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Abstract. Hierarchical network architectures are widely deployed to
reduce routing overheads and increase scalability. In our work, we are
interested in large-scale Mobile Ad-Hoc Networks (MANETS) which are
formed by interconnecting smaller clusters through a backbone. To sup-
port end-to-end routing in such networks, we employ a hierarchical app-
roach as follows. The clusters are MANETS, running OLSR locally. Each
cluster has a gateway, and the gateways are interconnected through a
backbone. In this paper, we study four different solutions to provide
end-to-end connectivity through the backbone: flooding all data pack-
ets through the backbone, modifying an ad-hoc routing protocol such as
OLSR and AODV, or using a P2P overlay for routing purposes. Running
extensive simulations in OMNeT++, our results highlight the strengths
and weaknesses of each approach. Flooding, albeit a very simple app-
roach, appears to be quite competitive with more complex routing solu-
tions, with good performance and low overheads.

Keywords: MANETS - P2P overlays + Hierarchical routing

1 Introduction

Mobile Ad hoc Networks (MANETS) are finding applications in a range of areas,
including emergency response networks, intelligent transportation systems, out-
door enterprises, small businesses etc. [10,22,23]. One important characteristic
is that they are self-organizing and self-configuring wireless multi-hop networks
which do not rely on any existing infrastructure to exist; as nodes are by them-
selves, servers and clients [4,14]. Each node must act as a router to forward
traffic unrelated to its own use.

The number of users in MANET applications may vary from just a hand-
ful to hundreds of thousands of people and more [2]. As MANETSs and mobile
devices become increasingly popular and the ensuing networks grow larger, more
research effort focuses on devising protocols for route establishment and main-
tenance in these networks. In a flat network of several interconnected mobile
devices, and spanning a large geographical area, for instance, the network will
typically incur increasing overheads for route maintenance and establishment
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and other network functions. This scalability limitation is true for almost any
MANET routing protocol proposed for flat networks. Many routing protocols
for ad-hoc networks are either proactive (table-driven) or reactive (on-demand)
[18,27]. Proactive routing protocols like OLSR or DSDV originate from the tra-
ditional distance vector and link state protocols. They continuously maintain
routes to all destinations in a network, whereas reactive (on-demand) protocols
like AODV or DSR will only seek out routes to a destination when necessary.
Both routing protocol approaches scale poorly [18,27]. This is true because of
the inherent characteristics of these protocols [26]: on the one hand, the on-
demand routing protocols are limited by their route discovery techniques because
of the extensive use of flooding. Hop-by-hop flooding usually has a huge negative
impact on network performance and often leads to large delays in route discovery
[3,22]. On the other hand, proactive routing protocols have these routes readily
available, but it comes at a cost of constant route discovery throughout the life-
time of the network. It is evident therefore that both protocols have scalability
issues, which get even worse in the case that nodes are mobile and links become
generally unpredictable [3,22].

A hierarchical routing architecture, when carefully planned, shows its advan-
tage of simplifying routing tables considerably and lowering the amount of rout-
ing information exchanged [8,23], thus increasing search efficiency and increasing
scalability. This is best exemplified by the global Internet, which employs a hier-
archical architecture and routing structure. The Internet is divided into routing
domains. A routing domain typically contains a collection of co-located networks
connected by routers (who are nodes) and linked in a common routing domain
called the backbone [23].

In this paper, hierarchical routing is adopted to tackle the problem of incur-
ring increasing overheads for route maintenance and establishment and other
network functions in large MANETS. The following concerns are also taken into
consideration in designing appropriate routing solutions:

— Nodes do not necessarily belong to a single network throughout their lifetime.
As nodes are mobile, they may change their cluster membership, clusters
may merge or split. So, a more general hierarchical routing architecture that
supports various mobility scenarios is desirous. This rules out the hierarchical
solutions proposed for the Internet, where nodes belong to IP subnets, and
routing information is aggregated to handle routes to specific subnets only.

— In order for hosts within a cluster to route packets destined for hosts in
external clusters or domains, there is the need for a protocol or scheme which
will be the standard for such applications. OLSR supports a HNA message
scheme which is primarily for external access, standardized in RFC 3626 [12].
This scheme is relevant for the designs we explore, as we will use OLSR as
intra-domain routing protocol within each cluster.

A simple scheme to provide routing in such a hierarchical network would be
for gateways nodes to simply flood all data packets destined for nodes outside
a cluster through the backbone. Once a gateway receives a packet, it consults
its routing table to determine whether the destination node is in its cluster.
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If this is the case, it forwards the packet to the destination, based on the intra-
cluster routing protocol (OLSR in our work). While such a scheme is easy to
implement and can handle various mobile scenarios, it can easily overburden the
backbone, so more efficient routing schemes would be beneficial. We present three
additional possible solutions, and compare them using extensive simulations in
OMNeT++ [31].

A hierarchical MANET architecture finds application in, for example, a mili-
tary environment. In such a scenario, there exist platoons which move in groups
and each platoon typically consists of soldiers and, probably, a dedicated vehicle
(armoured tank/truck). These platoons are MANETS which are then considered
as clusters in our study. In such a setting, the number of or size of a cluster
is typically not known a-priori, but cluster membership is defined a-priori by
the application. Each platoon has a dedicated gateway (this can be the armored
vehicle), and, through the gateways, the various platoons are interconnected in
a backbone network. The gateways are more powerful devices equipped with
capabilities which will enable them effectively support communication between
members of their local cluster and the different clusters.

The remainder of this paper is organized as follows. The next section reviews
related work. Section 3 introduces our 4 routing solutions. Section4 discusses
the comparative quantitative simulation results we obtained when implementing
our schemes in OMNeT++, focusing on the protocol performance when nodes
jump from cluster to cluster. Finally, the last section summarizes our work and
suggests avenues for future research.

2 Related Work

As discussed earlier, treating the whole MANET as a single, flat routing domain
runs into scalability issues, see also [8,23]. An alternative to flat MANETS is clus-
tering or hierarchical routing. The motivation for exploring hierarchical routing
is that it increases scalability, routing efficiency and potentially reduces routing
table entries considerably. Typically, rather than assuming that node movement
is independent, hierarchical ad-hoc routing protocols group nodes into clusters
of nodes that follow the same movement pattern. These protocols are based on
the idea that members of a group tend to move together and therefore a node
will most likely remain within the same cluster. This allows a node to move
freely within its cluster and only inform other cluster members, abstracting node
movement within a cluster. Members of other clusters only need to know how
to communicate with one of its members. These groups may have some sort of
cluster leader, popularly known as gateways or cluster heads. Depending on the
algorithm and the clustering technique, there might be gateways providing con-
nectivity with other clusters, and cluster heads who coordinate routing within
their clusters and with other clusters. Alternatively a single node acts as both
cluster head and gateway, providing connectivity with other clusters through a
core/backbone network. Clusters can then be organized into a hierarchy.
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In [9,16] the authors present a review of current hierarchical routing pro-
tocols and clustering approaches. The authors first introduce fundamental con-
cepts about clustering. Then they classify the proposed clustering schemes into
six categories based on their main objectives, which are load balancing cluster-
ing, Dominating-Set-based (DS-based) clustering, low maintenance clustering,
mobility-aware clustering, combined metrics-based clustering, and energy effi-
cient clustering. They also grouped the clustering cost terms into five categories:
the required explicit control message exchange, the ripple effect of re-clustering,
the stationary assumption, constant computation round, and communication
complexity.

One of the earliest clustering protocols is LCA [7], developed for packet radio
networks. The LCA protocol organizes the nodes into clusters according to the
proximity of the nodes. Each cluster has a cluster head and all nodes in a cluster
are in the direct transmission range of the cluster head. The choice of the cluster
head is based on node identifiers, where the node with the largest identifier in a
given area becomes the cluster header. The gateways in the overlapping region
between clusters are used to connect clusters. LCA specifies that there should
only be one designated gateway to interconnect clusters at a given time. A pair
of nodes within transmission range of each other can also be used to connect
clusters if there are no nodes in the overlap region.

In GPSR [11], packets are routed alternately between the cluster leaders
and the gateways. The authors define several extensions that can be added to
CGSR, such as priority token scheduling and gateway code programming, to
control access to the channel. In addition, they define a LCC (Least Cluster
Change) algorithm, designed to reduce the number of changes in the cluster
leader, since such changes can generate significant overhead.

The works of [6,15] take a different approach to clustering and present two
clustering algorithms. The first of these is DCA, intended for “quasi-static”
networks in which nodes are slow moving, if moving at all. The other algorithm
is called DMAC, designed for higher mobility. Both algorithms assign different
weights to nodes with the assumption that each node is aware of its respective
weight. The weights are in turn used to determine the cluster leaders. In the
DMAC protocol, if two cluster leaders come into contact, the one with the smaller
weight must revoke its leader status.

Another approach is that taken by the CEDAR algorithm [28], which builds
a set of nodes (i.e., a core) to perform route computation instead of creating
a cluster topology. Using the local state information, a minimum dominating
set of the network is approximated to form the core. CEDAR establishes QoS
routes that satisfy bandwidth requirements using the directionality of the core
path. Link state and bandwidth availability is exchanged to maintain important
information for computing QoS routes.

Kleinrock was an early pioneer of hierarchical routing schemes for static
networks. In [19], Kleinrock and Kamoun investigated a hierarchical routing
scheme with the goal of reducing routing table size. The authors of [25] also
adopt a similar approach. The authors determined that the length of the routing
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table is a strict function of the clustering structure. Clustering generally has the
unwanted side-effect of an increase in path length, and so the goal was to find an
optimal clustering scheme that optimizes path length. It was determined that
the number of entries in a node’s forwarding table is minimized when the number
of level-i clusters in each level -(i+ 1) cluster is e, and the number of levels in
the clustering hierarchy equals In V. In this case, the forwarding table contains
eln N entries.

The Landmark Routing technique [30] is a distinct approach to building a
hierarchy as it is based on landmarks, as opposed to transmission ranges. A
landmark is a router whose location is known by its neighboring routers up to
some radius. All routers within that radius know how to reach the landmark.
A hierarchy of such landmarks is built by increasing the radius of some of the
routers. Nodes have hierarchical addresses based on the landmarks with which
they are associated. A source node routes to a destination by sending the packet
to the lowest level landmark with which both nodes are associated. As the packet
approaches the destination, the granularity of routing knowledge about that des-
tination improves, and so the packet can be accurately routed to the destination.

Advantages of hierarchical routing, alongside scalability, include the ability
to reduce routing table sizes, to shield nodes within a cluster from mobility
in other clusters and to use different routing protocols, with possibly different
update frequencies, in different clusters. Disadvantages include the difficulty in
maintaining the structure of clusters in the face of high mobility (which has a
particularly adverse effect if cluster heads change groups), the possible bottleneck
presented by gateway nodes (these nodes also suffer greater resource usage) and
the use of suboptimal paths. Examples of hierarchical routing protocols can be
found in [16].

In our research, scalability is a strong requirement and so, we try to limit
routing knowledge and avoid flooding in the backbone. Thus, we apply a hierar-
chical approach. In the context we are working with, we do not use any special
algorithm for cluster formation and maintenance. Rather we assume that clus-
ters are externally given, as is the case when they flow from the application/use
of the MANET. For example, we may have different platoons of soldiers (in a
military context) or different first responder crews joining in as a group etc.
We are focusing in the basic choices of routing through the backbone in this
work. The following section outlines 4 quite distinct approaches to routing in
the backbone that we are evaluating.

3 Backbone Routing Approaches

Our core network architecture assumes that the MANET is organized into a two-
tiered hierarchy. Ordinary nodes are equipped with a single wireless interface
and grouped into clusters, given by the nature of the application (or some other
means). Each cluster has one (or potentially multiple) gateway nodes that are
equipped with two wireless interfaces: one to communicate with other nodes in
the same cluster, a second one (with potentially different characteristics such as
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transmission range or bandwidth) for communication with other gateways. The
gateways collectively form the MANET backbone. Nodes in one cluster should
be enabled to communicate with nodes in the same cluster, but also with nodes
in other clusters.

Routing within a single cluster is done using OLSR, as this allows us to easily
explore different alternatives for the backbone interconnecting multiple clusters:
each cluster gateway advertises reachability to nodes outside a gateway through
OLSR’s HNA message by advertising a default route. Regular nodes in the clus-
ter therefore have host-specific routes to all other nodes in the same cluster, and
a default route to the gateway for any other destination. This information gets
updated locally as nodes join and leave a cluster. It also gets updated period-
ically to reflect changes in the network topology within a cluster, as nodes are
free to move. Due to OLSR’s pro-active nature, gateways know which nodes are
within their cluster simply by observing their local routing table. To enable rout-
ing through the backbone (to enable inter-cluster communication), we designed
and implemented a number of different approaches. This section briefly discusses
these approaches and provides some quantitative comparison, the next section
presents some quantitative results obtained via simulation in OMNeT++.

The 4 solutions differ in the routing approach taken by the gateway nodes to
deliver packets to destination nodes in remote clusters. In the discussion below,
we will use the term ingress gateway to denote a gateway that receives a packet
from a local node in its cluster, destined to a node in a different cluster. Similarly,
the egress gateway is the gateway managing the cluster to which the destination
node belongs. A key question and differentiating factor for all routing approaches
is how much routing information is distributed in the network, and how much
effort is required to maintain this information in the presence of node mobility
and clusters merging and splitting.

The simplest approach is to broadcast data packets trough the backbone and
a simple implementation of that idea would be to flood the data packets through
the backbone (i.e., each gateway, when receiving a data packet it has not seen
before, rebroadcasts it). No backbone routing protocol is required in this case,
and gateways only require knowledge about which nodes are in its local cluster.
Once the ingress gateway receives a data packet that is not destined for a node
in its cluster, it simply broadcasts that packet over the backbone interface. In
case a data packet is received over the backbone interface that is destined to a
local node, the egress gateway uses the information in its local routing table to
forward the data packet accordingly. While this approach minimizes the amount
of routing knowledge in each gateway, it may scale poorly as the backbone grows,
as each data packet is transmitted multiple times (in the case of flooding, which
we implemented, each data packet is (re-)broadcast by all nodes in the backbone
except for the egress gateway).

Another relatively straightforward approach is to exploit the HNA capability
in OLSR. In this solution, the backbone runs a second instance of the OLSR
routing protocol, this time over the backbone interface. Each gateway advertises
reachability to nodes in its cluster via host-specific HNA entries. When an ingress
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gateway receives a data packet destined to a node outside the local cluster, it will
have enough information in its routing table to forward this data packet to the
correct egress gateway. As nodes join and leave clusters, gateways learn about
the changes in their cluster membership and will propagate this information via
the periodic exchange of HNA messages. Compared to the broadcast solution
outlined earlier, data packets can be forwarded over a shortest-hop route through
the backbone. On the downside, each gateway learns routing information for all
nodes in the network: the local OSLR instance propagates routing information
to all nodes in the local cluster, the backbone OLSR instance propagates the
reachability of all remote nodes via the appropriate gateway. This information
is maintained in a pro-active manner, whether needed or not.

A third solution uses a modified version of AODV as backbone routing pro-
tocol. Once the ingress gateway receives a data packet from a local node, it
will trigger a RREQ through the backbone. Other gateways, upon receiving the
RREQ, will check whether the destination node is a member of their local cluster
and respond with a proxy RREP. As this information is propagated throughout
the backbone, a forward path is set up in intermediate backbone nodes and the
data packet can be forwarded over the shortest-hop path, similar to the OLSR-
based solution discussed previously. To support node mobility, gateways will
have to issue a RERR message when receiving a data packet to a node that has
recently left their local cluster, causing the ingress gateway to re-issue a RREQ.
To enable a gateway to distinguish a data packet that is meant to be delivered
locally from a data packet it simply has to forward through the backbone, we use
tunneling: the ingress gateway will tunnel a data packet (using IP in IP encap-
sulation) to the egress gateway. Unlike the OLSR-based solution, gateways learn
(and maintain) much less routing information. Besides the routing information
to nodes in the local cluster, a gateway only manages information about desti-
nation nodes its local nodes are currently communicating with. This information
is than maintained only for the duration of the data flow.

Our final solution is similar to the AODV-based solution, in that ingress gate-
ways learn about the egress gateways on-demand. However, where AODV uses
flooding to determine this information (and to re-establish it when the routing
path fails), we propose to use a P2P approach, using a Distributed Hash Table
(DHT). All gateways join a P2P overlay, storing information about nodes reach-
able through them under the hash of a node’s IP address. Each such entry, if
it exists, will list one or multiple gateways through which a destination node
is reachable. Once an ingress gateway receives a data packet, it will query the
P2P overlay. With the information returned from the overlay, it then tunnels
the data packet to the appropriate egress gateway (we are running OLSR as the
backbone routing protocol, so an ingress gateway can select the egress gateway
that is the closest, for example). The efficiency of this scheme will depend on
how easy the P2P overlay resolves lookup requests. As nodes leave and join clus-
ters, the gateways, detecting changes in their local routing tables, update the
routing information in the P2P overlay. To support mobility, gateways periodi-
cally query the overlay to see whether the routing information has been changed.
This solution will store a complete set of routing information, somewhat similar
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to the OLSR-based approach. But it will only save a single copy of the rout-
ing information (instead of replicating it across each gateway), distributing the
information across all gateways that joined the P2P overlay. The information
is not maintained pro-actively, but updated as the topology changes. The costs
of this approach are that the P2P overlay will have to be maintained, and that
gateways will periodically re-confirm that the (cached) routing information they
are currently using is still accurate/up-to-date.

4 Simulation Results and Discussions

We used OMNeT++ as our simulation platform [31]. The INET Framework, an
open-source library for the OMNeT++ environment [17], provides implemen-
tations of MANET routing protocols such as AODV or OLSR, as well as an
IEEE 802.11 MAC layer. OverSim [24] is a flexible framework for overlay net-
work simulation and includes implementations of some structured P2P protocols
(i.e. Chord [29], ... etc.). We added an implementation of basic flooding through
the backbone and implemented the modifications discussed above. While these
were quite straightforward in the case of AODV and OLSR, using the DHT as a
backbone routing protocol is more evolved, and the details are discussed in [13].
We selected Chord as the overlay DHT protocol in the results reported here.

S G R A

Fig. 1. Basic 3 x 3 grid layout
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We focus in our evaluations on how well the proposed backbone routing
solutions support nodes switching clusters. We set up a network with 9 clusters
in a 3 x 3 grid layout as shown in Fig. 1, which shows a screenshot from the
OMNeT++ GUI. We set the radio transmissions range for the backbone radio
such that a gateway can only communicate with its direct neighbors in the grid.
The local radio’s transmission range is set such that nodes can only communicate
with one gateway, forming a local cluster. Both local and backbone radios use
IEEE 802.11 for the PHY and MAC layers, with a channel rate of 11 Mbps.
Two nodes are initially in the same cluster (the top left one), sending 1 kByte
UDP packets to each other once every second after an initial delay of 80 s to
allow the various routing protocol instances to converge, the Chord ring to form,
etc. We then explore two different mobility scenarios. In Scenario A, one node
(called the stationary node) stays in the original cluster while the other node
(called the mobile node) jumps to a new cluster every 100 s, starting at time
150 s. This continues until the node has visited all other clusters, staying in the
last cluster for only 50 s. This results in a total simulation time of 900s. In a
more aggressive Scenario B, the mobile node jumps to a new cluster for 50 s
before returning to its home cluster for 50 s. This is repeated until the node
again visited all other 8 clusters. Other than the modifications alluded to above,
we use all default values that come with the various routing and overlay protocol
implementations in OMNet++, for example the Hello and TC message intervals
in OLSR, the expanding ring search parameters in AODV, or the finger table
maintenance intervals in Chord.

Chart: revdPKLifetime:vector Flooding.host[1].udpApp[0]
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Fig. 2. Flooding: delivering packets to a mobile node

Figures2 and 3 give an idea of the dynamic nature of packet delivery as
time advances. The stationary and the mobile node start sending data packets
to each other at time t = 80 s, the mobile node jumps to a new cluster at
times 150 s, 250 s, etc. It visits the clusters in the following order, identified
by the gateway index in Fig.1: 5, 2, 1, 4, 7, 6, 3, 0. To reduce collisions in the
backbone, packets that are re-broadcast are jittered uniformly random by up
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Fig. 3. OLSR: delivering packets from a mobile node

to 10 ms. Consequently, as shown in Fig. 2, the packet latency under flooding is
somewhat noisy, but clearly shows a relation with the distance between the two
nodes: the latency is lowest when the mobile node is in the same cluster as the
stationary node (at the beginning of the simulation, followed by the two cases
where the mobile node is in a cluster one hop away: Cluster 5 (from 150 s to
250 s) and Cluster 7 (550 s-650 s). Packet latency is the highest towards the
simulation end, when the mobile node is in Cluster 0, 4 hops away from Cluster
8 (which contains the stationary node). It is also worth noticing that packets
are almost constantly delivered. The stationary node learns about the default
route early on. Once a gateway learns that the mobile node is in its local cluster,
it will forward data packets from the backbone, no additional backbone-related
routing information needs to be acquired.

When deploying OLSR as routing solution in the backbone, packet latency
also shows a strong correlation with the number of hops through the backbone,
as shown in Fig. 3, here for packets being sent from the stationary node to the
mobile node. Different from the flooding case, packet latency is more uniform
and lower, as no jittering is required and packets are delivered as unicast trans-
missions over a shortest path. Also, there are clear gaps in packet delivery each
time the mobile node switches cluster: in addition to updating the intra-cluster
routing information, backbone-specific routes need to be learned. Until the new
cluster advertises reachability to the mobile node via HNA messages, backbone
nodes will route data packets to a previous cluster, where they may be dropped
or erroneously forwarded into the local cluster.

To more exhaustively study and compare the performance of our various
solutions, Figs.4 and 5 summarize PDR and average packet latency for 24 runs
of Scenario A. For each routing solution, the graphs show the performance when
sending packets from the mobile node to the stationary node (first bar), the sta-
tionary node to the mobile node (second bar), and the average of the two (third
bar). Figure4 also shows the 95% confidence interval for the average PDR. The
results show that Flooding has the best overall PDR performance, in partic-
ular when sending data packets to the mobile node, for the reasons explained
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Fig. 4. Average PDR, Scenario A
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Fig. 5. Average Latency, Scenario A

above. AODV and OLSR have similar average performance, with OLSR some-
what biased towards better delivery of data packets send by the mobile node,
while AODV performs similarly in both directions. Our DHT-based solution per-
forms poorest overall, for reasons explained later. In the case of packet latency,
the three routing solutions that send data packets via a shortest route perform
better (and similar to each other) than Flooding.

In our second scenario, the mobile node only stays in a specific cluster for
50 s. It then returns to its home cluster, Cluster 8, for 50 s, before jumping to
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another remote cluster. It follows the same order when visiting remote clusters
as the mobile node in Scenario A. The next two figures summarize the results
we collected in this case for 24 runs for each scenario.
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Fig. 6. Average PDR, Scenario B

Comparing the PDR performance of Scenario A (Fig.4) with the results
obtained in Scenario B (Fig.6), we notice that overall the PDR suffered in the
more aggressive Scenario B: as the mobile node changes cluster membership twice
as often, more packets get lost due to inaccurate/outdated routing information.
This is also true when the mobile node returns to its home cluster: until the
stationary node learns that the mobile node has returned home, it will forward
data packets to the cluster gateway, to be delivered over the backbone. This
also explains why PDR drops in case of Flooding. AODV, on average, performs
slightly better than OLSR, as AODV has an explicit route maintenance mech-
anism: if the incorrect backbone routing information causes data packets to be
sent to the wrong cluster gateway, this gateway can at least inform the ingress
gateway to stop forwarding data packets to it, triggering a new route request.
OLSR, on the other hand, depends on the periodic update of such information,
which will not prevent more data packets to be transmitted to the wrong egress
gateway in the meantime. Of note here also is the fact that the DHT-based
solution, while still performing worse than the other three routing approaches,
actually performed better under this more aggressive scenario.
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Fig. 7. Average Latency, Scenario B

In terms of latency (see Fig. 7), Flooding cut its end-to-end latency almost
in half, as now more data packets (almost 50%) are delivered locally, i.e., when
both nodes are in the same cluster. AODV sees its latency increase significantly,
in particular for data packets destined to the mobile node. This is a consequence
of the need to send more frequent RREQ messages, buffering data packets until
a reply is received.

The last two figures focus on the traffic in the backbone network. Since the
four routing solutions are very different, and we are interested in a fair compari-
son, we do not differentiate between control packets and data packets: in the case
of Flooding, the protocol should be “penalized” for each unnecessarily retrans-
mitted data packet, for example. And in the case of our DHT-based solution,
we have actually two sets of control data packets: the OLSR routing proto-
col providing connectivity among the backbone nodes, plus the control packets
imposed on the backbone by the formation and maintenance of the DHT-overlay,
as well as the DHT queries. Figure 8 shows the total number of packet transmis-
sions, averaged over 24 runs, in Scenario A, Fig.9 similarly shows the average
total number of packet transmissions for Scenario B. Flooding imposes the least
amount of traffic on the backbone, in particular in the more aggressive Scenario
B, where AODV has to issue many more RERR and RREQ messages. OLSR,
due to its pro-active nature, causes more backbone traffic than either AODV or
Flooding. The DHT-based solution stands out as generating the most backbone
traffic. This helps to explain its poor performance overall, as the backbone starts
getting congested. We collected the number of packet collisions and packet drops
as well, not shown here, and saw that they were particularly high in the case of
the DHT-based routing solution.
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Fig. 8. Backbone packet transmissions, Scenario A
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Fig. 9. Backbone packet transmissions, Scenario B

5 Conclusions and Future Work

In this paper we address the problem of routing data packets through a backbone
in the context of a hierarchical MANET. While separating the routing domains is
essential to ensure scalability, a proper solution needs to deal with various levels
of mobility. This makes hierarchical routing protocols developed for the Internet
not suitable. Rather, we proposed 4 quite distinct approaches for a suitable
backbone routing approach, ranging from flooding over modifications to OLSR
and AODV to an innovative proposal based on the use of a DHT. Qualitatively,
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the approaches differ in how routing information is propagated among the nodes,
in particular the gateway nodes providing connectivity between a cluster and the
rest of the network. In flooding, no additional routing information is propagated.
The OLSR-based solution has all gateways learn about all nodes in the network,
increasing their routing table size considerably as the network scales up. The
solutions based on AODV and the DHT learn routing information on-demand,
with the AODV-based solution using flooding of RREQ messages while the DHT-
based solution looks up the required information based on the P2P mechanism
deployed (here, we used Chord, but many other structured P2P systems exist).

We implemented these solutions in OMNeT++ and run extensive simula-
tions to evaluate the performance of these four approaches to support routing
between a stationary node and a mobile node that periodically switches clusters.
Overall, simply flooding the data through the backbone resulted in the highest
PDR, but at the cost of increased packet latency. Flooding also generated the
smallest amount of overall traffic in the backbone. Our proposed modification to
OLSR worked reasonably well in both scenarios too (high PDR and low latency),
whereas the proposed modifications to AODV suffered higher latency under the
more aggressive scenario. However, AODV did impose less overall traffic in the
backbone, compared to OLSR. The DHT-based solution performed the worst,
with relatively low PDR and a high traffic load in the backbone. This is a
consequence of our choice of Chord (whose implementation was available) to
implement the DHT service. Chord (similar to many other overlay solutions)
is agnostic of the underlay network, and a number of cross-layer solutions have
been proposed to improve the DHT performance (and to reduce its overhead)
particularly in the context of a MANET, such as [1,5], a study to evaluate how
well such a cross-layered approach would work is one item of future work.

The results indicate that the flooding-based solution performs best overall: it
is simple to implement, reduces the amount of routing information that needs to
be propagated in the backbone, and achieves arguably the best performance in
terms of PDR and traffic in the backbone. A concern could be the scalability of
the protocol as traffic across clusters increases. We plan to explore in more depth
at what point such a simple approach would deteriorate. However, we also want
to point out that better broadcasting solutions (as opposed to flooding) exist.
The broadcast problem has been extensively studied for multi-hop networks. The
minimal number of nodes that need to transmit a data packet to ensure that
all nodes receive a copy is known as the Minimum Dominating Set. To ensure
that packet transmissions can propagate through the network, the nodes in this
set should be connected, resulting in the Minimum Connected Dominating Set
(MCDS) problem. Optimal solutions to compute a Minimum Connected Domi-
nating Set [21] were obtained for the case when each node knows the topology
of the entire network, but these solutions are NP-hard. When implementing an
efficient broadcast protocol, many (though not all) solutions employ partial or
local neighborhood knowledge, typically acquired through the periodic exchange
of HELLO messages (not unlike the OLSR protocol). A good early classifica-
tion and comparison of a number of proposed protocols is presented in [32].
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An efficient broadcast protocol standardized by the IETF is Simplified Multicast
Forwarding (SMF) [20], which is based on partial (local) topology information
as well. In SMF, for our backbone topology, a subset of three nodes would be
selected to re-broadcast data packets while ensuring that all gateways receive it:
either gateways 3, 4, and 5, or gateways 1, 4, and 7. This drastically reduces the
traffic in the backbone, cutting down the number of packet transmissions from
8 to (at most) 3. In addition, with less contention for access to the media, data
packets would need to be jittered less, reducing the latency.
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