
Vehicle Software Update over ICN
Architectures

Ali Elgammal1,2(B), Mena Safwat1,2, Wael Badawy5, Eslam G. AbdAllah3,
Marianne A. Azer2,4, and Changcheng Huang6

1 Valeo, Giza, Egypt
me.safwat@nu.edu.eg

2 School of Information Technology and Computer Science,
Nile University, Giza, Egypt

{a.elgammal,mazer}@nu.edu.eg
3 Master of Information Systems Security Management,

Concordia University of Edmonton, Edmonton, AB, Canada
eslam.abdallah@concordia.ab.ca

4 National Telecommunication Institute, Cairo, Egypt
5 Badr University, Cairo, Egypt

wael.badawy@buc.edu.eg
6 Department of Systems and Computer Engineering,

Carleton University, Ottawa, ON, Canada
huang@sce.carleton.ca

Abstract. The Internet Protocol (IP) architecture could not fully sat-
isfy Vehicular Ad-hoc Networks (VANETs) needed efficiency due to their
dynamic topology and high mobility. This paper presents a technique
to update the software of Electronic Control Units (ECUs) in vehicles
using Information Centric Network (ICN) architecture. The proposed
technique replaces Flashing Over The Air (FOTA) using IP with FOTA
using ICN. The importance of FOTA is illustrated as well as the impact
of applying the ICN architecture on VANETs. Through our experiments,
we compare between the known FOTA over IP and the newly introduced
FOTA technique over ICN.

Keywords: Flashing Over The Air (FOTA) · Information Centric
Networking (ICN) · ndnSIM · Vehicle software update · Vehicular
Ad-hoc Networks (VANETs).

1 Introduction

In the recent years, data transfer rates have rapidly increased. The number of
connected nodes exponentially increases to accommodate the demand of users
and services such as mobile phones, vehicles and Internet of Things (IoT). The
rapid growth in the number of nodes introduces prime challenges such as resource
consumption, mobility, security and scalability to the Internet Protocol (IP)
addressing network architecture (host to host). One of the key examples is the
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2021

Published by Springer Nature Switzerland AG 2021. All Rights Reserved

L. Foschini and M. El Kamili (Eds.): ADHOCNETS 2020, LNICST 345, pp. 44–54, 2021.

https://doi.org/10.1007/978-3-030-67369-7_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67369-7_4&domain=pdf
https://doi.org/10.1007/978-3-030-67369-7_4


Vehicle Software Update over ICN Architectures 45

Vehicular Ad-hoc Networks (VANETs), where the bottleneck or contingency of
data results in loss of connectivity and consequently leads to possible vehicle
crashes and people fatal injuries. The increase in network latency or centralized
network overhead leads to 1.35 million injuries per year [9].

Information Centric Networking (ICN) reduces the latency of VANETs where
information is labeled into objects with descriptors. In ICN, the data source
node announces the data availability modeled as an object. The requester node
establishs a communication channel to the nearest node to transfer an interest
request. The interest request propagates through the intermediate nodes until it
reaches the source node. Subsequently, the source node sends the required data
reversely to the same routing path without needing to know who the requester
is. The data is transferred to the neighboring nodes trough the network, until
the data reaches the requester node or the nearest node. In ICN, each node in
the routing path can cache the data in the content store to satisfy the same
upcoming interests in order to decrease the response latency.

Table 1. IP and ICN architecture comparison

ICN architecture IP architecture

Caching Occurs in all the intermediate
nodes in routing path

Occurs in servers only

Naming Hierarchical/flat Source/destination
address embedded in the
packet name

Security Focusing on object security Focusing on channel
security

Data availability in high
mobility nodes

Highly associated/achieved
with the cached data versions

Achieved with response
latency

One of the main features of ICN is the decoupling between a transmitter
and a receiver. The ICN uses a message content instead of destination address.
Hence, the source/requester node announces and registers a request using the
object name and does not use the node address to reduce the network overhead.
ICN takes advantage of the distributed control instead of central control to
reduce the bottleneck [11]. Table 1 summarizes the main differences between IP
and ICN network architectures [4].

An important applications, called Flashing Over The Air (FOTA) has been
required recently in automotive industry. In the following sections, we will
describe in detail the network challenges, proposed ICN architecture, and FOTA
application [1].

The advances in automotive industry use electronic circuits called Electronic
Control Units (ECUs) for better control and automatic operations in the vehicle,
they connect vehicles through different networks. The connectivity enables data
exchange about local information such as road conditions, or weather. Data



46 A. Elgammal et al.

exchange between vehicles serves in vehicle ECUs update [8]. Consequently, the
VANETs use a large numbers of ECUs with complex hardware and software to
run algorithms for Advanced Driver Assistant Systems (ADAS) and autonomous
driving. For example, 100 ECUs with 250 embedded/graphic CPUs [14] are used
to execute more than 100 million lines of code inside the vehicle for handling
vehicle normal operation [15].

ECU’s errors, in either software or hardware, result in accidents, injuries and
losses. Due to the higher reliability of hardware, the software is a more proba-
ble source of defects. Software updates are either regular or on demand. They
are necessary to offset the liability of potential errors through vehicle recalls.
Currently Original Equipment Manufacturers (OEMs) plan to perform these
updates periodically for adding new features, fixing defects and handling security
vulnerabilities. ECU software updates occur at the OEM service center. FOTA
technology [7] is designed to avoid user inconvenience, unnecessary consumed
time, and to manage frequently ECU software update on the fly [2].

FOTA uses software data transfer over wireless communication network and
requires the following features: (1) minimal software update time, (2) data
integrity, and (3) security goals. The proposed technique of using FOTA over
ICN eliminates the need for source node addressing and the specific message
routing, which improves the VANETs performance.

In this paper, we run our experiments to evaluate the performance of our
proposed technique versus FOTA over IP in VANETs using Named Data Net-
working Simulator (ndnSIM). The results show that using our proposed tech-
nique enhances VANETs performance in all analyzed scenarios. Accordingly, we
propose to use the aforementioned ICN advantages in FOTA.

The remainder of this paper is organized as follows. Section II illustrates
FOTA and ICN background. Section III demonstrates a platform for FOTA
over ICN. Section IV presents FOTA simulation framework. Finally, conclusions
and future work are present in Section V.

2 FOTA and ICN Background

This section introduces the FOTA over IP network and the ICN platform in
section A and B, respectively. Using the IP network, vehicles receive the updated
software through an On Board Diagnostics (OBD) port and then the gateway
ECU routes the software data to the required ECU.

The IP network uses a Telematics Control Units (TCU) to interface the
vehicle to the network. The vehicles are developed to centralize the remote
diagnostics communication via internet [6]. Remote vehicle diagnostics facilitate
the vehicle’s ECUs software update. When software artifact or vulnerabilities
are detected, or new features are added; the ECU supplier updates/releases an
updated software version. The following steps describe the positive scenario for
FOTA process.



Vehicle Software Update over ICN Architectures 47

Fig. 1. Flashing over the air, IP network

2.1 Flash over the Air over IP Scenario

As shown in Fig. 1, FOTA over IP is performed by the following steps.

1 - An OEM uploads the new software version to its cloud server.
2 - The cloud server notifies the vehicle with the availability of a new software

version.
3 - The main/gateway ECU authenticates the server and accordingly receives

the new software data information (metadata).
4 - The main ECU verifies/compares the received metadata with the already

flashed version and defines the targeted ECU to be flashed. Then the main
ECU decides either to continue the software update or not.

5 - The main ECU receives the new software data, while the vehicle’s whole
functionalities are running.

6 - The main ECU checks the software integrity and signature, then requests
the flash writing from the targeted ECU.

2.2 Information Centric Networking (ICN)

In this section, we present an ICN architecture, specifically Named Data Net-
working (NDN). An NDN node contains three main data structures. Forwarding
Information Base (FIB) memorizes the information about the sent interests.
Pending Interest Table (PIT) holds the awaiting information to be satisfied.
Content Store (CS) contains the cached data version locally.

The requests and satisfactions in ICN architecture are illustrated in Fig. 2.
Node 1 (subscriber 1) sends an interest request “/lib 1/book ai/2018.txt” to the



48 A. Elgammal et al.

Fig. 2. Data flow in ICN architecture

Resolution Handler 1 (RH1), RH1 exports the interest name and searches for
the content on its content store. Assuming that RH1 does not have the requested
interest data, RH1 forwards the interest to RH2 and RH3 and stores the interest
information in its PIT and FIB.

RH2 and RH3 do the same as RH1, then node 3 (publisher 1) satisfies the
“/lib 1/book ai/2018.txt” interest by forwarding the data back to node 1 on the
same routing path. The intermediate nodes between node 3 and node 1 (RH1,
RH2 and RH3) store the interest data at the CS then remove the interest request
from the PIT.

Node 2 (subscriber 2) sends an interest request “/lib 1/book ai/2018.txt” to
node 1, node 1 responses directly with the interest data from its content store
[13].



Vehicle Software Update over ICN Architectures 49

Fig. 3. Software data exchange sequence

3 Proposed Platform for FOTA over ICN

In this section, we propose the vehicle software update through ICN architecture
procedure. First, the vehicle manufacturer node announces new software update
for specific ECUs in one of their vehicle models. The targeted vehicles in the
software update request the data from the nearest node/vehicle and the request
propagates towards the data source. New software data is routed back to the
requester through the same request path. All the intermediate vehicles/nodes
can cache the data to satisfy the upcoming requests. Each OEM has its own
technique to identify the software update file naming and versioning schema.

ICN in-network caching refers to caching the response data inside the inter-
mediate vehicles/nodes to decrease the number of requests that are directed
to the data provider. Accordingly, the manufacturer node response time is
improved. Hence, the software update feature could be delivered in a more effi-
cient manner for the rest of the vehicles.



50 A. Elgammal et al.

FOTA over ICN procedure is described in the following steps, and is depicted
in Fig. 3. The figure describes the steps while the vehicles are under coverage of
ICN network.

1 - The OEM publisher sends an announcement to indicate that there is an
updated software version for specific ECU. Vehicle C1 and C3 have the tar-
geted ECU.

2 - C1 sends an interest request to another vehicle C2.
3 - C2 adds the C1’s interest to PIT and forwards the request to RH2.
4 - RH2 and RH1 perform the same step as step 3 until interest request reaches

the OEM publisher.
5 - The OEM publisher transmits the software chunks to RH1 then RH1 trans-

fers the software until reaching C1. All the intermediate nodes between the
OEM publisher and C1 cache the data in CS.

6 - Once C1 receives the full software, it checks the validity of the software and
then starts the update procedure.

7 - Meanwhile, C3 requests the updated software from the nearest node C4.
8 - C4 and RH3 repeat step 3 till interest request reaches RH2, as the RH2

already has the software update in the CS.
9 - RH2 forwards the data directly to RH3.

10 - RH3 and C4 save the data in the CS and forward it back to C3.
11 - C3 repeats step 6.

Each time a vehicle needs to update the software, there is no need for C3
request to reach the main server (OEM publisher). This reduces the load on the
server side and decreases the latency. The latency is decreased as data response
takes shorter path and data comes from many nodes to satisfy same interest
from different nodes.

4 FOTA Simulation Framework

In this section, our objective is to highlight the flashing time measurements for
both IP and ICN networks through simulation experiments using Named Data
Network simulator (ndnSIM) [5].



Vehicle Software Update over ICN Architectures 51

Fig. 4. FOTA Software data exchange for the first scenario 3*3 grid, node 1, 5 act as
consumers and node 9 act as a producer. Parts a & b in the figure show FOTA over
IP simulation data flow, and parts c & d show FOTA over ICN simulation data flow.

Table 2. Simulated vehicle Software flashing scenarios

Scenario ID Network topology Consumer nodes ID Producer node ID

Scenario 1 Grid of 3*3 nodes C1:Node 1 C2:Node 5 Node 9

Scenario 2 Grid of 10*10 nodes C1:Node 1 C2:Node 45 Node 100

Scenario 3 Grid of 15*15 nodes C1:Node 1 C2:Node 81 C3:Node 129 Node 225

4.1 Simulation Set-Up

ndnSIM is an open source package that uses the Named Data Networking (NDN)
protocol stack for the NS-3 simulator [12]. The ndnSIM simulator is widely used
to figure out NDN attributes such as FIB, PIT and CS and ICN network [3] [5].
This simulator is based on C++, our simulation parameters are as follow.

– Network Topology: Point to point.
– Routing Strategy: Best route strategy.
– Data Rate: 1 Mbps.
– Packet Size: 1024 Kbytes.

The analyzed case is to transfer one software for specific ECU, transmitted as
one segment, and vehicle connectivity is ensured during the software transfer.

Three scenarios are implemented for flashing software with the packet size as
descried in Table 2. The producer node “server” has the updated software, and



52 A. Elgammal et al.

Consumer vehicles request the updated software from nearest node (in case of
ICN) or from the server directly (in case of IP).

4.2 Simulation Results

We used the NetAnim tool to visualize the NS-3 simulator output results by
investigating the generated .xml files. In Fig. 4 we present FOTA software data
transfer between nodes for the scenarios mentioned earlier.

Figure 4-a & Fig. 4-b show FOTA over IP simulation data flow for the first
scenario as follows.

1. - Node 5 “consumer 2” sends a software update request to node 8.
2. - Node 8 forwards the request to node 9 “producer”.
3. - Node 9 transmits the software update to node 8.
4. - Node 8 forwards the software update to node 5.
5. - Meanwhile, node 1 requests the updated software from node 2.
6. - Nodes 2, 5 and 8 repeat step 3 until the request reaches node 9 “producer”.
7. - Node 9 transmits the software update to node 8.
8. - Nodes 2, 5 and 8 repeat step 4 till software update reaches node 1.

Figure 4-c & Fig. 4-d show FOTA over ICN simulation data flow for the first
scenario as follows.

1 - Node 5 “consumer 2” sends a software update request to node 8.
2 - Node 8 adds the node 5’s interest to PIT and forwards the request to node

9 “producer”.
3 - Node 9 transmits the software update to node 8.
4 - Node 8 caches the data in CS and forwards the software update to node 5.
5 - Meanwhile, node 1 requests the updated software from node 2.
6 - Node 2 adds the node 1’s interest to PIT and forwards the request to node

5. Node 5 already has the software update in the CS.
7 - Node 5 forwards the software update directly to node 2.
8 - Node 2 forwards the software update to node 1.

In Fig. 5, we present the experimental results for the three cases, where the data
transfer in ICN is faster than data transfer in IP. In IP protocol, the data source
is centralized in one node “producer”, and hence the producer is the only one
that can provide the data. In ICN protocol, the data source is decentralized and
the consumers can get the data from the nearest node that has the data in the
CS. In scenario 1, the transfer time for the consumer 1 in case of IP is less than
by 0.003 and this is due to network protocol and caching time as it is the same
node, server, routing path and distance. Using our proposed technique, the data
transfer time is reduced by 30% in most of the scenarios.



Vehicle Software Update over ICN Architectures 53

Fig. 5. Experimental results for the three FOTA Scenarios over both IP and ICN
networks [1- 3*3 Grid of vehicles “two consumers (C1 & C2)” 2- 10*10 Grid of vehicles
“two consumers (C1 & C2)” 3- 15*15 Grid of vehicles “three consumers (C1 & C2 &
C3)”]

5 Conclusions and Future Work

IP networks have several issues such as resource consumption, security, and scal-
ability especially when it comes to vehicles high mobility. With the current type
of concerns, researchers take the opportunity to develop new alternative solu-
tions. Information Centric Network (ICN) is one of the proposed alternatives to
overcome the IP architecture concerns. This paper presents our novel method-
ology for providing Flashing Over The Air (FOTA) for vehicle software updates
over ICN architectures. This paper proposes and simulates three different FOTA
scenarios by changing the number of vehicles, the number of consumers and the
network architecture. This simulation is handled using NDN simulator. Results
have proven that FOTA over ICN improves many aspects such as software flash-
ing time, network response and servers bottleneck.

In the future, we plan to analyze more scenarios for FOTA over ICN while
taking into consideration the application hex data segmentation [10], topology
changes and vehicle mobility. This is in addition to analyzing the impact of the
possible attacks for both FOTA over IP and FOTA over ICN.

Acknowledgments. The authors would like to acknowledge Valeo Interbranch Auto-
motive Software, Egypt, and Nile university research center.



54 A. Elgammal et al.

References

1. Gurmani, M.S., Möller, D.P.F.: Mechanism protecting vehicle-to-vehicle communi-
cation. In: Akhilesh, K.B., Möller, D.P.F. (eds.) Smart Technologies, pp. 335–343.
Springer, Singapore (2020). https://doi.org/10.1007/978-981-13-7139-4 26

2. Halder, S., Ghosal, A., Conti, M.: Secure ota software updates in connected vehi-
cles: A survey. arXiv preprint arXiv:1904.00685 (2019)

3. Raman, A., Chou, K., Mastorakis, S.: Experimenting with a simulation frame-
work for peer-to-peer file sharing in named data networking. arXiv preprint
arXiv:1911.07289 (2019)

4. Yao, H., Li, M., Du, J., Zhang, P., Jiang, C., Han, Z.: Artificial intelligence for
information-centric networks. IEEE Commun. Mag. 57(6), 47–53 (2019)

5. Kato, T., Minh, N.Q., Yamamoto, R., Ohzahata, S.: How to implement NDN manet
over ndnSIM simulator. In: 2018 IEEE 4th International Conference on Computer
and Communications (ICCC), pp. 451–456. IEEE (2018)

6. Mayilsamy, K., Ramachandran, N., Raj, V.S.: An integrated approach for data
security in vehicle diagnostics over internet protocol and software update over the
air. Comput. Electr. Eng. 71, 578–593 (2018)

7. Mirfakhraie, T., Vitor, G., Grogan, K.: Applicable protocol for updating firmware
of automotive hvac electronic control units (ecus) over the air. In: 2018 IEEE Inter-
national Conference on Internet of Things (iThings) and IEEE Green Computing
and Communications (GreenCom) and IEEE Cyber, Physical and Social Comput-
ing (CPSCom) and IEEE Smart Data (SmartData), pp. 21–26. IEEE (2018)

8. Onuma, Y., Terashima, Y., Nakamura, S., Kiyohara, R.: A method of ECU software
updating. In: 2018 International Conference on Information Networking (ICOIN),
pp. 298–303. IEEE (2018)

9. Organization, W.H., et al.: Global status report on road safety 2018. World Health
Organization (2018)

10. Teraoka, H., Nakahara, F., Kurosawa, K.: Incremental update method for vehicle
microcontrollers. In: 2017 IEEE 6th Global Conference on Consumer Electronics
(GCCE), pp. 1–2. IEEE (2017)

11. AbdAllah, E.G., Hassanein, H.S., Zulkernine, M.: A survey of security attacks in
information-centric networking. IEEE Commun. Surv. Tutorials 17(3), 1441–1454
(2015)

12. Mastorakis, S., Afanasyev, A., Moiseenko, I., Zhang, L.: ndnSIM 2.0: a new version
of the NDN simulator for ns-3. NDN, Technical report NDN-0028 (2015)

13. Fang, C., Yu, F.R., Huang, T., Liu, J., Liu, Y.: A survey of energy-efficient caching
in information-centric networking. IEEE Commun. Mag. 52(11), 122–129 (2014)

14. Georgakos, G., Schlichtmann, U., Schneider, R., Chakraborty, S.: Reliability chal-
lenges for electric vehicles: from devices to architecture and systems software. In:
Proceedings of the 50th Annual Design Automation Conference, p. 98. ACM (2013)

15. Charette, R.N.: This car runs on code-IEEE spectrum. IEEE Spectrum: Technol-
ogy, Engineering, and Science News (2009). http://spectrum.ieee.org/green-tech/
advanced-cars/this-car-runs-on-code

https://doi.org/10.1007/978-981-13-7139-4_26
http://arxiv.org/abs/1904.00685
http://arxiv.org/abs/1911.07289
http://spectrum.ieee.org/green-tech/advanced-cars/this-car-runs-on-code
http://spectrum.ieee.org/green-tech/advanced-cars/this-car-runs-on-code

