget, Bi,
is consumed, whenever si is migrated. Migration stops when the corresponding
budget is used out. The remaining budget of all services: Br, is thus:

Bi
m = Bm − ni ∗ Bi s.t. Bi ∝ wi, Bi

m > 0

Br = Ns ∗ Bm −
Ns∑

i=1

∗ ni ∗ Bi

(3)

where Bi
m is the remained budget of si, wi denotes the workload of si, Bi is

a unit budget cost related to wi, ni is the total migration times of si. Thus,
the service with a larger workload should be moved for a fewer times. In our
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problem, we denote the MEC service latency at time point t as l(pti, y
t
i), which is

relevant to the physical proximity between ui and the matched ES. Then latency
of si in all time slices T , i.e., Li follows:

Li =
T∑

t=1

l(pt, yt
i), s.t. Bi

m > 0 (4)

where ui’s location at t is yt
i and location of service si in ES at t is pt. With

the constraint of Bi
m, si can not be migrated within the coalition before it is

migrated to another coalition. We use Mi to denote the maximum delay of si
when it’s in the coverage area of coalition c. It follows:

Li < Mi (5)

If ui steps into another coalition’s area, si gets a new budget. If the user is still
in the coalition area, but out of the coverage area of the original ES, the service
is migrated to another ES as well. The overall energy consumption for service
migration, i.e., ES can be obtained as:

ES =
Ns∑

i=1

ni ∗ Em ∗ wi (6)

where Em is the migration energy for a unit workload.

3.3 Capacity and Workload Model

Each edge server ej has a capacity of F j , and F j
i denotes the service workload

of ui placed on server ej . It should satisfy that The aggregate workload of each
resource type incurred by all allocated users must not exceed the capacity of
their assigned server in (6). The total workloads generated by all users allocated
to an edge server must not exceed its remaining capacity as shown in (6). Assume
that if services are placed on ej , they should satisfy the function PL(ej) in (6),
which indicates the set of services placed on ej .

Q(ej) = {ui | ui ∈ ej}
PL(ej) = {si | si ∈ ej}
F j >

∑

ui∈Q(ej)

F j
i

(7)

F j is the capacity value of an edge server ej , Q(ej) is a function to indicate
the set of users whose services are placed on ej . The total workloads of users in
Q(ej) mustn’t exceed F j . Assume that Wj is the workload of ej , and it equals
all the services’ workloads on ej . Rj is the resource utlization rate of ej , and it
can be computed as:

Rj =
Wj

F j
s.t. Wj �= 0, Rj < zj (8)

where zj is the maximum utilization rate of ej , and Rj should not exceed zj .
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Fig. 6. Map of ESs and Users (Color
figure online)

Fig. 7. Coalitions by Modified K-
means

4 Coalitional Game for Load-Balancing

4.1 Framework Overview

The overall framework includes 3 major steps:1) using k-means to divide the
coalitions as in pseudocode lines 1–11 in Algorithm 1 ; 2) discovering the hotspot
happened in the area covered by ESs in the coalition, and then reallocate the
workloads inside the coalition members; 3) transferring workloads to members
of nearby coalitions from the overloaded ESs by backbone network [24] in pseu-
docode lines 21–23 in Algorithm 2. As shown in Fig. 7, c1 could transfer workloads
to nearby coalitions, such as: c2, c3. Coalitions, which are next to the overloaded
ES, i.e., overloaded ES2 and ES4 in Fig. 3(c), should be choosen in prior.

4.2 Location-Aware Coalition Formation

Algorithm 1: Coalition Formation Based on k-means
Input: P , H, k, J
Output: C

1 Build a coordinate system for the ESs in map, and confirm their x, y
coordinates

2 Compute the ES distances set E according to (10)
3 for every h in H do
4 Form a coalition according to k-means
5 end
6 Finally, it groups e1,e2...eN as k coalitions
7 if ej1 is close to another coalition then
8 Add ej1 to that coalition, renew C
9 end

10 if for any coalition c, its nc is larger than J then
11 Divide this coalition by k-means
12 end

Figure 4 illustrates crowds of people gathering in a circular area in Stanford
Campus [28,29]. Edge server is in this area as well. Figure 5 illustrates the users’
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trajectories of Fig. 4. It is clear to see a hotspot easily emerges in such scene.
Service migrations are in high need to counter the emergence of hotspots caused
by the gathering of massive users. We consider that all ESs construct a graph G
as shown in (9).

G = (P,E) (9)

where P is the set of vertices as P = {e1, e2, e3...eN}. N is the number of all
ESs in the whole area. E is the set of euclid distances between any two ESs.
The euclid distance Dist(a, b) between any two edge servers: ej1, ej2 can be
computed as:

E = {Dist(j1, j2) | ej1, ej2 ∈ P}
Dist(j1, j2) =

√
(ELOj1 − ELOj2)2 + (ELAj1 − ELAj2)2

(10)

ELOj1, ELAj1 are the longitude and latitude of ej1, and the same to ej2. Accord-
ing to E, close ESs are divided into a group as a coalition. To partition the ESs
in a large area into several small units, the locations of ESs are the key fac-
tor. We use the k-means method to divide the ESs and employ the locations of
ESs as the deciding factor for partition. As shown in Algorithm 1, the partition
takes hotspot areas, i.e., H, H = {h1, h2, h3...hk} of human crowds as the input,
where k is both the number of hotspot areas and also the number of ES coali-
tions. The partition algorithm takes H, P as the inputs as well and generates
the set of coalitions as C. nc is the number of ESs in a single coalition c and
it’s bounded by J . J is flexible, as it varies according to the size of the hotspot
area. If the hotspot area is wide, it needs more ESs to cover. Coalitions may
share the borders as shown in pseudocode lines 7–8 of Algorithm 1. k is decided
by the number of hotspot areas. d is the number of iteration, and thus the time
complexity of pseudocode lines 1–6 is O(k ∗ N ∗ d). For the modified operations
for each coalition in pseudocode lines 7–11, if the total modification times is
g, then the final time complexity is O(k ∗ N ∗ d + g). As shown in Fig. 6, 100
base stations (BSs) colocated with ESs are presented, and users are distributed
around them. Users are marked in blue, and ESs in red. To make the coalitions
fine-grained, the k-means-based clustering analysis process is iterated until nc

fits the population distribution. As shown in Fig. 7, all BSs are divided into a
number of coalitions according to Algorithm 1.

4.3 Coalitional Game Model for Workload Allocation

A coalitional game Γ consists of two essential elements [10]: 1) a set of players
N = {1, 2...}, in this paper ( ESs are modelled as players ); 2) a characteristic
value ν that specifies the value created by different subsets of the players. i.e.,
the payoff of a coalition c. Here maximizing the payoff ν(c) means maximizing
the coalition’s load fairness.

Γ = (N, ν) (11)

Every edge server is modelled as a player. Players are assumed to be rational to
join a coalition c. As a participant, each ES wants to keep a moderate utility.
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Service migration is the strategy for them to adjust the workloads distribution
among ESs in the coalition.

c = {ej | ej ∈ Γ} (12)

The coalition’s load variance D(c) should be bounded by:

D(c) =
1

n − 1

n∑

j=1

(Wj − W̄c)2 (13)

For each coalition, it should keep a low level of variance D(c) to avoid imbalance
of workloads.

Min D(c)

s.t. F j >

n∑

i=1

F j
i

(14)

where W̄c is the average workload of all ESs in a coalition c. Std is the standard
deviation based on D(c). As the constraint, workloads of the services placed on
the jth ES should not exceed its capacity F j . Here, we stipulate that the payoff
of a coalition is ν(c), and it can be obtained as:

ν(c) =
1

Std
s.t. di,j = 1, 0 < Rj < zj

(15)

where di,j is a boolean variable to indicate whether the ith service is placed
on the jth server. Edge servers in a coalition communicate with each other and
migrate the services among the coalition members to balance the workloads on
them. The resulting optimization object is thus to maximize ν with constraint
of Bi

m:
Max ν(c)

s.t. ν �= 0, Bi
m > 0

(16)

A coalition c = {e1, e2...enc
} includes edge servers grouped by Algorithm 1.

Users’ locations change with time, and they may form a hotspot at any time
slice. Pseudocodes line 1–9 in Algorithm 2 describe three criteria for judging
whether a hotspot in the ES’s coverage area is discovered or an ES is qualified
to be a source ES, namely: 1) any ES ej in the coalition is over utilized, namely,
the utilization rate of it is higher than its threshold value Rh, which is set
according to the edge server itself; 2) any ES receives the most workloads among
all ESs in the coalition; 3) any ES’s workload exceeds the average workload of
ESs in the coalition. Based on these criteria, an ES could be regarded as a source
ES. It is constrained that any service must be migrated to another ES which
covers its user. Pseudocodes in line of 9–17 in Algorithm 2 illustrate the service
migration operation. As a consequence, the subsequent payoff of the coalition,
i.e., ν

′
(c), should exceed ν(c). ν

′
(c) is the payoff of the coalition after one service

migration is performed.
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∀ ej1 ej2 ∈ c, ui ∈ ej1, Wj1 > Wj2

If ν(c) < ν
′
(c), after service migration

Then do ui
move−→ ej2

s.t. traji ∈ Cov(ej1, ej2), Bi
m > 0

(17)

In Algorithm 2, Cov(ej1, ej2) denotes the coverage area of ej1 and ej2. In a
coalition, to match the destination ES and the source one, let ord(j) denote the
ascending order of the jth ES according to the workload. A highly-loaded ES is
matched with a lowly-loaded ES with ord(nc − ord(j)). If the ES with ord(nc −
ord(j)) does not cover the user, then consider the ES with ord(nc−ord(j)−1) or
ord(nc−ord(j)+1). The match operation is in pseudocode line 11 in Algorithm 2.
ms denotes all service migrations performed during the whole process. Fairness
improvement is calculated according to the decrease of the standard deviation of
the workloads distributed on ESs in a coalition after the migration is conducted,
i.e., ΔStd.

Algorithm 2: CGL-SM
(Service Migration in a coalition c )
Input: U , S, c, traj, Bm

Output: Updated match of U , S, c, Bi
m

1 Step 1: Hotspot or source ES detection
2 for all ESs in c do
3 if 1. any ES’s utilization rate exceeds its highest threshold value Rh ;
4 2. any ES in c receives the most workloads ;
5 3. any ES receives workload that exceeds the average workload in c. then
6 Take this ES as a source ES according to the criterion: 1, 2, 3.
7 end
8 end
9 Step 2: Perform service migrations

10 for all ESs in c do
11 if a source ES ej1 and ej2 can be matched then
12 for services on ej1 and in Cov(ej1, ej2) do
13 if any si can be migrated based on (17) and its Bi

m > 0 then
14 migrate si from ej1 to ej2
15 end
16 else if no services are qualified to migrate then
17 Stop Service Migration
18 end

19 end
20 end
21 else if ESs in c could not handle workloads from the hotspot then
22 Transfer services to neighbor coalitions or central cloud by backbone

network
23 end
24 end



Location-Aware Migration in Crowded Scenes 451

4.4 Complexity Analysis

The complexity of Algorithm 2 can be examined as several steps. nc is the
number of ESs in a coalition. The time complexity of the match step is O(nc/2).
The process of service migration depends on the number of service migrations.
If the maximum number of service migrations performed in a round of match
operation is m, then the time complexity of it is O(m). Finally, the overall time
complexity is O(m ∗ nc/2).

Fig. 8. Experimental Area in Mel-
bourne

Fig. 9. ESs in Some Areas of Mel-
bourne

5 Experiment Setting and Evaluation

5.1 Benchmark Policies

We compare our CGL-SM with existing user allocation algorithms and a no coali-
tion formed algorithm: 1) EUAGame [19], an incooperative game-based approach
applied in for user allocation in MEC; 2) Greedy [27], a proximity-priority-based
migration method; 3) No-Cos, a non-coalitional variant of CGL-SM for showing
the performance gain by the coalitional model.

5.2 Experimental Settings

In Fig. 8, base stations (BS) are distributed based on Google Map [26]. We depict
the locations of BS in part of Melbourne from dataset [25] as shown in Fig. 9.
According to the modified k-means algorithm, we select two typical crowded
areas based on ES coalitions, i.e., area 1 and area 2 as illustrated in Fig. 9. The
total area is around 0.06 km2. Here J is set as 7 according to the distribution
of these BS. Rh of any ES is set to 80%. The workload capacity of each ES is
set to 1800–2000 according to the service workloads as shown in Fig. 10, which
is based on a public workload dataset CoMon [6]. Based on workloads, Bm is
set to 30. Em is set to 2 mJ. To evaluate the effectiveness of our approach,
we conducted experiments on a real-world crowded-scene mobile user trajectory
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Fig. 10. Workloads of user services Fig. 11. The number of users by time

dataset for crowded scenes [28], i.e., The Stanford Drone dataset [29]. We choose
five scenes: Gates, Deathcircle, Coupa, Hyang, and Nexus as shown in Table 1. As
shown in Fig. 11, the number of users in each scene varies by time. We consider
the first four rush-hour time slices T = {T1, T2, T3, T4}, in our experiment as
shown in Table 2.

Table 1. Scenes in two areas

Scenarios Area 1 Area 2 Total users Time (min)

Scene 1 Deathcircle Deathcircle 871 6:56

Scene 2 Gates Gates 409 5:03

Scene 3 Hyang null 326 6:19

Scene 4 Nexus Nexus 129 6:22

Scene 5 Coupa Coupa 117 6:39

Table 2. Four time slices

Time Slices T1 T2 T3 T4

Period (min) 00:00–1:00 1:00–2:00 2:00–3:00 3:00–4:00

5.3 Experiment Evaluation and Analysis

We evaluated all approaches by: 1) ms, Br and ES , which evaluate quality of
service migrations; 2) ΔStd, which evaluates the load fairness; 3) the frequency
of using backbone network by the impact of NS .
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Fig. 12. Using backbone network by fold change of NS

Impact of NS on Using Backbone Network: When the number of services
rises rapidly, the ESs in a coalition are allowed to transfer the workloads to other
ESs by using backbone network. As shown in Fig. 12 (suffix A1 and A2 denote
Area 1 and Area 2), the occurrence rate of using backbone network of CGL-
SM is clearly lower than those of its competitors due to the fact that CGL-SM
achieves a better load distribution among coalition members.

1 2

Fig. 13. Δ Std in Area 1, Area 2

Load Fairness (ΔStd): As shown in Fig. 13, all four migration methods
improve the fairness of workload among all ESs, but our approach achieves the
highest amount of fairness improvement at all time slices in both areas. The
average advantages of CGL-SM over EUAGame, Greedy, No-Cos in Area 1 are
16.9%, 8.7%, 35.6% in terms of ΔStd, and 24.3%,7.6%, 45.4% in Area 2, respec-
tively. As can be seen, the advantage of our proposed method is achieved due
to the fact that it chooses ESs appropriately while EUAGame tends to choose
the ES with lowest load and Greedy tends to choose the nearest one. No-Cos
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does not balance loads so well, as workloads are gathering at the boundary ESs
between Area 1 and Area 2, other ESs gathers much fewer workloads.

Fig. 14. Br in two areas at different time slices

Service Migrations (Br , ms , ES ): As shown in Fig. 14 (suffix A1 and A2
denote Area 1 and Area 2), Br in Area 1 and Area 2 are depicted. CGL-SM
also costs least budget in both cases (in Area 1, CGL-SM is 8.3%, 10.6%, 19.3%
less than Greedy, EUAGame, No-Cos, and in Area 2, it is 5.1%,12.8%, 13.5%,
respectively). It is due to the fact that CGL-SM migrates services according to
their workloads. Namely, a service with larger workload is migrated in a lower
frequency. EUAGame uses the most budget, as it selfishly migrates services
for a lower system cost, which inversely creates more burdens in a crowded
scenario. As shown in Fig. 15, for both areas, CGL-SM takes fewer migrations
than EUAGame and Greedy. Averagely, in Area 1, CGL-SM is 5.6% fewer than
Greedy, and 16.3% fewer than EUAGame, 11.5% fewer than No-Cos. And in
Area 2, CGL-SM is 6.1% fewer than Greedy, 9.8% fewer than EUAGame,10.5%

1 2

Fig. 15. ms in Area 1, Area 2
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1 2

Fig. 16. ES in Area 1, Area 2

fewer than No-Cos. As shown in Fig. 16, the energy consumption of migrations in
two areas are depicted. We see that CGL-SM has the least energy consumption
for migrations compared to other approaches (in Area 1, CGL-SM is 15.6%,
28.3%, 21.5% less than Greedy, EUAGame, No-Cos, and in Area 2, it is 13.1%,
25.8%, 22.3%, respectively). The advantage of our approach is achieved due
to the fact that: 1) the objective model of CGL-SM aims at decreasing the
variance of ES workloads in a coalition. Meanwhile, the mobility of users and
the user-server proximity constraint are appropriately exploited in balancing
workloads of ESs; 2) as CGL-SM performs fewer migrations, then it consumes
less migration-overhead. 3) some baseline algorithm (e.g. EUAGame) aims to
decrease system cost by using more service migrations, which is not effective in
a crowded scenario.

6 Conclusion

In this paper, we propose a location-aware MEC service migration approach
for mobile user reallocation in crowded scenes. The proposed method leverages
a modified-k-means-based strategy for the formation of coalitions, a workload-
based method for the detection of hotspots, and a load-fairness-based strategy
for ES workload allocation. Additionally, coalitions are connected by backbone
network in case that massive workloads of services could not be sustained by
a single coalition. A case study based on real-world datasets of edge-user dis-
tribution and trajectory traces demonstrates that our proposed method beats
its peers in terms of load-fairness, the number of service migrations required,
and energy consumption of migrations. In future work, we will explore a hybrid
approach, namely, D2D and edge-cloud mode.
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