
A Flowchart Based Finite State Machine
Design and Implementation Method

for FPGA

Zhongjiang Yan(B), Hangchao Jiang, Bo Li, and Mao Yang

School of Information and Electronics, Northwestern Polytechnical University,
Xi’an 710072, China

{zhjyan,libo.npu,yangmao}@nwpu.edu.cn

Abstract. The design idea of control and data separation is an effective
means to realize the complex communication system, and the control part
can usually be designed and realized by means of finite state machine
(FSM). However, there is no effective method to realize the complex com-
munication system based on finite state machine in the existing research.
Aiming at the problem of the existing FPGA design and implementa-
tion methods with complex and non-universal communication protocol
and algorithm design, a Flowchart based Finite State Machine (F-FSM)
design and implementation method for FPGA is proposed, which signif-
icantly improves the FPGA development efficiency. This method takes
the flowchart describing the complex communication system as input,
divides the communication system into modules, and outputs the finite
state machine transition diagram and transition matrix of the control
module. This method can effectively shorten the design time of the com-
munication system and its control module. Finally, an IP core encap-
sulated in FPGA is designed. This method can effectively improve the
development efficiency of control module, improve the re-usability of con-
trol module and reduce the workload of code development.

Keywords: Flowchart · Finite state machine · FPGA

1 Introduction

Communication systems are important parts of the Internet of Things (IoT). For
example, wireless local area network (WLAN) can be used as a low-energy means
of IoT communication [1]. With the development of communication technology,
the complexity of communication networking protocols in communication sys-
tems (such as WLAN, 4G/5G/6G, Bluetooth, ZigBee, etc.) are increasingly high,
and how to effectively realize these complex communication systems through
Field Programmable Gate Array (FPGA) has become an urgent problem to
be solved [2–4]. There are two mainstream FPGA design and implementation
methods in existing research, i.e., pipeline design idea [5] and control and data
separation idea [6]. The idea of pipeline design is only applicable to communica-
tion systems with simple logic and clear functions between modules, while the
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2021

Published by Springer Nature Switzerland AG 2021. All Rights Reserved

B. Li et al. (Eds.): IoTaaS 2020, LNICST 346, pp. 295–310, 2021.

https://doi.org/10.1007/978-3-030-67514-1_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67514-1_24&domain=pdf
https://doi.org/10.1007/978-3-030-67514-1_24


296 Z. Yan et al.

idea of control and data separation is applicable to complex communication sys-
tems, in which the control module can be realized by using finite state machine
[7,8], and the finite state machine (FSM) describes the overall working condition
of the system.

Combined with the actual system design, the general modular system archi-
tecture is shown in Fig. 1. This architecture divides the whole system into several
related or independent functional modules, and manages the signal interaction
and sequence of each functional module by setting the system main module.
In the same way, each function module can be divided into sub-modules, and
a functional main module can be used to schedule the functions of the over-
all function module. This method can also be used if the internal structure of
subsequent sub-modules is more complex.

Fig. 1. General modular system architecture

Modular system architecture is very common in practical engineering sys-
tems, and its advantages are quite obvious. Ref. [9] applies the modular archi-
tecture to design the controller of the machine tool reconstruction. The control
module of the top level is responsible for controlling the physical module of
the bottom level, and the physical module processes the data. Control is sepa-
rated from data processing, and this hierarchical control pattern reduces a large
amount of overall revalidation. In Ref. [10], IEEE 802.11 multiple access control
(MAC) protocol implementation based on FPGA technology divides the entire
protocol system into sending and receiving parts, and then realizes the two parts
by controlling each function module through main control. Reference [11] applies
this architecture to the automatic bag-bagging control strategy based on finite
state machine, and verifies the advance of this design method through practical
application. In the previously mentioned references on the application of FSM
in various fields, the idea of modular system architecture has been used subtly.
This paper systematically summarizes this architecture and provides a general



A Flowchart Based FSM Design and Implementation Method for FPGA 297

design and implementation method for developing a system based on FSM in
FPGA.

To reduce the unforeseen problems caused by the redundant circuits, Wen
proposed a design method of highly efficient FSM and validated it by the circuit
diagrams in Ref. [12]. Chen presented an efficient manner described in Verilog
HDL in the design of FSM in Ref. [13], and verifies with a synthesizable example
the advantages of the design method of FSM in the area and power consump-
tion. Ref. [14] studied different state encoding styles and Verilog descriptions of
FSM. Reference [15,16] found out the advantages and disadvantages on circuit,
simulation and stability of different FSMs, which showed that the two-always
and three-always method are better than the one-always method. It can be seen
that the aforementioned related works study how to optimize and coding the
FSM based on Verilog HDL. However, few of existing related works study how
to design an efficient FSM for a complex communication system. This motivates
us to study this topic.

Although there is no general design method of FSM in the existing research,
flowchart is a general method to represent the working mechanism of communica-
tion protocol or algorithm. Transforming flowchart into FSM is an idea that has
never appeared and is worth studying. Based on this observation, in this paper
we propose a flowchart-based FSM (F-FSM) design and implement method for
FPGA. The main contributions are listed as follows. The communication system
is divided into modules and the state transition graph and matrix of the control
module are given. This method can effectively shorten the design time of the
communication system and its control module. Finally, an IP core encapsulated
in FPGA is designed. This method can effectively improve the development effi-
ciency of control module, improve the re-usability of control module and reduce
the workload of code development.

The rest of this paper is organized as follows. Section 2 presents the design
principle and modelling methods of FSM, as the theoretical foundations of our
proposed method. Section 3 presents the proposed F-FSM method. Section 4
gives the IP core design and implementation of F-FSM method. Section 5 ver-
ify the correctness and the efficiency of the proposed F-FSM IP core through
functional simulation and mapping. Section 6 concludes this paper.

2 Design Principle and Modelling Methods of FSM

The design principle and modelling methods of FSM are presented in this section,
which layout the theoretical foundations of our proposed method. Section 2.1
presents the design principle of FSM and Sect. 2.2 presents three modelling and
description methods of FSM, which are state transition diagram, state transition
matrix and state transition table.

2.1 Design Principle of FSM

As many theories emerge with the needs of science and engineering, FSM is a
theory that provides an approximation for physical and abstract phenomena [7].



298 Z. Yan et al.

By using FSM to describe abstract systems, the internal logic of things can be
clearly and completely presented to the analyst or designer. Because FSM is
easy to build, it is widely used in life, mathematics, engineering and other fields,
for example, early Turing machines, grammatical analysis of English sentences,
analysis of three states of water. The system which can be described by the design
method of FSM has the following characteristics, which are also possessed by
the multi-access protocol in the communication system.

1. The overall logic of the system can be divided into a finite number of states
with a definite starting state.

2. At any time instant, the system is only in the unique divided state.
3. The triggering conditions for each state and action are clear.
4. Triggering conditions of the system’s actions only depend on the current state

and current triggering events.

The mechanism of FSM is that the system is divided into finite states accord-
ing to certain principles to realize the complete functional actions of the original
system. The transition is driven by the occurrence of internal or external events
of the system. Extended State Machine (EFSM) is a more perfect and universal
form of FSM. Due to its completeness of description, EFSM is often used in
the modelling of complex communication systems, such as communication pro-
tocols and resource allocation algorithms. Its definition is a six-tuple, as shown
in Eq. (1).

M = {S, S0, I, V,O, T} (1)

S refers to the state set of the state machine, i.e., M , and S0 is the initial
state of the state machine. I is the input set of M , and O is the output set.
V is the internal variable set, and T is the state transfer condition set of the
state machine. Since the state transition condition contains information such as
transition direction and trigger condition, T can be represented in the form of
six tuples, as shown in Eq. (2).

T = {Si, Sj , i, o, Pt, At} (2)

Si is the initial state of M . When the input i and the state transition condi-
tion Pt of the current variable value are valid, M is triggered to jump to the end
state Sj of the corresponding state transition, followed by a series of operations
At such as output or assignment, and the output result is o.

2.2 Modelling and Description Methods of FSM

Three modelling methods of FSM are presented in this sub-section, which are
state transition diagram, state transition matrix and state transition table.



A Flowchart Based FSM Design and Implementation Method for FPGA 299

State Transition Diagram. The state transition diagram of an abstract FSM
can be represented by circles representing the finite states and state transition
directions (directed arrow) between the states. Figure 2 is a state transition
diagram of a three-state FSM with initial state S1. This description method is
visual and intuitive, which is the most commonly used expression at present.
However, with the increase of the number of states and transition conditions,
the depicted state transition diagram will be relatively chaotic and no longer
applicable.

State Transition Table. In short, a state transition table describes state tran-
sitions in a FSM in the form of a table. Table 1 is a state transition table of
the FSM state transition diagram shown in Fig. 2. The first row represents all
transition conditions between states, and the first column represents all of the
finite states of the system. The element at the intersection of a row and a column
represents the transition condition from the state indicated by the row to the
state indicated by the column. Similar to the disadvantage of the state transi-
tion diagram, when the number of states increases, the condition of inter-state
transition will increase by a square time, and the number of columns in the state
transition table will also increase sharply. Therefore, this description method will
no longer be applicable.

Fig. 2. An example of state transition diagram

Table 1. State transition table

T1 T2 T3 T4 T5 T6

S1 S2 S3

S2 S3 S1

S3 S1 S2



300 Z. Yan et al.

State Transition Matrix. In order to address the shortcomings of the above
two methods, the concept of matrix in mathematics is introduced into FSM.
Equation (3) shows the state transition matrix of the FSM as shown in Fig. 2.
In this matrix, each row and each column represent all states of the system.
For each entry of the matrix, the row represents the current working state, and
the column represents the state to be transited in the next state transition. The
intersection of the row and column represents the trigger condition of the state
transition. However, it is not as intuitive as a state transition diagram.

X1 X2 X3

X1

X2

X3

⎡
⎣

T1 T6

T4 T2

T3 T5

⎤
⎦ (3)

Above three FSM modelling and description methods are the most commonly
used methods in applications, and each has its own advantages and disadvan-
tages. In addition, the combination of the above three methods is also common
in FSM modelling and description. In this paper, the FSM is modelled and
described mainly by state transition matrix and state transition diagram.

3 Flowchart Based Finite State Machine Designing
Method

3.1 Basic Ideas

On the one hand, the modular approach of control and data separation, as shown
in Fig. 1, is one that involves the step-by-step splitting of system functions into a
number of single functional modules. Among them, the master control module is
responsible for implementing the work sequence of these functional modules. On
the other hand, flowchart is one of the most common and complete whole project
expression method. Therefore, if the flowchart of the judgment conditions can be
regarded as state transitions of FSM, and concrete operation can be regarded as
the state of FSM, and then connect them with the start and end to form a closed
loop, the flowchart can be seen as an FSM state transition diagram. This is the
basic idea of the proposed F-FSM. Therefore, the overall engineering design and
implementation of FPGA can be carried out based on flowchart.

Figure 3 is the flowchart of the main steps of the proposed F-FSM method.
Wherein, the solid frame represents the design step of the method, and the
dashed frame represents the finite state machine information obtained by the
corresponding step, such as the states and the transition conditions between
states. The main steps of the proposed F-FSM is given as follows.



A Flowchart Based FSM Design and Implementation Method for FPGA 301

Fig. 3. Main designing flow of F-FSM

1. The flowchart is taken as input.
2. According to the flowchart, the set of primitive state and the set of transfer

conditions between the primitive states can be obtained through flowchart
division procedures.

3. For each primitive state, the sub-states, each with a single function, can be
obtained through flowchart division procedures. And then, the finite state
set and the state transition conditions set can be updated by including these
sub-states.

4. Run above step 3 iteratively until all of the primitive states are divided into
sub-states, which can not be divided any more.

5. Finally, the final state transition diagram of FSM can be drawn, and the state
transition matrix can be derived.

The proposed F-FSM provides a modular architecture application method
for FPGA system design and implementation, based on the traditional flowchart
designing method. Therefore, the proposed F-FSM method is a kind of method
for complex logic system based on simple traditional flowchart method. It can
greatly reduce the design difficulty, and promote the overall design of the struc-
ture of the realizability and maintainability.

3.2 Detailed Description of F-FSM

According to the flowchart of the main steps of the proposed F-FSM method,
as shown in Fig. 3, the detailed steps are as follows.

Step 1: According to the top-down principle, partition the complex
logic into several functional modules. Networking protocols in communica-
tion systems are often a complex set of processes, which can be directly divided



302 Z. Yan et al.

into several modules according to their functions. For example, the DTRA proto-
col can be divided into scanning stage, reservation stage and data sending stage
in DTRA. The CSMA/CA protocol can be divided into the sending module and
receiving module. The purpose of this step is, not only to reduce the complexity
of the single flowchart in Step 2, but also to make the overall structure more
intuitive.

Step 2: Comb and draw the flowchart of each module. According to
the partitioned functional modules in Step 1, draw the flowchart required by
this method after understanding the internal principles of each module. The
requirements of the proposed F-FSM method for flowchart are as follows. In the
required flowchart, only the following frames or box can be accepted.

– START box and END box.
– A decision box with n, n ≥ 1, inputs and 2 outputs, known as decision branch.
– A multi-process box with m, m ≥ 2, inputs and 1 output, known as process
branch.

– A single-process box with one input and one output, known as single process.

Up to now, the complex logic system can be modelled and described with the
traditional flowchart. The purpose of this step is to normalize the flowchart, with
clear transition conditions and complete separation of states and conditions. In
addition, this step is also to facilitate the implementation of if-else decision logic
based on FPGA hardware language. Figure 4 is an example of a flowchart that
conforms to this specification. To facilitate further understanding of this app-
roach, the following steps will be described using this flowchart as an example.
This flowchart does not correspond to any actual situation, so there is no specific
process operation. However, it will not affect the subsequent operation.

Step 3: According to the obtained flowchart, partition the flowchart
into primitive states, and then obtain the set of primitive states and
the state transition conditions set. After the primitive states are deter-
mined, they are removed from the flowchart so that they do not affect subse-
quent state partitioning procedures. After the primitive states connected by the
decision branch are determined, the transition conditions of these states are also
determined. That is, the condition of the establishment of the decision branch
is the transition condition of these two states. The detailed flow of this step is
as follows.

Step 3.1: Take the boxes of “START” and “END” in the flowchart as the states
of S0 and S1, respectively. If the function of the flowchart is a loop, S0 and S1
can be merged into state IDLE to form a closed loop. Then go to Step 3.2.

Step 3.2: Find all of the “process branches” in the flowchart, and cut the
flowchart with all inputs as cutting points. And then go to Step 3.3.

Step 3.3: After cutting, if the process branch contains “single process”, then
regard “single process” as a primitive state. It is numbered according to the
hierarchy and sequence and counted it into the state set S. If the process branch



A Flowchart Based FSM Design and Implementation Method for FPGA 303

contains decision branch, then the decision branch can be regarded as the state
transition condition. After the states connected to “decision branch” is deter-
mined, in terms of the previous states, the post-states and state transition con-
ditions, then the state transition conditions are included in the inter-state tran-
sition condition set T . Then go to Step 3.4.

Step 3.4: If there is still a decision branch that is not separated from the
flowchart, then look for the first decision branch from “START” following the
arrow. And then regard all the inputs and outputs of the decision branch as
cutting points. Then go back to Step 3.3. Otherwise, when there are no decision
branch, the flowchart partition procedure ends.

The flowchart, as shown in Fig. 4(a), after the primitive states partition is
given in Fig. 4(b) according to Steps 3.2 and 3.3. And the flowchart after the
partition of primitive state 4 according to Steps 3.3 and 3.4 is shown in Fig. 4(c).

Finally, the state set S and the inter-state transition condition set T are
respectively shown in Eq. (4) and (5), where the transition condition is fictitious
and is represented by capital letters, i.e., A,B,C and etc.

S = {S0, S1, S2, S3, S4}
= {S0, S1, S2, S3, {S4 − 1, S4 − 2}}
=

{
S0, S1, S2, S3,

{ {S4 − 1 − 1, S4 − 1 − 2, S4 − 1 − 3} ,
{S4 − 2 − 1, S4 − 2 − 2, S4 − 2 − 3}

}} (4)

T = {(S2, S1, A) , (S0, S3, B) , (S3, S0, C) , (S0, S4, C)}
= {(S2, S1, A) , (S0, S3, B) , (S3, S0, C) , (S0, S4 − 1, C + D), (S0, S4 − 2, C + D)}
= {(S2, S1, A) , (S0, S3, B) , (S3, S0, C) , (S0, S4 − 1 − 1, C + D),

(S4 − 1 − 1, S4 − 1 − 2, E), (S4 − 1 − 1, S4 − 1 − 3, E), (S4 − 1 − 2, S1, F ) ,

(S4 − 1 − 3, S2, G) , (S0, S4 − 2 − 1, C + D), (S4 − 2 − 1, S4 − 2 − 2, H) ,

(S4 − 2 − 1, S4 − 2 − 3, H), (S4 − 2 − 2, S2, I) , (S4 − 2 − 3, S1, J)}
(5)

Step 4: Partition the primitive state into sub-states according to the
primitive state functions. There is only a “single process” in the initial state
partitioned by Step 3, but it may not achieve the goal of single function require-
ment of the FPGA module designing and implementation. The primitive state
is partitioned into sub-states to achieve the requirement of single function sub-
state when the functions of the primitive state are multiple. After that, update
the set of the states, i.e., S. In addition, some “single process” can also be com-
bined as one according to the coupling degree of functions. For example, if two
single processes with the same functions can be merged as one state. There is
no branching condition between the sub-states of an primitive state. That is
to say that the internal processes of “single process” are in pipeline form, and
the next operation begins immediately after the completion of one operation.
Finally, update the set of transition conditions, T .



304 Z. Yan et al.

(a) Initial flowchart conforming to the re-
quirements of F-FSM method

(b) Flowchart after procedures of Steps 3.2
and 3.3

(c) Flowchart after procedures of Steps 3.3 and 3.4

Fig. 4. Example of partition the flowchart into primitive states and sub-states



A Flowchart Based FSM Design and Implementation Method for FPGA 305

Step 5: Draw the FSM state transition diagram and derive the FSM
state transition matrix. The following steps are helpful to draw and derive
the state transition diagram and matrix.

Step 5.1: Draw the tree diagram according to the state set S, as shown in Fig. 5.

Step 5.2: Determine the number of FSM states according to the tree diagram.
In general, it is recommended that a FSM have no more than 9 states since

when the number of the states is too large the logic of state transition will be
too complex to understand and implement. If there are more than 9 states, the
number of states can be reduced based on the hierarchy of the tree diagram.

Fig. 5. The tree diagram of the state set S.

As shown in Fig. 5, the first layer has 5 states (namely S0 − S4), the second
layer has 6 initial states (namely S0 − S3, S4 − 1 and S4 − 2), and the third
layer has 10 initial states (namely S0−S3, S4− 1− 1/− 3 and S4− 2− 1/− 3).
At this point, S4 − 1 − 1/ − 3 can be combined into a state S4 − 1 and other
states in the third layer can form another FSM, i.e., embedding the new formed
FSM into state S4−1. After that, S4−1−1/−3 and the same new state IDLE
can be formed into a FSM with four states according to Step 5.2, which can be
implemented within S4 − 1 in the form of embedding.

Step 5.3: According to the states determined in Step 5.2, the state transition
condition set T, draw the FSM state transition diagram according to whether
there are transition conditions between states and the direction of state transi-
tion. And deduce the transition conditions to output the corresponding position
to the state transition matrix.

4 IP Core Design and Implementation of F-FSM Method

The IP core design method of F-FSM is firstly presented in Sect. 4.1 firstly, and
then how to use the designed IP core is presented in Sect. 4.2.



306 Z. Yan et al.

4.1 IP Core Design Method of F-FSM

The modular architecture of control and data separation makes the function of
the control module become simple, whose function is only to output the enabling
signals of other modules according to the changes of input conditions. Therefore,
we can design a separate FSM IP core. In the following, we first give the design
and implementation principle of the FSM IP core with only 4 states, and then
extend it to the design of the finite state IP core with 10 states.

Figure 6 shows an FSM with 4 states and all possible state transitions, where
16 transition conditions can be determined. Table 2 is the parameter definition
of the FSM transition condition. In other words, these parameters can be seen
as part of the FSM IP core input interfaces.

Fig. 6. All possible state transitions in 4-state FSM with S = {IDLE, S1, S2, S3},
where S0 = IDLE.

The inputs of an FSM are directional state transition conditions. That is, a
transition from one state to another state. The outputs are enabling signals for
corresponding states, indicating that the enabled state module begins to work.
Therefore, in the design of the IP core of an FSM with 4 states, the interfaces
should include at least the clock and reset signals, 16 transition condition inter-
faces and 4 state-enabled control signals. Table 2 defines the FSM state transition
directions and the state transition parameters. The definition of state transition
parameters is named in the direction of the state transition. The state transition
condition from IDLE to S1 is taken as an example, and its parameter name is
idle-to-s1.

All of the possible state transition directions and parameters of 4 states can be
derived from Eq. (6). Within it, 2 denotes two directional conditions, indicating
that any two states among 4 states can jump to each other. 4 means that each
state can also transit to itself, so there are altogether 16 transition conditions.

2 × C2
4 + 4 = 12 + 4 = 16 (6)

2 × C2
10 + 10 = 90 + 10 = 100 (7)



A Flowchart Based FSM Design and Implementation Method for FPGA 307

Table 2. Figure 6’s state transition direction and state transition parameter definition

Direction Parameter Direction Parameter

IDLE → S1 idle-to-s1 IDLE → S2 idle-to-s2

IDLE → S3 idle-to-s3 S1 → IDLE s1-to-idle

S2 → IDLE s2-to-idle S3 → IDLE s3-to-idle

S1 → S2 s1-to-s2 S1 → S3 s1-to-s3

S2 → S1 s2-to-s1 S3 → S1 s3-to-s1

S2 → S3 s2-to-s3 S3 → S2 s3-to-s2

IDLE → IDLE idle-to-idle S1 → S1 s1-to-s1

S2 → S2 s2-to-s2 S3 → S3 s3-to-s3

The maximum number of transition conditions that may exist is the number
of input ports corresponding to IP core. Therefore, the number of input ports for
IP core with 10-states FSM is 100. Due to the excessive number of ports, these
ports can be combined and named with certain rules. This is done by merging
the 100 ports of the input ports into an input port with a bit width of 100, and
similarly merging the output ports into an output interface with a bit width of
10. The corresponding mode of its input and output interfaces is as follows. The
transition condition from state i to state j corresponds to the (10 × i+ j)th bit
of the 100-bit wide input interface, that is, the transition condition from S2 to
S3 is the 23rd bit of the input port. Bit i of the output port with a bit width of
10 is the enabling signal of state i, which controls whether state i is enabled or
not.

Figure 7 shows the interface block diagram of 10-state FSM IP core, which
encapsulates the traditional three-always style Verilog HDL codes. By combining
transition conditions between multiple states as the input interface, the enabling
signals of the other functional modules are output. Table 3 is the input/output
interface table, where state transition parameters are similar with that defined
in Table 2.

Fig. 7. 10-state FSM IP core interfaces



308 Z. Yan et al.

Table 3. Figure 7’s state transition direction and state transition parameter definition

Port name Width I/O Description

clk 1 I Clock

rst 1 I Reset

trans-condition 100 I 100 state transitions

state-en 10 O 10 state enabling ports

4.2 System Implementation Method Based on FSM IP Core

According to the modular design architecture of control and data separation idea
in Sect. 1, as shown in Fig. 1, the control module and data processing module
are effectively separated. The function of the control module is only to control
the enabling signals of the other data processing modules and only output the
0/1 control signals of the function modules. Section 4.1 presents the IP core of
the designed F-FSM, which can fully meet the single functional requirements of
the control module.

In the whole Verilog code implementation process of the system, the design
and implementation of the control module can be directly completed by calling
the reusable FSM IP core and inputting corresponding state transition condi-
tions, thus reducing a lot of coding time. In addition, the data processing module
under the modular architecture is designed as a single functional sub-module.
While in different communication systems, some functions are similar or even
the same, which makes the functional sub-module under the architecture highly
reusable.

5 Performance Evaluation

We implement the proposed F-FSM IP core on FPGA, and verify the correctness
and the efficiency of the IP core through functional simulation and mapping.

Figure 8 is the IP core function simulation verification graph of the FSM. In
the test case, the state transition conditions between various states were enabled
in turn. The functional simulation results show that the implemented F-FSM IP
core is correct.

Fig. 8. 10-state FSM IP core functional simulation



A Flowchart Based FSM Design and Implementation Method for FPGA 309

Table 4 shows the resource utilization of the implemented F-FSM IP core,
among which LUT, register and clock resources account for a relatively low
proportion, while input-output interfaces use a large amount of input conditions
as the interface in this scheme design.

Table 4. Resource utilization of the implemented F-FSM IP core

Resources Utilized Available Percentage of utilization

Slice LUTs 132 303600 0.04

Slice registers 10 607200 0.00

IO 101 700 14.43

Clocking 1 32 3.12

To sum up, for the implemented F-FSM IP core, the functional simulation
result is correct and the resource utilization is low, which meets the design
requirements.

6 Conclusion

Finite state machine (FSM) is an important design method of control module in
the design of control and data separation modular architecture. However, with
the increasing complexity of communication system, how to realize the separa-
tion of control and data efficiently and how to design an efficient FSM become
a very significant problem. This paper proposes a flowchart-based FSM FPGA
design and implementation method for complex communication system, which
significantly improves the FPGA development efficiency. This method takes the
flowchart describing the complex communication system as input, partition the
communication system into modules, and output the FSM transition diagram
and transition matrix of the control module. This method can effectively shorten
the design time of the communication system and its control module. Finally, an
IP core encapsulated in FPGA is designed. This method can effectively improve
the development efficiency of control module, and improve the re usability of
control module and reduce the workload of code development.

Acknowledgments. This work was supported in part by the National Natural Sci-
ence Foundations of China (Grant No. 61771392, No. 61771390, No. 61871322 and
No. 61501373), and Science and Technology on Avionics Integration Laboratory
and the Aeronautical Science Foundation of China (Grant No. 201955053002, No.
20185553035).



310 Z. Yan et al.

References

1. Pirayesh, H., Sangdeh, P.K., Zeng, H.: EE-IoT: an energy-efficient IoT communi-
cation scheme for WLANs. In: Proceedings of the IEEE INFOCOM 2019 - IEEE
Conference on Computer Communications, Paris, France, 29 April–2 May 2019,
pp. 361–369 (2019)

2. Yan, Z., Li, B., Gao, T., et al.: Design and implementation of FPGA-based trans-
mitter memory management system. In: IEEE International Symposium on Con-
sumer Electronics. IEEE (2014)

3. Li, S., Li, B., Yan, Z., et al.: Design and implementation of DSR routing table
entries for FPGA. Appl. Electron. Tech. 44(12), 89–92 (2018)

4. Jiang, H., Li, B., Yan, Z., et al.: Design and implementation of a frequency hopping
hybrid multiple access protocol on FPGA. In: 2018 IEEE International Conference
on Signal Processing, Communications and Computing (ICSPCC). IEEE (2018)

5. Davis, I.E., Wong, A.: Pipeline method and system for switching packets. United
States Patent, 24 March 2015

6. Syed, I., Roh, B.H.: Delay analysis of IEEE 802.11e EDCA with enhanced QoS
for delay sensitive applications. In: Performance Computing & Communications
Conference (2017)

7. Gill, A.: Introduction to the Theory of Finite-State Machines. McGraw-Hill, New
York (1962)

8. Minns, P., Elliott, I.: FSM-based digital design using Verilog HDL (2008). https://
doi.org/10.1002/9780470987629:1-22

9. Xu, H., Tang, R., Cheng, Y.: Modular design method for control of reconfigurable
machine tools. J. Zhejiang Univ. (Eng. Sci.) 38(1), 5–10 (2004)

10. Zhang, J.: Design and Implementation of MAC prototype based on FPGA for
Wireless Local Area Network. Master Degree Thesis, Northwestern Polytechnical
University, Xi’an, China (2015)

11. Ren, P.: Design and implementation of frequency synthesizer based on DDS and
PLL. Master Degree Thesis, National University of Defense Technology, Changsha,
China (2009)

12. Wen, G.: Design of high efficient state machine based on verilog HDL. Electron.
Eng. 32(6), 4–7 (2006)

13. Chen, Y.: Modelling and optimized design of finite state machine. J. Chongqing
Inst. Technol. (Nat. Sci. Ed.) 21(5), 55–58 (2007)

14. Yu, L., Fu, Y.: Verilog design and research of finite state machine. Microelectron.
Comput. 21(11), 146–148+157 (2004)

15. Luo, X., Li, J., Tian, Z.: Optimization design of FSM based on Verilog HDL.
Electron. Qual. 3(1), 36–38+42 (2012)

16. Feng, K., Li, Y., Zhang, J., Li, J.: Design and implementation of control system
based on FSM. Shipboard Electron. Coutermeasure 38(5), 94–98 (2015)

https://doi.org/10.1002/9780470987629:1-22
https://doi.org/10.1002/9780470987629:1-22

