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Abstract. AutoEncoder is an unsupervised learning approach that can
maps inputs to useful intermediate features, which can be used to build
recommendation. Intermediate features of different entities obtained by
AutoEncoder may have different weight for predicting users behavior.
However, existing research typically uses a uniform weight on interme-
diate features to make a fast learning algorithm, this general approach
may lead to the limited performance of the model. In this paper, we
proposes a novel approach by using SGD to dynamically learn the inter-
mediate features importance, which can integrate the intermediate fea-
tures into matrix factorization framework seamlessly. In the previous
works, the entities intermediate features learned by AutoEncoder are
modeled as a whole. On this basis, we proposes to use attention parame-
ters in entity intermediate feature to dynamically learn the intermediate
features importance and build fine-grained model. By learning unique
attention unit for each entity intermediate feature, the entities inter-
mediate features are integrated into the matrix factorization framework
better. Extensive experiments conducted over two real-world datasets
demonstrate our proposed approach outperforms the compared models.

Keywords: Denoising AutoEncoder · Collaborative Filtering ·
Attention unit

1 Introduction

With the explosive growth of online information, the recommendation system is
gradually widely deployed in various terminal devices to meet the user’s informa-
tion screening needs [22]. Among the various recommendation strategies, Collab-
orative Filtering (CF) has been widely adopted due to its precision and efficiency
[21]. However, the existing CF methods are insufficient to model nonlinear rela-
tion and side information of user and item entities [17,20]. With the widespread
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application of deep learning, many studies apply neural networks to alleviate
this problem [28].

Based on CF, [5] present a general framework named NCF, which use neural
network to model latent features of users and items, on this basis, [1] adopt an
attention mechanism to adapt the representation of a group, and recommen-
dation items for group. [27] propose a dual channel hypergraph collaborative
filtering (DHCF) method to model the representation of users and items so that
these two types of data can be seamlessly interconnected while still keeping
their specific properties unchanged. [11] proposed a new method named Field-
weighted Factorization Machines (FwFMs) to model the different feature inter-
actions between different fields in a much more memory-efficient way. [2] describe
a novel Field-Leveraged embedding network to learn inter-field and intra-field
feature interactions.

However, many existing works compute the feature interactions in a simple
way and care less about the importance of features. Due to this, [10] propose Aut-
oFIS to automatically identify important feature interactions for factorization
models by training the target model to convergence. [25] propose an automated
interaction discovering model for CTR prediction named AutoCTR. [7] propose
a new model named FiBiNET, aim to model feature importance by using the
the Squeeze-Excitation network (SENET) mechanism. [13] devise AutoInt to
automatically learn the high-order feature interactions of input features, these
models have made great progress.

Recent research have demonstrated that AutoEncoder have the capability of
capturing the complex relationships within raw data, and compact representa-
tions in the hidden layers [16]. Based on this, many excellent recommendation
models have been proposed [12,18,23]. These research can be divided into two
categories [24]. The first category focuses on designing recommendation mod-
els based on AutoEncoder only, without using any components of traditional
recommendation models. For example, [18] applies the Denoising AutoEncoder
to model distributed representations of the users and items via formulating the
user-item feedback data. [12] formulated Collaborative Filtering as a AutoEn-
coder. However, these methods do not employ any extra information of users and
items, which leads to the second research category. It aims to use AutoEncoder
to learn intermediate feature representations and embed them into classic CF
models. For instance, [23] improve Collaborative Filtering (CF) by integrating
intermediate features of item entities into matrix factorization framework. The
intermediate features are obtained by AutoEncoder. [23] has achieved a good
feedback. However, it unified the intermediate features weight to model, which
may lead to limited improvement of model performance. In fact, not every dimen-
sion of the intermediate features of different item entities obtained by unsuper-
vised approach has predictability [3,19]. Some feature elements contribute little
to the prediction, and the useless feature elements even introduce noise, which
can result in model to be hindered [6].

In this paper, we design a multi-dimensional attention parameter that seam-
lessly fuse the intermediate features of the item entity with the factorization
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framework, it can be learned by stochastic gradient descent. Compared with
the previous research in this direction, the work of our paper is summarized as
follows:

– We propose to use learn-able attention parameter to discriminate the impor-
tance of each dim of intermediate feature learned from AutoEncoder. More
meaningful, the weight of intermediate feature is learned by stochastic gradi-
ent descent automatically.

– We conduct extensive experiments on two real-world datasets, and the results
show that our model outperforms the compared methods significantly.

The rest of the paper is organized as follows. Section 2 provides the prob-
lem definition and revisits SVD-based latent factor models and AutoEncoder
framework. Section 3 describes our method and learning algorithm in detail.
Section 4.1 presents experimental results for the performance comparisons and
components analysis. Section 5 summarizes our work and discusses our future
directions.

2 Preliminaries

2.1 Problem Definition

Given a set of users U = [1, ...,M ], a set of items I = [1, ..., N ], we use rui

to express the rating of the user u for the item i, and rui ⊂ R ∈ RM×N ,
R is an incomplete matrix of ratings [14]. The known score is expressed as
I = {(u, i)|rui is known}. We use r̂ui represents the predicted value of rui,
which captures the interaction score between the user u and the item i.

2.2 Denoising AutoEncoder

A traditional AutoEncoder takes a vector x ∈ [0, 1]d as input, and transforms it
into hidden representation y ∈ [0, 1]d́ through a deterministic mapping:

y = hθ(x) = s(W · x + b) (1)

Its parameter set is Θ = {W, b}, where W is a d́ × d weights matrix and b is
a biases column vector. The hidden representation y is then mapped back to a
reconstructed vector z ∈ [0, 1]d through:

z = h
′
θ(y) = s(W

′ · y + b
′
) (2)

With parameters set Θ
′
= {W

′
, b

′}. The weight matrix W
′

of reverse mapping
may be constrained by W

′
= W in an optional manner. The parameters of this

model are determined by minimize the average reconstruction error:

arg min
Θ,Θ′

1
n

n∑

i=1

L(x, z) (3)
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Fig. 1. The architecture of Denoising AutoEncoder

Where L is the traditional square error loss function L(x − z) = ‖x − z‖2.
As shown in see Fig. 1, the Denoising AutoEncoder [15] reconstruct a repaired

input x from a corrupted version x̃ by virtue of a stochastic mapping x̃ ∼
p(x̃|x). There are two common corruption choices include additive Gaussian
noise and the multiplicative mask-out/drop-out noise [18]. In this paper, we
choose Gaussian noise to corrupt input data.

2.3 Latent Factor CF Models

Funk-SVD. Funk-SVD [4]is a classic CF model, which map features of users
and items to a shared latent factor space of dimensionality k, each item i cor-
responds to a latent property vector qi ∈ R

k, and each user u corresponds to
a hidden preference vector pu ∈ R

k. The prediction is done by taking an inner
product r̂ui = qT

i · pu, which denote the prediction score of user u to item i.

Biased SVD. It would be inadequate to explain the full rating value by latent
factor interaction. Based on Funk-SVD, [8] propose a improved version named
biased SVD, which introduces the concept of user and item deviation, the pre-
diction equation is as follows:

r̂ui = μ + bu + bi + qT
i · pu (4)

The parameter μ denotes the global average rating of each user, bi indicates the
bias term of item i, bu is observed bias of user u, qi and pu inherit the definition
of Funk-SVD.

SVD++. When explicit feedback is insufficient, implicit information such as
browsing and purchase history information can be used to gain insight into user
preferences and alleviate the cold start problem. SVD++ [8]is an improved model
by minding the biased SVD. The model is more precise, the prediction formula
is as follows:

r̂ui = μ + bu + bi + qT
i · (pu + |N(u)|− 1

2 ·
∑

j∈N(u)

yj) (5)
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Where N(u) denotes the items for which user u uttered an implicit preference,
yj represents the latent vector of theses item. The |N(u)|− 1

2 ·∑j∈N(u) yj in the
Eq. (5) is used to enhance user implicit representation.

3 Proposed Methodology

In this section, we will introduce our approach named HCF-DAE, which can
distinguish the importance of intermediate features of the item by using attention
parameters. In this way, the intermediate features of the item can be better
integrated into SVD++.

3.1 Our Approach HCF-DAE

Based on autoencoder, [23] applies the item entity intermediate features to
the SVD++ framework, constructs hybrid model named Auto-SVD++, and
improves prediction performance. However, the Auto-SVD++ embed item entity
intermediate features into SVD++ with a uniform weights, which can limit per-
formance of model. For example, for user u, the intermediate features CAE(i)
of item entity i contributes to model performance improvement, we name it a
useful feature, however, the intermediate features CAE(j) of item entity j may
be useless features, and even affect the predictive performance of the model.
Based on the above analysis and [23], our paper proposes a new method named
HCF-DAE, the architecture of our proposed model see Fig. 2, where pu and qi

represent the latent features of users and items respectively. Attention unit in
Fig. 2 is equivalent to our attention strategy, which can distinguish the impor-
tance of item entity intermediate features learn from DAE. To sum up, our model
integrates each intermediate feature into SVD++ separately.

Our model can be split into two stages:pre-train stage and re-train stage.
These two stage are independent with two loss function (see Eq. (3) and Eq. (7)).
In the pre-train stage, we use Denoising AutoEncode to generate ItemFeature
dae(x) in hidden layer of DAE, the loss function is Eq. (3). While in the re-train
stage, we will update all parameters. Among these parameters, we model the
useful features in intermediate features via the attention parameters, the loss
function of this step is Eq. (7). By doing this, we can model these intermediate
features importance finer-grained and automatically. The prediction score of our
method is calculated as:

r̂ui = μ + bu + bi + (fi�dae(xi) + qT
i ) · (pu + |N(u)|− 1

2 ·
∑

j∈N(u)

yj) (6)

Where fi ∈ R
N×k represents the attention parameters of intermediate feature

of the item entity i, dae(xi) denotes the intermediate features of item entity
i learn from DAE. We use � to denote the dot multiplication of matrix. The
dot multiplication of fi and dae(xi) in the Eq. (6) represents that we assign
different weights to each element of the intermediate feature, in this way, we
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Fig. 2. The architecture of our proposed model HCF-DAE

name fi as attention unit of intermediate features. We calculate fi and dae(xi)
in a dot-multiplication manner, so that while improving performance, we also
take into account the complexity of our approach. We use stochastic gradient
descent (SGD) to update fi at the element level, and the derivation process is
shown in the next section.

3.2 Optimization

Firstly, we use the DAE to obtain the intermediate features of the items the
loss function is Eq. (3), and then, we optimize the model in the following way.
We learns the parameters by minimizing the regular squared error loss function,
which is defined as follows:

arg min
b∗,p∗,q∗,y∗

∑

(u,i)∈I

(rui − r̂ui)2 + Λ · freg (7)

The first term of Eq. (7) inherits the error function construction of SVD++.
Where Λ represents the weight of regularization parameters, we set it to a single
value, freg is a regularization term of all updated accessories, we set it to avoid
model overfitting. freg expands as follows:

freg = ‖fi‖2 + b2i + b2u + ‖qi‖2 + ‖pu‖2 +
∑

j∈N(u)

‖yj‖2 (8)
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We use SGD to minimize the loss function (see Eq. (7)), and the algorithm
iterates over all ratings in the training dataset. First, we denote the prediction
error in this way:

eui
def= rui − r̂ui (9)

Then it modifies the parameters by moving in the opposite direction of the
gradient, yielding:

bu ← bu + η1 · (eui − β1 · bu) (10)
bi ← bi + η1 · (eui − β1 · bi) (11)

qu ← qu + η2 · (eui · (fi � dae(xi) + pi) − β2 · qu) (12)

pi ← pi + η2 · (eui · (qu + |N(u)|− 1
2 ·

∑

j∈N(u)

yj)) (13)

From Eq. (10) to Eq. (13), bu, bi, qu, pi inherits the definition of SVD++. Latent
vector update method of user interaction item is shown as follows:

∀j ∈N(u) :

yj ← yj + η2 · (eui · |N(u)|− 1
2 · (fi �dae(xi) + pi) − β2 ·yj)

(14)

Equation (14) is used to update yj , where j belongs to user history click item.
Similarly, we use the back propagation algorithm to derive the updating method
of attention parameters fi:

fi ← fi + η3 · (eui · (pi + fi � dae(xi)) · (qu + |N(u)|− 1
2 ·

∑

j∈N(u)

yj)) (15)

From Eq. (10) to Eq. (15), we use η1, η2 and η3 to express the learning rates of
parameters updating, β1 and β2 are the regularization parameters. We use Eq.
(10) to (13) to update parameters bu, bi, qu, pi. Equation (15) is the process of
updating the attention unit fi of intermediate features. The above formula is
updated along the opposite direction of gradient. We will introduce our experi-
ments in the next part.

4 Experiments

When we optimize the parameters, both SGD and GD can be selected. When
SGD is used to adjust parameters, one batch of data is used at a time. While GD
is used for optimization, all training data are used in each iteration. Due to this,
we employ SGD to optimize all parameters. Specific description, for items, we use
DAE to option intermediate features. For each user u, we compute the average
ratings μ. After that, we begin to update all parameters (see Algorithm 1).
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4.1 Experiment Settings

Datasets Description. We evaluate the effectiveness of our proposed model
on two public datasets. Movielens is the datasets of ratings to movie, which
has been widely utilized to investigate the performance of many recommen-
dation algorithms. This paper uses two stable benchmark Movielens datasets:
Movielens-100k and Movielens-1M. Movielens-100k includes 100,000 ratings for
1,660 movies by 943 users, and Movielens-1M contains 1,000,209 ratings of 3,706
movies from 6,040 users. In addition to rating information, Movielens-100k also
contains content information for items and users. In this paper, we use genres,
year and items ID as content information of items [23]. In the next section, we
would define the evaluation metrics of our model.

Algorithm 1. Training algorithm of our model HCF-DAE
1: procedure Update Parameters
2: initial the parameters qu, pi, bu, bi, yi, fi.
3: generate ItemFeature dae(x).
4: for all user u do
5: for all training samples of user u do
6: compute sum ratings ru of user u.
7: compute num ratings nr of user u.
8: end for
9: compute average ratings of user u:

10: μu =
ru
nr

.

11: end for
12:
13: repeat
14: for all user u do
15: for all training samples of user u do
16: upadate parameters qu, pi, bu, bi:
17: from Equation (10) to Equation (13).
18: upadate parameters fi:
19: Equation (15).
20: end for
21: for all training samples of user u do
22: upadate parameters yj :
23: Equation (14).
24: end for
25: end for
26: until epoch>=epochs
27: end procedure

Evaluation Metrics. We use the Root Mean Square Error (RMSE) and the
Mean Absolute Error (MAE) as the evaluation metrics of experiment. Which
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has been widely utilized to evaluate the performance of the CF recommendation.
RMSE is define as:

RMSE =

√∑M,N
(u,i)∈I(rui − r̂ui)2

|T | (16)

Where |T | is the number of ratings in the test dataset, and rui denotes the
rating user u to item i. r̂ui represents the corresponding prediction rating. Which
represents the error between the predicted value and the true value. The MAE
is expressed as:

MAE =

∑M,N
(u,i)∈I |rui − r̂ui|

|T | (17)

It denotes the average value of the absolute errors of the predicted and observed
ratings. The definition of rui and r̂ui are same as RMSE. Our goal is to reduce
the value of RMSE and MAE.

Compared Methods. To verify the efficiency of our model, we compare the
proposed model with the following models:

– Funk-SVD [4]. The process of singular value decomposition is simplified into
two low-rank matrices, and the two matrices are applied to represent the
latent factor of users and items respectively. Then use the two matrix inner
products to predict the rating, and obtain the recommending item list.

– SVD++ [9]. This model extends Biased SVD, increases users and item offsets,
global average value of rating and historical latent feedback information from
users, which has achieved good results.

– AutoSVD++ [23]. This model use AutoEncoder to obtain item intermediate
features, then, it integrates the item intermediate features into SVD++, thus
modeling the rich content information of the item, and alleviating the cold
start problem to a certain extent. Compared with SVD++, Auto-SVD++
has made better experimental results.

– AutoRec [12] utilizes the reconstruction characteristics of the AutoEncoder,
proposes two collaborative filtering variants:user-based (U-AutoRec) and
item-based (I-AutoRec) that respectively take the partially collected user vec-
tor or item vector as input. Our experiments only observe the performance
of U-AutoRec.

Parameter Settings. We apply grid search to find the optimal parameters.
We tuned the learning rates η1, η2, η3 in the range of [0.001,0.002,. . .,0.009,0.01],
and the value of β1, β2 was searched in [0.001,0.002,. . .,0.01]. For AutoSVD++,
we inherit all parameters in [23]. After experiments, the parameters of our
model (HCF-DAE) and compared method has be determined and showed in
the Table 1.
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Table 1. Parameter setting for comparison model and our method

Parameters η1 η2 η3 β1 β2

HCF-DAE 0.005 0.007 0.005 0.005 0.015

AutoSVD++ 0.007 0.007 – 0.005 0.015

SVD++ 0.005 0.008 – 0.005 0.015

Funk-SVD – 0.01 – – 0.01

4.2 Performance Comparison

In this subsection, we summarize the overall experiments of our model and
compared models on two movielens test sets respectively. We conduct experi-
ments to check the performance of our model. [26] suggests that sampling should
be avoided for metric calculation, nevertheless, sampling is unavoidable in our
experiments. In order to ensure the accuracy and credibility of the experimen-
tal results, we do five experiments in each group to find the average value of
the evaluation metric. Figure 3 shows performance comparison between HCF-
DAE and Auto-SVD++ on the Movielens-1M dataset. The experimental results
show that AutoSVD++ iterative converges after 15 iterations, and our model
iterates 20 times to converge. The final result of HCF-DAE is better than Auto-
SVD++ and other two compared models. While the performance of HCF-DAE
is not significantly improved compared to SVD++ in Movielens-100k dataset.
We speculate that this is due to the small scale of Movielens-100k dataset. This
also reflects that AutoEncoder is suitable for model large-scale and complex
dataset, while it’s difficult to take advantage of deep learning frameworks when
AutoEncoder process small-scale datasets. We find that different datasets parti-
tion has an effect on the model performance. Figure 4-1 shows experiments on
the Movielens-1M dataset. We divide the dataset into test and training dataset in
different proportions, and on the premise that the HCF-DAE performs best, the
model performs poorly with the training dataset becomes smaller. We analyze
that the training dataset is small in size and the model does not have sufficient
data for training, so the ideal result cannot be obtained on the test dataset.

4.3 Impact of Attention Unit

We use the Algorithm 1 to iterate the datasets for 30 times, then, we obtain
the trajectory of the test error. In order to make the experimental results more
reliable, we train five times on the datasets, and we take the average value of
RMSE and MAE. Table 2 and Figs. 5, 6 shows the experimental results of our
model and the compared methods on these two datasets. We found that the final
performance of our approach on both two datasets are the best. Even compared
with AutoSVD++, the performance of our approach has also been improved. In
the macro point of view, we analyze that comparison with unified weight model-
ing intermediate features, we use attention unit to model intermediate features
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Fig. 3. 1). Test error (RMSE) comparison of each epoch of HCF-DAE and comparison
models on Movielens-1M dataset. 2). Performance comparison of each epoch of HCF-
DAE and comparison models with the evaluation metrics of average MAE.

Fig. 4. 1). Average error (RMSE) of each epoch of HCF-DAE and comparison models
on Movienens-1M by splitting test dataset with different proportions. 2). Effect of
attention parameter learning rate on HCF-DAE performance.

importance is successful. From the micro-level, we analyze that the key advan-
tage of HCF-DAE is ability in interpreting the attention weights of intermediate
features. In conclusion, by introducing attention unit, our model can distinguish
useful features from noise features, thus the intermediate features obtain from
the AutoEncoder can seamlessly integrated with the SVD++ frame work.
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Fig. 5. Histogram of test error of HCF-DAE and comparison models on ML-100k
dataset with the evaluation metrics of RMSE.

Table 2. Final performance comparison of our method and compared model for
Movielens-1M and Movielens-100k.

ML-1M ML-100k

Model name RMSE MAE RMSE MAE

Funk-SVD 0.880 0.700 0.929 0.733

U-AutoRec 0.874 0.687 0.915 0.720

SVD++ 0.855 0.672 0.913 0.719

AutoSVD++ 0.848 0.666 0.919 0.723

HCF-DAE 0.846 0.665 0.912 0.718

4.4 Impact of Different Learning Rates of Attention Unit

We observe the effect of different learning rates on model performance by chang-
ing the η3, which is the attention parameters of the intermediate features. In
the Fig. 4-2 we found that when the experiment is performed on ML-1M, the
value of η3 = 0.005 can let HCF-DAE achieve the best performance. While the
experiment on ML-100k, the performance of HCF-DAE is best when η3 = 0.004.
This shows that the learning rate of attention parameters will fluctuate with
the change of dataset. Meanwhile, experiments on ML-1M (see Fig. 4-2) indi-
cated that no matter what value the learning rate of the attention parameters
is set, the performance of HCF-DAE is better than SVD++, and in most cases,
HCF-DAE performance is better than AutoSVD++. It shows that our model
has made a better improvement, and the idea we put forward worked well in the
model.
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Fig. 6. Histogram of performance of HCF-DAE and comparison model on ML-1M
dataset with the evaluation metrics of RMSE.

5 Conclusion

In this paper, we propose a new method to solve the problem of unified weight
when AutoEncoder and SVD++ frame work are merged. Our approach uses a
clever fusion strategy to learn the intermediate features importance. Instead of
manually setting, the attention parameters of the intermediate features in our
model are estimated independently, this can more effectively model item feature.
We have conducted extensive comparison experiments on two public datasets.
The results show that our approach obtains the better prediction results in
the comparison model. In future, we plan to explore deep version for our work
in the following two directions. First, we intend to further improve the fusion
strategy of AutoEncoder and matrix factorization recommendation models. We
try to use recurrent neural network to denotes attention strategy. Second, we
will take measures to reduce the computational complexity of the algorithm to
make model better applied to large-scale datasets.
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