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Abstract. At present, the crowdsourcing-based indoor navigation sys-
tem has attracted extensive attention from both the industry and the
academia. The crowdsourcing-based indoor navigation system commend-
ably solves the deficiencies (e.g., high cost, low accuracy, etc.) of tra-
ditional navigation methods. Unfortunately, the system that relies on
crowdsourced data is vulnerable to the collusion attack, which may
threaten the security of the system. In this paper, a novel crowdsourcing-
based secure indoor navigation system is proposed. Specifically, we first
propose a novel reputation mechanism. Then, we employ the offensive
and defensive game to model the interactions between the fog service
platform and responders. Next, the optimization problem of the system
is established to maximize the total utility of the system. Finally, the
simulation results demonstrate that the proposed system can effectively
encourage responders to provide positive navigation services.
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1 Introduction

With the rapid expansion of technologies such as internet of things (IoTs) [1],
the navigation system has received extensive attention from academia and indus-
try, since it can bring unprecedented convenience to people’s travel. At present,
mobile smart devices are equipped with global positioning system (GPS) for pre-
cise navigation in outdoor. However, GPS signals are attenuated and distorted
when they pass through the walls and various obstacles of the building, resulting
in that GPS is not suitable for indoor environments. In order to realize the sta-
bility and accuracy of the navigation system within the indoor environment, the
indoor navigation enabled by crowdsourcing technology has emerged. Specifi-
cally, the crowdsourcing-based indoor navigation technology presents the follow-
ing advantages: 1) The crowdsourcing-based indoor navigation system does not
require the deployment of a large number of sensors, which greatly reduces man-
power. 2) The crowdsourcing-based indoor navigation technology is a real-time
interactive technology that can provide mobile users with real-time navigation
services.

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2020

Published by Springer Nature Switzerland AG 2020. All Rights Reserved

S. W. Loke et al. (Eds.): MONAMI 2020, LNICST 338, pp. 125–137, 2020.

https://doi.org/10.1007/978-3-030-64002-6_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64002-6_9&domain=pdf
https://doi.org/10.1007/978-3-030-64002-6_9


126 L. Xie et al.

Although the crowdsourcing-based indoor navigation system can solve the
deficiencies of traditional indoor navigation [2], security is a serious problem due
to the system that depends on crowdsourced data is vulnerable to the collu-
sion attack [3,4]. Specifically, malicious responders collude with requesters who
deliberately offer the positive feedback, which can contribute to the increase of
their reputation. The attack of collusion behavior may cause many detrimental
effects on the crowdsourcing-based indoor navigation system. For the fog plat-
form: it disrupts the credibility of the reputation mechanism [5] and reduces
the feasibility of the fog server platform. For the normal requesters: the attack
of collusion behavior leaks the privacy of normal requesters and threatens the
requester’s personal secure. For the normal responders: the attack of collusion
behavior reduces the probability of getting a task in the future.

In order to tackle the above challenges, a secure crowdsourcing-based indoor
navigation system is proposed in this paper. The main distributions are summa-
rized as follows:

– Firstly, we propose a novel crowdsourcing-based security indoor navigation
system that does not require professional equipment on site to offer funda-
mental location services for requesters.

– Secondly, we build an attack model in conjunction with the system back-
ground and propose a novel reputation incentive mechanism based on the
behaviors of responders, which ensures the security of the system.

– Thirdly, we use the offensive and defensive game to model the interactions
between the fog server platform and responders. The optimization problem
of the system is established to maximize the total utility of the system. The
stable equilibrium solution of the game is obtained by solving the replicator
dynamic equation and using the Jacobian matrix analysis method.

The rest of this paper is organized as follows: related work is reviewed in
Sect. 2. In Sect. 3, we introduce the system model. In Sect. 4, we construct
the offensive and defensive game model. Extensive simulations are conducted
to evaluate the performance of the proposed incentive mechanism in Sect. 5.
Finally, we conclude the paper in Sect. 6.

2 Related Work

In order to achieve the stability and accuracy of indoor positioning and naviga-
tion system, domestic and foreign scholars have put forward a large number of
indoor navigation technologies in recent years. Zhuang et al. [6] proposed two
WiFi-based crowdsourcing positioning systems, which autonomously update the
database according to the dynamic changes of the indoor environment. Xiang et
al. [7] proposed a new mobile application framework that relies on crowdsourcing
technology to provide location-based services. Li et al. [8] proposed two incen-
tive mechanisms to encourage people to participate in the crowdsourcing-based
indoor navigation system. Chi et al. [9] proposed a privacy protection mech-
anism combining differential privacy protection and K anonymity, which can
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effectively protect the privacy of the users. Moreover, through the privacy pro-
tection mechanism, the trade-off between privacy protection and service quality
is solved. Wang et al. [10] proposed a new method based on co-location edges,
which can effectively defense the attack of attackers and improve the security
of the crowdsourcing-based indoor navigation system. In summary, the above
researches mainly focus on how to encourage mobile users to participate in the
system. However, as the real, the security of the crowdsourcing-based indoor
navigation system is the most important issue. In order to preserve the system,
we propose a reputation incentive mechanism and construct the offensive and
defensive game to maximize the utility of the system.

3 System Model

In this section, we propose the indoor navigation system consisting of four parts:
network model, social relationship model, reputation mechanism, and attack
model.

3.1 Network Model

As shown in Fig. 1, our network model is composed of the following three entities:
requesters, fog server and responders.

– Requesters are a group of mobile users who have the requirement for naviga-
tion. We define the set of requesters as U = {u1, u2, . . . , uI}. Specifically, when
they broadcast tasks, the platform feeds back the navigation path provided
by the responders to the requesters. After completing the task, the requesters
need to pay the fee α, where the responders obtain δ% of the fee, the platform
acquires 1 − δ%. Moreover, the requesters need to feed back the reputation
value R to the platform and the responders. However, the requesters may be
bribed by the attackers to help them attack the system.
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– Responders are a group of mobile users who respond to a request
when requesters issue a task. We define the set of responders as
V = {υ1, υ2, . . . , υJ}.

– Fog server platform is a completely trusted platform in the system. Mean-
while, the platform has the following functions: firstly, the platform is the
connection centre between the responders and the requesters. Secondly, Fog
server platform has supervision and detection abilities. If the platform choices
supervision strategy, the collusion behavior of the responders can be detected
with the probability of P .

3.2 Social Relationship Model

For each location request service, it is important to choose responders since the
strengths and weaknesses of responders directly affect their service level. Without
loss of generality, responders who have an intimate social relationship with the
requester can provide better service for the requester. The social relationships
between requester i and responder j, denoted as f(i, j), which are defined as

f(i, j) =
|Ii ∩ Ij |
|Ii ∪ Ij | , (1)

where f(i, j) ∈ [0, 1]. we define Ii as a social relationship set, which is denoted
by Ii = [Oi,1, . . . , Oi,n, . . . , Oi,N ]. Oi,n is special relationships such as friends.
When these relationships exist, Oi,n,= 1 , otherwise Oi,n,= 0.

Case 1:

f(i, j) =
|Ii ∩ Ij |
|Ii ∪ Ij | > HL. (2)

The social relationship between requester ui and responder υj is intimate. HL
is defined as the bounds for social relationships.

Case 2:

f(i, j) =
|Ii ∩ Ij |
|Ii ∪ Ij | < HL. (3)

The social relationship between requester ui and responder υj is unfamiliar.

3.3 Reputation Incentive Mechanism

In the indoor navigation system, the platform provides location services to
requesters by selecting responders with the highest reputation value. Moreover,
based on the reputation value R of the platform, requesters determine whether
or not to request the platform. Therefore, some responders with low reputation
value may illegally increase their reputation by colluding with the requesters.
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We propose a novel reputation incentive mechanism to ensure the security of
the system.

Case 1: When responders provide positive services. The reputation value R of
the platform is updated by

R = (1 + ε) ∗ R0, (4)

where R0 is the initial reputation value. ε is the increment of reputation. In
this case, we use the reputation incentive coefficient ε to reward responders who
choose normal strategy, prompting them to persistently choose normal strategy
to ensure the security of the system.

Case 2: When responders provide negative services, the reputation value R of
the platform is calculated by

R = (1 − λ) ∗ R0, (5)

where λ ∈ [0, 1] represents the degree of collusion. A larger λ indicates a greater
degree of collusion, resulting in a greater loss of reputation value. In this case, we
use the degree of collusion of the attacker as a punishment coefficient to reduce
the reputation value of the attacker and thereby reducing their utility. In this
way, the attack willingness of attacker is reduced, which ensures the security of
the system.

3.4 Attacker Model

We divide the attack model into the following categories based on several factors
that affect the ability of collusion:

1) Collusion with strangers in social relationships
We define Ω as a collusive requester whose social relationship with the attack-

ers is unfamiliar. When the attackers collude with Ω to attack reputation mech-
anism m times and the number of Ω is n ( n ∈ [0, N ], m ∈ [0,M ], N � 1,
M � 1), attackers collaborate with Ω to issue m times false mission requests.
Then, Ω feeds back to the attackers with a higher reputation value, so as to
influence the selection of normal requesters in the next stage.

2) Collusion with people who are socially intimate
We define Ω� as a collusive requester whose social relationship with the

attackers is intimate. When the attackers collude with the Ω� to attack reputa-
tion mechanism m times and the number of Ω� is n ( n ∈ [0, N ], m ∈ [0,M ],
N � 1, M � 1), attackers collaborate with Ω� to issue m times false mission
requests.
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4 Offensive and Defensive Game

4.1 Problem Formulation

Responders are categorized into two categories: the normal responders and the
attackers. The attackers collude with the requesters with a probability x, and
illegally increase their profits with a degree of collusion λ. The collusion level λ
follows

λ =
1

1 + e−[f(i,j)∗g(Cu,Nu)]
, (6)

where λ ∈ [0, 1] is proportional to the capacities of attackers. ω is the accuracy
of the path provided by the attackers. g(Cu, Nu) is the frequency of attacks,
defined as

g(Cu, Nu) = σ1Cu + σ2Nu, (7)

where Nu is the number of requesters who collude with the attackers. Cu is the
times of attacks. σ1 is the importance of the number of colluding requesters in
the attacks frequency. σ2 is the importance of the times of attacks in the attack
frequency.

The attacker also can disguise himself as a normal responder to reduce the
probability of being supervised by the platform. The quality of the navigation
path provided by the attackers, denoted as β, which is defined as

β =

⎧
⎨

⎩

βmin, if the destination is inconsistent,
∫ B
A

h(x,y,z) dl
∫ B
A

h′(x,y,z) dl
, if the destination is consistent.

(8)

A is the starting point of the path and B is the end point of the path. h(x, y, z)
is the shortest trajectory from point A to point B. h′(x, y, z) is the trajectory
from point A to point B provided by the attacker. The normal responder’s β is
equal to 1, because the normal responder’s target is to improve his utility. When
the attackers choose the wrong navigation path, the value of β is βmin.

The fog service platform has the functions of supervision and detection in the
system. When the platform chooses the supervision strategy, it has a probability
P to successfully supervise the collusion behavior of the attackers. If detected,
the attackers need to pay the illegal cost. Otherwise, the attackers will receive
illegal income, which is the platform losses. The probability of platform successful
supervision P follows

P = (1 − βλ). (9)

When the platform supervision fails, it is considered that the attackers choose
the non-collusion strategy.

4.2 Utility Function

The offensive and defensive game matrix is shown in Table 1.
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Table 1. The offensive and defensive game matrix

Fog serve platform

(y)supervision (1-y)non-supervision

Responders (x)collusion Ua(x, y), Ud(x, y) Ua(x, 1− y), Ud(x, 1− y)

(1-x)non-collusion Ua(1− x, y), Ud(1− x, y) Ua(1− x, 1− y), Ud(1− x, 1− y)

(1) When the responders choose the collusion strategy and the degree of collusion
is λ, as well as the platform chooses the supervision strategy:

Different from the traditional definition of utility, we introduce the reputation
incentive mechanism and divide the utility into current utility and future utility.
The utility of the responders is defined as

Ua = Um
a + Un

a , (10)

where Ua is the total utility of the responders. Um
a is the current utility of the

responders, and Un
a is the future utility of the responders.

The current utility of the responders is defined as

Um
a (x, y) =

∑kd

k=1
[δαk − λβkc1 − PWλ + (1 − P )Sλ], (11)

where kd is the total number of tasks. W represents the cost of attacker when
the attack fails. S represents the attacker’s profits when the attack is successful.
c1 represents the unit cost of the responders who choose the collusion strategy.

The future utility of the responders follows

Un
a (x, y) = δeϕR, (12)

where R represents the reputation value of the platform. ϕ > 0 represents a
positive correlation coefficient between reputation value and future utility.

Substituting Eq. (11) and Eq. (12) into the Eq. (10), the total utility of the
responders can be rewritten as

Ua(x, y) =
∑kd

k=1
[δαk − λβkc1 − PWλ + (1 − P )Sλ]

+ δeϕ(1−λ)R0 .
(13)

We design a novel reputation incentive mechanism that links future utility, so
as to encourage responders to choose the non-collusion strategy.

The utility of the platform is defined as

Ud = Um
d + Un

d , (14)

where Ud is the total utility of the platform. Um
d is the current utility of the

platform, and Un
d is the future utility of the platform.

The current utility of the platform follows

Um
d (x, y) =

∑kd

k=1
[(1 − δ)αk − d1 + PJλ − (1 − P )Bλ], (15)
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where d1 is the cost of the platform when the platform chooses the supervision
strategy. J is the profits from platform successful supervision. B is the cost of
the platform when attackers collusion successfully.

The future utility is defined by the reputation value of the platform

Un
d (x, y) = (1 − δ)eϕR. (16)

Substituting Eq. (15) and Eq. (16) into the Eq. (14), the total utility of the
platform can be rewritten as

Ud(x, y) =
∑kd

k=1
[(1 − δ)αk − d1 + PJλ − (1 − P )Bλ]

+ (1 − δ)eϕ(1−λ)R0 .
(17)

(2) When the responders choose the collusion strategy and the degree of collusion
is λ, as well as the platform chooses the non-supervision strategy:

The current utility of the responders is defined as

Um
a (x, 1 − y) =

∑kd

k=1
[δαk − λβkc1 + Sλ]. (18)

The future utility of the responders is denoted as

Un
a (x, 1 − y) = δeϕR. (19)

Substituting Eq. (18) and Eq. (19) into the Eq. (10), the total utility of the
responders can be rewritten as

Ua(x, 1 − y) =
∑kd

k=1
[δαk − λβkc1 + Sλ]

+ δeϕ(1−λ)R0 .
(20)

The current utility of the platform is defined as

Um
d (x, 1 − y) =

∑kd

k=1
[(1 − δ)αk − d2 − Bλ], (21)

where d2 is the cost of the platform when the platform chooses the non-
supervision strategy.

The future utility of the platform is denoted as

Un
d (x, 1 − y) = (1 − δ)eϕR. (22)

Substituting Eq. (21) and Eq. (22) into the Eq. (14), the total utility of the
platform can be rewritten as

Ud(x, 1 − y) =
∑kd

k=1
[(1 − δ)αk − d2 − Bλ]

+ (1 − δ)eϕ(1−λ)R0 .
(23)
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(3) When the responders choose the non-collusion strategy and the platform
chooses the supervision strategy:

The total utility of the responders is defined as

Ua(1 − x, y) =
∑kd

k=1
[δαk − c2] + δeϕ(1+ε)R0 , (24)

where c2 is the cost of the responders who choose the non-collusion strategy.
The total utility of the platform is denoted as

Ud(1 − x, y) =
∑kd

k=1
[(1 − δ)αk − d1]

+ (1 − δ)eϕ(1+ε)R0 .
(25)

(4) When the responders choose the non-collusion strategy and the platform
chooses the non-supervision strategy:

The total utility of the responders is defined as

Ua(1 − x, 1 − y) =
∑kd

k=1
[δαk − c2] + δeϕ(1+ε)R0 . (26)

For the platform, it does not need to pay more cost to manage the behavior
of responders. The total utility of the platform is denoted as

Ud(1 − x, 1 − y) =
∑kd

k=1
[(1 − δ)αk − d2]

+ (1 − δ)eϕ(1+ε)R0 .
(27)

4.3 Game Equilibrium Solution

In the replication dynamic equation, the growth rate of a strategy in the commu-
nity is equal to the difference between the utility of the strategy and the average
utility of the community [11]. Therefore, the replication dynamic equation can
be described as

dx

dt
= x[Ua(x) − Ūa],

dy

dt
= y[Ud(y) − Ūd],

(28)

where Ūa and Ūd are the average utility of the responders and platform, respec-
tively. Based on the replication dynamic equations of the two parties, the equa-
tion M can be described as

M =
[

dx
dt
dy
dt

]

. (29)

We can get five sets of equilibrium solutions by letting M = 0, which are
(0, 0), (0, 1), (1, 0), (1, 1), (x∗, y∗). The expression of x∗ is

x∗ =
d1 − d2

P (J + B)λ
. (30)
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The expression of y∗ is

y∗ =
δ(eϕ(1−λ)R0 − eϕ(1+ε)R0) − λβc1 + c2 + Sλ

PKd(S + W )λ
. (31)

4.4 Stability Analysis of Equilibrium Solutions

For a group of dynamic characteristic described by a differential equation system,
the stability of its equilibrium point is obtained by using the local stability
analysis method of the Jacobian matrix.

Case 1: When [(1 − 2P )Sλ − βλc1 + δe[ϕ(1−λ)R0]] − (δe[ϕ(1+ε)R0] − c2) > 0 and
d2 > d1, the equilibrium point of the system is only (1, 1), i.e., the responders
select the collusion strategy, and the fog server platform selects the supervision
strategy.

Case 2: When [(1 − 2P )Sλ − βλc1 + δe[ϕ(1−λ)R0]] − (δe[ϕ(1+ε)R0] − c2) < 0,
and 2PJλ + d2 < d1, the equilibrium point of the system is only (0, 0), i.e., the
responders select the non-collusion strategy, and the fog server platform selects
the non-supervision strategy.

Case 3: When [(1 − 2P )Sλ − βλc1δe
[ϕ(1−λ)R0]] − (δe[ϕ(1+ε)R0] − c2) > 0 and

2PJλ + d2 < d1, the equilibrium point of the system is only (1, 0), i.e., the
responders select the collusion strategy, and the fog server platform selects the
non-supervision strategy.

Case 4: When [(1 − 2P )Sλ − βλc1 + δe[ϕ(1−λ)R0]] − (δe[ϕ(1+ε)R0] − c2) < 0,
and d2 > d1, the equilibrium point of the system is only (0, 1), i.e., the respon-
ders select the non-collusion strategy, and the fog server platform selects the
supervision strategy.

5 Performance Evaluation

5.1 Simulation Setup

In the simulations, the increment of reputation is selected from the interval
[0, 1]. The total profit of per task is set to be 0.5. The responder’s profit as a
percentage of total profit is set to be 0.6. The initial reputation value is set as
0.5. The quality of the navigation path provided by the attackers is set as 0.2.
Other parameters in the simulations are given in Table 2 to satisfy our four
constraints. The performance of the proposed reputation incentive mechanism
is verified by comparing with two mechanisms, namely the fixed mechanism and
the linear mechanism.
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Fig. 2. The impacts of λ on total utility of system.

Table 2. Parameters

Case 1 Case 4

Parameter Value Parameter Value

S 1 S 1

W 1 W 1

J 1 J 1

B 1 B 1

c1 0.5 c1 0.5

c2 5 c2 0.5

d1 0.2 d1 0.2

d2 0.4 d2 0.4

ϕ 3 ϕ 4

Kd 10 Kd 10

5.2 Simulation Results

It is shown in Fig. 2 that the impact of λ on total system utility. We compare the
proposed mechanism with the fixed mechanism and linear mechanism to verify
the effectiveness of the proposed mechanism. From Fig. 2, we can obtain that
with the increase of λ, the system utilities obtained by the three mechanisms
are gradually reduced, while the utilities based on the proposed mechanism are
better than the utilities obtained by the other two mechanisms. The reason is
that the offensive and defensive game can effectively motivate responders to pay
attention to long-term utilities with reputation incentives and choose the best
strategy with reputation incentive. In the fixed mechanism, the attacker chooses
the strategy according to the preset probability. In the linear mechanism, the
attacker chooses the strategy without considering the reputation mechanism.



136 L. Xie et al.

Therefore, the performance based on the proposed mechanism is better than the
other two mechanisms.

6 Conclusion

In this paper, we have proposed a crowdsourcing-based secure indoor navigation
system. Firstly, we have built an attack model in conjunction with the system
background, and we have proposed a novel reputation incentive mechanism.
Secondly, we have constructed the offensive and defensive game to model the
interactions between the fog service platform and responders. By means of game
theory, the utility function of both the system and the attacker are maximized.
Finally, extensive simulations have validated the effectiveness of our mechanism.
For the future work, we plan to take the multi-stage collusion into account to
improve the reliability of the crowdsourcing-based indoor navigation system.
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