
ByPass: Reconsidering the Usability
of Password Managers

Elizabeth Stobert1, Tina Safaie2(B), Heather Molyneaux3,
Mohammad Mannan2, and Amr Youssef2

1 Carleton University, Ottawa, ON, Canada
elizabeth.stobert@carleton.ca

2 Concordia University, Montreal, QC, Canada
t safaie@encs.concordia.ca,m.mannan@concordia.ca,

youssef@ciise.concordia.ca
3 National Research Council of Canada, Fredericton, NB, Canada

heather.molyneaux@nrc-cnrc.gc.ca

Abstract. Since passwords are an unavoidable mechanism for authen-
ticating to online services, experts often recommend using a password
manager for better password security. However, adoption of password
managers is low due to poor usability, the difficulty of migrating accounts
to a manager, and users’ sense that a manager will not add value. In
this paper, we present ByPass, a novel password manager that is placed
between the user and the website for secure and direct communication
between the manager and websites. This direct communication allows
ByPass to minimize the users’ actions needed to complete various pass-
word management tasks, including account registration, logins, and pass-
word changes. ByPass is designed to minimize errors and improve usabil-
ity. We conducted a usability evaluation of ByPass and found that this
approach shows promising usability, and can help users to better manage
their accounts in a secure manner.

Keywords: Authentication · Usable security · Password manager ·
API

1 Introduction

Password-based online services are ubiquitous, despite many known security and
usability limitations of passwords [10,19]. Password managers can alleviate some
of these drawbacks by removing the need for people to memorize a large number
of strong passwords, helping users cope with different password policies, creating
unique passwords and providing protection features against some attacks (e.g.,
phishing). However, adoption of password managers is low, and even among
password manager users, many still do not use them effectively [27].

Previous studies of password managers [3,5] show that usability issues can
contribute to low adoption. While several studies [7,26] have investigated dif-
ferent ways to improve the usability of password managers, the basic wallet
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2020

Published by Springer Nature Switzerland AG 2020. All Rights Reserved

N. Park et al. (Eds.): SecureComm 2020, LNICST 335, pp. 446–466, 2020.

https://doi.org/10.1007/978-3-030-63086-7_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-63086-7_24&domain=pdf
https://doi.org/10.1007/978-3-030-63086-7_24


ByPass: Reconsidering the Usability of Password Managers 447

structure of the password manager has remained the same. In all of them, a
password manager is regarded as client-side software that helps users store and
fill passwords on a targeted website without the website recognizing whether it
is the user who is filling the password field or a software program.

In this work, we investigate how the design of password managers can be re-
thought to facilitate adoption and minimize usability problems. We design and
develop ByPass, a new password manager that sits between the user and the web-
site, reducing friction resulting from usability problems. ByPass uses an API for
direct communication between the website and password manager, which allows
the password manager to not only directly send credentials to the website, but
also to query the website for information such as the password policy. In addi-
tion, this communication channel allows the introduction of innovative features,
such as automated password changes, and account creation/deletion through
the password manager. The primary goal of ByPass is to provide a more usable
password management system that encourages users to behave securely. ByPass
integrates nudges for secure behaviour, and is designed to make tasks such as
account migration and password changes as simple as possible.

No work so far has focused on using APIs within the password manager
development. Our key contribution is developing a password manager with new
capabilities resulting from different API calls from the websites. Although this
approach requires buy-in from websites, it results in increased password manager
usability resulting from fewer actions required by the user. Assuming the integra-
tion of password-based online services, in ByPass, we shift the focus to compre-
hensive account management instead of current approaches to password manage-
ment, primarily limited to create/save/fill passwords. We address critical security
limitations of current password managers, and at the same time, improve ease
of use and control over numerous accounts that a typical user needs to manage.

In this paper, we focused on ByPass’s impact on end users. We evaluated the
usability of our prototype implementation of ByPass by conducting a study with
20 participants. We found that participants were able to quickly and easily add
new accounts to ByPass, migrate existing accounts into the manager, and change
their passwords. Users were generally positive about the features in ByPass, but
expressed concerns about the ways in which ByPass moves the locus of control.

With ByPass, our goal is not to create yet another password manager. We
want this new design, along with the results of our prototype evaluation, to act
as a vehicle for investigating more fundamental questions about account man-
agement. Password managers, while seeming to be one of the most accessible
solutions to the password problem, have not been widely adopted. This sug-
gests that a new approach to password management is needed: users need to
be empowered with tools to effectively access and manage the security of their
accounts by relieving them of tasks more easily completed by a computer.

2 Background

Password managers are software tools primarily designed to save users’ pass-
words. Modern password managers range in sophistication from browser-based



448 E. Stobert et al.

managers that save and fill users’ passwords, to more complex standalone pro-
grams (e.g., 1Password1, and Lastpass2) that integrate features such as cus-
tomizable password generation, security audits, and family password sharing.
Almost all managers are designed based on a wallet model, where the central
function is to manage a list of passwords, protected by a master password. The
security and usability of password managers have been studied extensively.

2.1 Security of Password Managers

By saving all passwords in one place, password managers create a central point of
failure in a user’s security ecosystem. Although various proposals have been made
for password managers that mitigate this problem [16,29,34,36], the majority
of commercially-available password managers are vulnerable in this way. The
prevalence of such attacks is unclear, but it is compounded by the likelihood
that users will choose insecure and easily-guessed master passwords [38].

Silver et al. [33] studied auto-fill password policies among different types of
password managers. Although the auto-fill function can increase the usability
of password managers, poor implementation of this function can lead to expo-
sure of users’ credentials. They also described the sweep attack, which requires
the attacker to have control over the user’s WiFi (e.g., in a public hotspot
run/controlled by the attacker); the attacker can extract the user’s credentials
by injecting malicious JavaScript to the website without the user noticing.

Li et al. [22] analyzed five third-party web-based password managers, reveal-
ing four security vulnerabilities—including classical web application vulnerabili-
ties such as Cross Site Scripting (XSS) and Cross Site Request Forgery (CSRF).
They also analyzed authorization and user interface vulnerabilities, and proposed
guidelines to mitigate these identified issues.

Recently, Carr and Shahandashti [11] revisited various known attacks on
password managers, and analyzed whether password managers are still vulner-
able to those attacks. They also identified four new vulnerabilities: phishing
attacks, clipboard vulnerability, PIN brute force vulnerability (for applications),
and brute force via an extension (evaluated against five popular commercial pass-
word managers). Their results showed that all of the tested password managers
were vulnerable to at least one of the attacks they considered.

2.2 Usability of Password Managers

Chiasson et al. [14] conducted an early usability evaluation of two types of pass-
word manager, and found that users’ poor mental models of password managers
caused them to make dangerous errors. Karole, Saxena and Christin [21] com-
pared a third-party password manager to a phone-based manager and a USB
manager. They found that users preferred the control implicit in having pass-
words stored on a local device.

1 https://www.1password.com/.
2 https://www.lastpass.com/.

https://www.1password.com/
https://www.lastpass.com/


ByPass: Reconsidering the Usability of Password Managers 449

There are a variety of factors leading to the low adoption of password man-
agers. Aurigemma et al. [5] found that insufficient time for installation, lack of
immediacy, and users’ feeling that using a password manager needs an additional
effort that they don’t want to spend contributed to password manager non-
adoption. Maclean and Ophoff [25] found that trust, habit, and performance
expectancy are the three factors that lead to the use of password managers.
Pearman et al. [27] interviewed 30 participants, including people who choose not
to use a password manager, about their password manager use (and non-use).
They found that factors such as lack of awareness and poor understanding of
how password managers work prevent people from adopting password managers.
They found that users could be divided into two categories: people for whom
convenience is a priority, and people for whom security is a priority.

Seiler-Hwang et al. [31] analyzed the usability of smartphone password man-
agers and suggested security, user interaction, and integration with external
applications as three key areas for improvement. They mentioned that only
knowing about the password manager’s existence is not enough to motivate
an individual to use it. Users need to be encouraged to install and try password
managers. Alkaldi and Renaud [3] identified three phases to user adoption of
password managers: searching, trialling, and deciding. They later explored how
self-determination theory can be used to encourage users to adopt password
managers, and found that recommender tools can cause users to at least search
for and try password managers [4].

Lyastani et al. [24] studied whether using a password manager can influence
password strength and re-use. They used a browser extension to collect data on
different password entry methods. Participants who used technical support for
password creation had stronger passwords. They concluded that password gen-
erators improve security, but are under-adopted, highlighting the need to rethink
password manager workflows.

2.3 Proposals for New Password Managers

A number of studies have designed new tools to address existing problems with
password management. McCarney et al. [26] created Tapas, a dual possession,
theft-resistant password manager in which an adversary needs to gain access to
both devices in order to read the saved credentials. In their design, both devices
– a mobile phone and a desktop computer – must be available in order to use
the password manager, and the user does not need to have any master password.
Barbosa et al. [7] designed UniPass, a password manager for visually impaired
users. UniPass allowed users with visual impairment to access their accounts and
passwords more effectively and to use public computers. Although not positioned
directly as a password manager, Ruoti and Seamons [30] propose a system in
which passwords are stored in the operating system, and verified (using zero-
knowledge proofs) by an independent password checking service. The system
minimizes the interaction between users and passwords, as well as the attack
surface for passwords.



450 E. Stobert et al.

3 ByPass: Design and Implementation

ByPass is designed to address usability problems that prevent users from adopt-
ing password managers while maintaining good security properties. In this
section, we discuss the design of ByPass, features supported and introduced
by it, and our prototype implementation.

3.1 Design Overview and Goals

ByPass is designed to reduce friction in password managers resulting from usabil-
ity problems. Our insight is that many of the usability problems with password
managers result from the password manager functioning as an intermediary
between the user and the regular login page. Copy/paste errors, form fills hap-
pening to the wrong field, leakage of passwords from the paste buffer, all result
from placing the password manager as an external resource, accessible only by
the user and not the website. Traditional password managers offer little con-
ceptual advantage beyond a list of written passwords, and in doing so, miss an
opportunity to genuinely address the usability problems with passwords and add
value beyond other password storage mechanisms.

Fig. 1. Top: current password managers rely heavily on users for account interaction,
other than storing the passwords. Bottom: ByPass is placed directly between the user
and the website, allowing it to mediate communications between them.

As shown in Fig. 1, ByPass communicates directly with websites, thus avoid-
ing errors resulting from user manipulation of passwords and forms. It provides
an API for websites to use so that it can pass credentials directly to these web-
sites. This allows users to skip the manual login procedure when using ByPass,
improving usability and avoiding errors. Our goal is to design a mechanism to
reduce the number of clicks and actions required to complete account/login man-
agement tasks.

ByPass is designed to nudge users toward choosing secure options. For
example, password generation features in password managers remain mostly



ByPass: Reconsidering the Usability of Password Managers 451

unused [24,27,37]. ByPass creates secure randomly-generated passwords by
default, and only allows users to select their own passwords by clicking through
multiple steps. These generated passwords are secure and unique, and because
users usually do not need to interact with these passwords directly, they are
encouraged to take advantage of this functionality.

The usability advantages of ByPass are only realized if the website chooses to
implement the ByPass API. This is a strong requirement, and we did not want
to create a tool that was only usable with affiliated websites. Thus, we designed
ByPass to extend the functionality of password managers without taking any-
thing away. ByPass can be used as a repository for copying and pasting passwords
in the same way that existing managers can, but adds functionality for websites
that implement the needed APIs. Note that when we discuss usability and secu-
rity of ByPass, we focus on the new design, not this backward-compatibility
feature which shares the usual drawbacks of traditional password managers.

Moving the password manager to sit between the user and the website also
creates an opportunity to consider other functions that password managers typ-
ically exclude, including account creation on third-party websites, account dele-
tion, and automated password changes. The security of ByPass is discussed in
Sect. 4, but user authentication to the manager is handled exactly as it is by
traditional password managers, i.e., with a username and master password.

3.2 ByPass Features

The key features of ByPass include third-party website account creation, account
migration, direct account logins, password changes, and account deletion; more
features can also be easily accommodated. Figure 2 shows a flow diagram of user
interactions when setting ByPass up for a new account.

Fig. 2. User flow diagram of ByPass.



452 E. Stobert et al.

Adding Accounts. ByPass provides two options for users when adding new
accounts: to register a new account, or to enroll an existing one; both these
tasks are abstracted into the same function: “Adding an account”. We used a
wizard to guide users through the process of choosing what kind of accounts they
are adding to ByPass, and to ensure that they enter the correct information.

Because ByPass communicates directly with websites, all user interactions
with accounts can be moved to ByPass, including account registration. When
users want to create an account on a new website, they search for the website
name in ByPass, and ByPass queries the website for the registration fields they
want. Users fill these fields, and ByPass automatically populates the password
field with a random password conforming to the password policy (also sent by
the website). Users can view and regenerate the random password, but must go
through an additional confirmation to do so.

To add an existing account, after searching for the website name in ByPass,
users simply enter their username and password, similar to standard password
managers. If the user enters the name of a website that does not have the ByPass
API installed, the password manager will act like a regular password manager,
and store credentials for the user to manually enter.

Account Login. After adding an account to ByPass, the user can log into the
website by opening ByPass to the account page, and clicking “login”. ByPass
sends the user’s credentials to the website via secure API calls, and opens the
site’s main page in a browser. The user avoids any direct interaction with login
pages, e.g., navigating to intended URLs, and typing usernames and passwords.

Password Changes. Password changes are frequently avoided by users due to
serious usability drawbacks [20,37]. While password expiration policies are no
longer recommended by NIST [2], they are frequently mandated by organiza-
tions. Password changes are particularly onerous to users of password managers,
who typically must open the manager to copy the old password, navigate to
the password change menu, generate a new password in the manager, ensure it
is saved in the password manager account entry, and copied into the website.
Because passwords are generally masked to avoid shoulder surfing attacks, it
can be difficult to know which string is copied into which field, inviting errors.
In ByPass, the direct communication between manager and website elides all of
these steps, and makes password changes into a one step process for the user.
On the edit account page, users can view their password, change it with the
(re)generate password function, and set a timer for automatic password changes.

Account Deletion. Although not typically considered as part of password man-
agement, another opportunity afforded by the ByPass architecture is to easily
delete website accounts from the password manager. Account deletion is fre-
quently made difficult by website designers [17], but privacy rights (such as the
right to be forgotten [6]) indicate that account deletion should be an available
straightforward process. In ByPass, account deletion is accessed through the
“Edit account” page, and includes a two-step confirmation process.



ByPass: Reconsidering the Usability of Password Managers 453

3.3 Implementation Details

The ByPass implementation has two components: the password manager itself
which is implemented as a Chrome browser extension (using JavaScript and
HTML, and IndexedDB to store data), and the API that allows secure commu-
nication between websites and the password manager. Figure 3 shows the ByPass
API interaction between the user’s browser and the website backend.

Fig. 3. ByPass API interaction between the user browser and website backend.

We created two fictional websites (an e-commerce portal and a webmail plat-
form) for our study, using a Microsoft IIS server application to handle user
requests and communicate with the backend database. The password manager
side is a browser extension that directly requests and sends information to and
from the website, receives responses, and displays the results in the browser.

We used a REST API for communicating with website backends as it
improves the performance, has a simple interface, allows independent modifi-
cation of the components, and requires low bandwidth [15]. API calls are made
via HTTPS using JSON ByPass enables various account management functions,
and currently implements API calls for creating an account, logging into an
account, editing, and deleting an account. Our prototype API was written in
C# using the .NET framework, using the System.Web.Http library.

In our fictional websites, we used JSON Web Tokens [18] for authentication
purposes. The tokens contain three parts: header, body, and cryptographic sig-
nature. The header consists of a type of the token and signing algorithm, the
body contains the claim, which is the value that we want to secure, and the cryp-
tographic signature is formed using the header and body. Our TLS connections
for both websites were set up through CloudFlare Keyless SSL [1,35].

The implementation details described here are specific to our prototype, but
ByPass is designed to work with a wide variety of website setups. The API is
packaged as a library that can be included by web developers, and the manager
is database-agnostic. The password database is stored offline in this particular
implementation, which allows users to make easy backups of the (encrypted)



454 E. Stobert et al.

password list, but limits portability. In this work, our primary focus was to
understand the usability of ByPass, and both the feasibility of this approach,
and issues such as portability between devices will be explored in future work.

4 Security and Attack Mitigation

We first discuss the security of the ByPass database, and then explain some
attacks that can be mitigated through our design.

Our current ByPass implementation uses an offline database to store account
information. As a result, this database can be subject to offline attacks (e.g.,
via guessing the master password). Currently, we encrypt the database using
AES-256, where the key is derived via PBKDF2 [42] from a user-chosen master
password, a random salt, and 100,000 iterations. The encryption key is kept
in memory as long as the user session remains active. Existing measures (see
e.g., [12,13,32]) can be adopted to enhance resistance against offline attacks.

In terms of reducing attacks, since we perform all the communications
between the password manager and websites through TLS, remote network
attacks, and SSL stripping attacks are mitigated; a remote attacker cannot inter-
cept and/or modify our communications.

Since ByPass communicates directly with web servers (instead of filling forms
on client-facing pages), encouraging users to use ByPass for completing account
management functions can mitigate HTTP(S) auto-fill vulnerabilities and sub-
domain equivalence attacks [9,11]. HTTP(S) vulnerabilities happen when the
password manager fills the credentials on an HTTP version of the website while
the credentials were saved on the HTTPS version, and in this way the password
manager makes an opportunity for the attacker to extract the user’s credentials
from non-HTTPS pages of the website. Avoiding auto-fill also helps us avoid the
sweep attacks [33], where credentials are filled to invisible fields in a malicious
webpage, and exfiltrated using JavaScript.

Copy to clipboard is a feature that most password managers utilize if they
cannot auto-fill the credentials. If the password manager doesn’t support enough
protection for the credentials that were copied to the clipboard, it will lead to
clipboard vulnerabilities, e.g., exposing passwords to other sites/processes; see
e.g., [11]. In ByPass, passwords and other information are communicated directly
to the website, and no password copying/pasting is used for login or other
account-related tasks, which avoids leaking passwords from the paste buffer.

User interface-based password brute-force attacks are another vulnerability
that affect extension-based password managers [11] if attackers gain access to the
password manager user interface. To reduce this vulnerability, we add a delay
based on the specific number of wrong master passwords entered by the user
(similar to some leading commercial password managers).

5 Usability Evaluation

ByPass is designed to address usability issues that prevent end-users from adopt-
ing and using password managers. We conducted two usability evaluations of



ByPass: Reconsidering the Usability of Password Managers 455

ByPass: an inspection-based evaluation of an early prototype, and a lab-based
user study of the higher fidelity prototype.

5.1 Cognitive Walkthrough

After creating the first prototype implementation of ByPass, we wanted feedback
on the usability of the manager. At that point, the prototype included the main
functions (adding accounts, logging in, and a version of password changing), but
was not sufficiently functional for a user study. We chose to conduct a cognitive
walkthrough [39] because of its focus on learnability and because it allowed us
to include the perspective of novice users.

We conducted a pluralistic walkthrough with five evaluators, including the
project team leads, the developer, and two volunteers playing the part of a
novice ByPass user. One of these volunteers had longtime experience using a
password manager, and the other had no password manager experience. We
walked through the process of creating a new user account on ByPass, migrat-
ing an existing account, registering for a new third-party account, changing a
password, and logging into a website.

In general, our novice participants found interacting with the prototype con-
fusing, and were unsure what steps to first take, and what information to enter
where. This led us to redesign much of the user interface, and include stronger
markers of flow between steps, e.g., the account-adding wizard and more promi-
nent navigation buttons.

Another issue that arose in the walkthrough was that the inexperienced par-
ticipant seemed to have few mental models for common password tasks, and in
particular, had no language for describing them. The abstraction taking place in
the password manager was confusing to them, and they had multiple problems
entering the right (fictitious) credentials, or choosing the correct menu option.

One of our central questions was whether the features in ByPass made sense
to users – would using ByPass seem jarring, given that it departs from the usual
interaction with websites? We expected the volunteer with previous password
manager experience to question how ByPass worked, but they did not comment
until prompted by us. When queried, they spoke to the intuitiveness of the
feature set, and said that they did not question how those features were working
because they just worked.

5.2 User Study

The second phase of our usability evaluation was to conduct an in-lab user study
to evaluate the usability of the ByPass prototype with unbiased users. Following
the cognitive walkthrough, the ByPass prototype was completely redeveloped
into a higher fidelity prototype (described in Sect. 3.3).

The goal of our user study was to gain insight into how easily users learned
to use ByPass, their reactions to the functions, and assess how using an API
can help the user to deal with password-protected websites. We did not include



456 E. Stobert et al.

Table 1. Descriptive statistics for task completion time in seconds.

Tasks Mean SD Median Minimum Maximum Range

New ByPass account 150.0 125.5 112.5 53.0 578.0 525.0

New web account 188.1 95.4 166.0 73.0 535.0 462.0

Account migration 60.8 25.3 50.5 33.0 128.0 95.0

Login via ByPass 4.4 0.8 4.2 3.2 6.7 3.5

New account via ByPass 161.4 104.5 120.5 52.0 502.0 450.0

Password change 73.1 65.8 43.5 14.0 218.0 204.0

Account deletion 19.6 13.1 13.0 7.0 50.0 43.0

a control condition in this evaluation, because we did not feel that existing
managers provided a meaningful comparison to the novel features offered in
ByPass. Our goal was to evaluate the usability of ByPass (including the problems
that arose). We chose an in-lab study so that we could observe participants’
interactions with ByPass, and ask follow-up questions about their experience.

Each study session lasted between 30 min and one h, and was divided into
three parts. Participants first completed a pre-test questionnaire asking about
existing password habits and demographics. After that, we provided them with
a short introduction to password managers and a brief overview of ByPass. They
were asked to complete six tasks using ByPass, and then to complete the post-
test questionnaire. Participants were paid 15 CAD. The study was approved by
our institution’s ethics board.

We designed the study to emulate a plausible first-time experience with
ByPass. To improve the ecological validity of the study, we created two fic-
tional websites (discussed above) to implement the API and be used for study
tasks. These websites were open-source versions of a webmail platform and an
e-commerce website, and we gave participants a handout to use in the study with
the website URLs and credentials to use in the study. We reminded participants
never to use their own passwords in the study.

Participants. We recruited 20 participants (12 female) by posting posters
around our university campus. Participants ranged in age from 18 to 46 with a
median age of 24. 18 participants were students, and 2 university employees. 15
participants (75%) reported having previous experience with a password man-
ager, though only three participants reported that a password manager was their
primary means of saving a password.

6 Results

We structured our usability evaluation around the ISO 9241 definition of usabil-
ity [8], and evaluated ByPass using three measures: efficiency, effectiveness, and
satisfaction. We recorded task completion times, success rates, and errors via
instrumented data collection in the prototype, and measured satisfaction using



ByPass: Reconsidering the Usability of Password Managers 457

Likert scale questions on the post-test questionnaire. We evaluated efficiency
using the time spent on each task. For effectiveness, we assessed the number and
types of errors that occurred during the study, and for satisfaction, we considered
findings from the Likert scale questions. We also recorded observations related
to task completion, participants’ comments, problems, and recommendations.

6.1 Time

Table 1 shows descriptive statistics for the duration of each study task, and Fig. 4
shows the distributions of completion time for all tasks. Times were recorded in
the manager logs from the appearance of the first screen to successful completion
of the task, and include the time participants spent making errors.

Although there were outliers, the median completion times were less than
three minutes for all tasks. Keeping in mind that all participants were completely
new to ByPass and were completing all tasks for the very first time, these results
are encouraging. Variance was relatively low for most tasks, particularly account
migration and login, which we think could form the majority of the users’ tasks
when setting up the manager for the first time.

Fig. 4. Boxplots showing the distributions of task completion time in seconds.

ByPass account registration involves the user entering their email address,
and choosing a master password. To enhance the ecological validity of the evalu-
ation, we included this task in the study and used a strength meter to encourage
participants to choose a strong master password. As mentioned above, partici-
pants were warned not to use their real passwords. Ten participants had trouble
picking a suitable master password, and the median completion time was 113 s.
As the ByPass registration process is no different than regular account creation,
participants were not asked to recall this password during the study.



458 E. Stobert et al.

The second task had users register directly on one of our external websites,
so that they would have an existing account to add to ByPass in a later step.
This step also gave us a baseline for the length of time needed to register on a
“regular” website. This task had the highest median completion time at 166 s,
and a few participants took much longer to complete it.

Later in the study, participants added that account to ByPass, and this
process was considerably faster; the median time to add an account (through
ByPass) was just 51 s. Following migration, participants were instructed to log
into that account through ByPass and participants had no trouble doing this
very quickly, in a median of just 4 s.

The process of creating a new website account via ByPass was new to all
users, and the median completion time was 121 s. There was a large interquartile
spread, and a few participants struggled considerably with this task, but we
expect that times might decrease as users grew more familiar with the manager.
In any case, an average of two minutes to register on a new website seems to
be an acceptable time. According to our logs, 95% of the participants used
the password automatically generated by ByPass, which means that our nudges
were successful in encouraging users to use a secure password while keeping
convenience.

Participants were asked to change the password on one of their accounts
on ByPass, and the median completion time was 44 s. 75% of the participants
used the password generation function to change their password and choose a
new one. The variance for this task was very low, and participants generally
did not encounter any problems. One thing that may have inflated times was
that participants clicked on the re-generate password button an average of 4.7
times. It was unclear exactly why participants were doing this, but for some, they
seemed to want to demonstrate to themselves that the password was actually
changing. Others were looking for a password that appealed to them.

The password change page also included a periodic password auto-change
feature, allowing the user to pick a period of 30, 60, and 90 days, so the password
manager will automatically change the password as the period ends. We did
not include this feature in a task, but most participants expressed interest in
this feature, and discussed it in relation to the annoyance of regular password
changes. Time spent on these conversations may have also artificially increased
the time spent on the password change tasks.

The final study task was to delete an account. At this point, participants
were relatively familiar with ByPass, and the median completion time for this
task was only 13 s.

6.2 Errors

We were particularly interested in the kinds of errors that participants made
while using ByPass, as dangerous errors in computer security can be difficult
to undo and can open the user to serious vulnerabilities [41]. Most participants
did not make any errors: the median number of errors per participant was zero,



ByPass: Reconsidering the Usability of Password Managers 459

Table 2. Total number of errors committed by usability study task.

Task Number of errors

ByPass account registration 34

Third-party website account creation 4

Third-party website account creation via ByPass 2

Account migration 1

Password change 0

Account deletion 0

Login to third-party website via ByPass 0

and the maximum was four. We examined errors on two dimensions: the type of
error committed, and the incidence of those errors.

Errors were logged by the ByPass software, and then grouped thematically
for this analysis. Some errors may have been excluded during this process; e.g.,
repeated regeneration of a password was not counted as an error, though it is
not the intended behaviour.

Table 2 shows the total number of total by task. By far the most error-prone
task was the ByPass account registration, incurring a total of 34 errors.

The majority of these errors were password mismatches (i.e., the confirmed
password not matching the created one), difficulties in choosing a sufficiently
strong master password, and filling in all fields appropriately. The irony that
this task had the most errors is not lost on us: we included this step in the
evaluation only for the purposes of realism, but we cannot ignore the fact that
authenticating to the password manager itself was the most problematic part of
the process. The next most error-prone task was the account creation on a third-
party website, where participants had a few problems with password mismatches.

Encouragingly, there were few errors in the tasks that actually involved using
ByPass. Below is a description of each error type, with the total number of times
it occurred in parentheses:

Password Mismatch on the Registration Page (21). This error was unique
to the ByPass registration page, and it occurred when the entered master pass-
word and the confirm master password were not matched. This error was repli-
cated 21 times in the study with a median of 1 time per participant. The maxi-
mum number of errors made by one individual was 3.

Wrong Password (11). We did not expect participants to perform anything
other than the tasks described in the study, but some participants took steps to
confirm whether or not the tasks they completed in ByPass were really accom-
plished on the websites. In doing so, these participants made some incorrect
password errors when logging into the websites managed through ByPass.

There were a total of eleven incorrect password entries. Participants partic-
ularly wanted to check the password change task by visiting the website and



460 E. Stobert et al.

testing the new and old passwords. Since they used the auto-password genera-
tion function for changing the password, they sometimes entered their previous
password mistakenly, leading to this error.

All Fields Required (10). Although this validation was included on all the
pages containing different fields, all of these errors happened on the ByPass reg-
istration page, and these errors were caused by our design of the login page. Our
extension’s window range was not wide enough to accommodate all the fields on
the registration page when the user was typing into the master password field. As
the user typed, the password strength meter gave more feedback and expanded in
size, shifting the password confirmation box below the page break. Although we
included a hint encouraging users to scroll down, several participants missed it.

Choose a Strong Password (4). For study realism, we included a password
strength meter (based on zxcvbn [40]) on the ByPass account creation page, and
required participants to choose a master password with a “strong” rating. Four
users attempted to use a password that did not fill this requirement, and these
problems stemmed from not paying attention to the instruction reminding them
to pick a strong password, from a lack of understanding of what forms a good
password, and from ignoring the feedback from the password strength meter.

Incorrect Master Password (3). Following creation of their master password,
participants were asked to use it to log into ByPass. Three participants made
mistakes in entering their password during login.

Bad Request (1). This error category encompasses several different errors:
when ByPass sends packets containing user information to websites, it waits for
an HTTP response status of 200 (OK) as an approval. Incorrect email addresses,
incorrect passwords, and request timeouts belong to this type of error. In our
study, this happened only once when a participant mistyped an email address.

Unsupported Website (1). Features like creating an account, changing pass-
words, or deleting an account, can be done only for websites for which we have
their API. This error occurs if the user tries to do any of these functions on an
unsupported website. One participant had a typo while they were entering the
name of the webmail service for the account creation function on ByPass, and
because we did not support that name, this error appeared.

6.3 Usability Perceptions

We were also interested in how our participants perceived the usability and
security of ByPass. We asked participants for their responses to 12 Likert-scale
questions, asking about the ease of use, perceived security, and desire to use
ByPass in future. Participants were asked to rate their agreement on a 7 point
scale where 7 was most positive. Figure 5 shows the distribution of responses for
selected questions.

Participants were universally positive about the ease of use of the password
change process (med = 7) and website login processes (med = 7) in ByPass.



ByPass: Reconsidering the Usability of Password Managers 461

Fig. 5. Responses to Likert scale questions asking about participants’ interest in
ByPass features.

They were also positive about the ease of creating new accounts through ByPass
(med = 7) and adding existing accounts (med = 7), as well as the ease of
deleting accounts (med = 7). Participants also found it easy to migrate a third-
party account to ByPass (med = 7).

The median agreement score for the perceived security of ByPass was 6,
indicating general satisfaction with the security of ByPass, though participants
expressed more frustration with the process of choosing a master password
(med = 5). In the discussion, some participants mentioned that they would
trust ByPass more if it were a software application from a well-recognized orga-
nization like Google. A few of the more technical participants commented that
they liked the fact that there is no server-side component to the manager.

Participants were most negative about features that related to user control,
see Fig. 5. They were not positive about the concept of not knowing the actual
password (med = 4.5), and displayed mixed responses about the password gen-
eration and auto-change features. 31% of the participants wanted to use their
own password, instead of relying on a password generator to create one for them.

7 Discussion

Although widely recommended as a simple step that users can take towards
improving their password security, few users adopt password managers. Adop-
tion problems and the extra work of using a manager are thought to be part of
the reason that users do not turn to these tools [3,4]. In this paper, we designed
and evaluated ByPass, a password manager that rethinks the users’ interactions
with the password manager, thereby encouraging adoption and encouraging users
to make use of security features. ByPass uses an API for secure communication
between the password manager and websites, freeing the user from creating and
avoiding errors resulting from copying and pasting. ByPass is built to extend
traditional password manager features and supports new functionality such as
automated password changes and account deletion. ByPass nudges users toward
using secure randomly generated passwords.

The downside of the ByPass approach to password management is that it
requires buy-in from websites, who must implement the API. We hope that the



462 E. Stobert et al.

promise of increased security compliance from users might motivate websites to
include the ByPass API, and that in turn, this might encourage users to adopt
ByPass over other password managers. We acknowledge the uphill nature of this
process, while leaving it somewhat out of scope for this paper; we think it is
worthwhile to investigate how an architecture such as that of ByPass impacts
users even without knowing how uptake might look. We specifically designed
ByPass to also be backwards compatible with websites that do not implement
the API, and designed the API so that it can be included as a library by website
developers. In future work, we plan to further study the feasibility of ByPass’s
implementation, as well as the implications for web developers, and how they
can be supported in implementing ByPass.

We conducted two early evaluations of ByPass’s usability, and found that
users were able to understand and use the features in ByPass. Most participants
did not encounter major problems, though there is undoubtedly still room for
improvement in the ByPass user interface. The results of this study will be used
to improve the prototype development. However, through the process of design-
ing, implementing and evaluating ByPass, we made a number of observations
that affect the design of not only ByPass, but password management tools in
general.

7.1 An Abstraction Layer for Accounts

ByPass adds a layer of abstraction between the user and the website, where all
account-management related interactions take place within the password man-
ager. Adding this abstraction layer brings up various design questions: Where
should the password manager sit in the physical space of the web browser? How
to instrument the browser extension to “correctly” interrupt interactions with
websites? How to train users to go to the password manager first for account
management-related tasks? What kind of language should be used to correctly
convey password tasks when they are de-situated from their website contexts?
Our evaluation suggests that while most participants were able to interpret what
was happening, some had great problems.

Our goal was to create a space where security could be the users’ primary
task, and allow them to focus cleanly and consistently on account manage-
ment tasks. The constancy of the ByPass interface is intended to allow users
a greater sense of control over their passwords and accounts. By using the API
to move account interactions into this space, we hoped to create an interface
where users knew where to address security concerns, and access the controls
to address those concerns. Current password managers hint at this functional-
ity (and include innovative tools, such as security audits) but their placement
outside the authentication interaction hampers the functionality they are able
to support.



ByPass: Reconsidering the Usability of Password Managers 463

7.2 Control vs Automation

ByPass re-architects the password manager to adjust the locus of control for
the user. The user is given more control over some aspects of their password
management tasks (password changes, account deletion), but less control over
passwords themselves. In ByPass, passwords are generated randomly by default,
and obscured to the user.

Our contention in ByPass is that the user does not need to know their
passwords. With the addition of the API, this is functionally true, but it does
not seem to fulfill users’ sense of security self-efficacy [28]. In our study, users
expressed unhappiness about not knowing their passwords, both in comments
and in the post-test questionnaire. We also observed them engaging in “epistemic
actions” [23] – actions that serve only to understand a situation rather than to
advance a goal, such as repeatedly regenerating passwords, or double-checking
on the website that a password had actually changed. Some of these reactions
may be due to unfamiliarity, but they echo the findings of previous studies where
users have expressed both a desire for control [4,27] and a corresponding sense
of responsibility for security [27].

Automating security is often tricky. Solutions such as TLS certificates auto-
mate nearly all of the security interaction, turning to the user only when a cer-
tificate is not validated, but demonstrate failures when users are unprepared to
cope with these situations. Conversely, passwords leave nearly all of the control
in the hands of the users, expecting them to exert individual responsibility for
all aspects of the password management task. ByPass attempts to find a middle
ground for users, removing tasks that needlessly involve users (e.g., reading the
password policy, choosing a password that conforms to it). In designing ByPass,
we became aware of the myriad corner cases in which the user might need to
exert control, and we attempted to leave accessible controls for situations such
as assigned passwords, and other unusual contexts.

7.3 Testing a Password Manager

In evaluating ByPass, one difficulty we encountered was creating a realistic test-
ing scenario. Ecological validity, or the realism of the study situation, is of the
utmost importance in security studies. Tasks that seem easy or manageable as
primary tasks (such as remembering a password) are not always manageable
when happening in the context of another more important task. Simulating this
for a password manager is difficult – the gold standard evaluation would seem to
be a field study where participants use the manager for their own accounts. We
would want to collect instrumented data from such an evaluation, and privacy
could be a significant concern (not only for data collection, but potentially bias-
ing participants’ behaviour). For ByPass, a study of this type carried the addi-
tional challenge of needing websites to be implemented with the API, further
restricting our ability to have users test the manager with their own accounts.



464 E. Stobert et al.

8 Conclusion

The usability of password managers is a key issue, since there is no benefit in
developing a secure password manager when users cannot make use of it. In
this paper, we design and implement ByPass, a password management software
offering new features to users by reducing the number of required actions for
specific task completion. The key idea of our proposed password manager is that
API-enabled secure communication between the password manager and web-
sites allows various password management tasks to be streamlined for the end
user. ByPass supports third-party account creation, password change, account
deletion directly through the password manager.

We constructed a prototype implementation of ByPass and evaluated it in
a user study with 20 participants. The results show that the participants found
ByPass easy to use, and our concept is effective both in terms of usability and
security. ByPass successfully nudged participants towards using automatically
generated passwords, and most of the participants were able to learn how to use
ByPass efficiently, while making few errors.

In future work, we plan to integrate the findings of this usability evaluation
into the ByPass user interface, integrate new features to support users, and
further test ByPass in more ecologically valid scenarios. We also plan to address
elements of password manager design that were left out of scope in this early
prototype, such as portability to multiple devices.

ByPass raises important questions about where security controls should be
placed for end-users. Users desire control, but this may be at odds with good
usability. The abstraction of password tasks in password manager creates an
extra management step for users, and managers must be carefully designed so
that users are supported in understanding this abstraction. However, we think
that redesigning the password manager could be key to seeing its wide adoption.

References

1. CloudFlare - The Web Performance & Security Company. https://www.cloudflare.
com/en-ca/

2. NIST Special Publication 800–63b: Digital Identity Guidelines. SP-800-63b Section
5.1.1.2

3. Alkaldi, N., Renaud, K.: Why do people adopt, or reject, smartphone password
managers. EuroUSEC’16 (2016)

4. Alkaldi, N., Renaud, K., Mackenzie, L.: Encouraging password manager adoption
by meeting adopter self-determination needs. In: Hawaii International Conference
on System Sciences, pp. 4824–4833 (2019)

5. Aurigemma, S., Mattson, T., Leonard, L.: So much promise, so little use: what is
stopping home end-users from using password manager applications. 50th Hawaii
International Conference on System Sciences (2017)

6. Ausloos, J.: The ‘right to be forgotten’ - worth remembering. Comput. Law Secur.
Rev. 28(2), 143–152 (2012)

https://www.cloudflare.com/en-ca/
https://www.cloudflare.com/en-ca/


ByPass: Reconsidering the Usability of Password Managers 465

7. Barbosa, N.M., Hayes, J., Wang, Y.: UniPass: design and evaluation of a smart
device-based password manager for visually impaired users. In: ACM UbiComp
(2016)

8. Bevan, N., Carter, J., Harker, S.: ISO 9241-11 Revised: what have we learnt about
usability since 1998? In: Kurosu, M. (ed.) HCI 2015. LNCS, vol. 9169, pp. 143–151.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20901-2 13

9. Blanchou, M., Youn, P.: Password managers: exposing passwords everywhere.
White Paper, iSEC Partners, pp. 1–6 (2013)

10. Bonneau, J., Herley, C., Van Oorschot, P.C., Stajano, F.: The quest to replace
passwords: a framework for comparative evaluation of web authentication schemes.
In: IEEE Symposium on Security and Privacy, pp. 553–567. IEEE (2012)

11. Carr, M., Shahandashti, S.F.: Revisiting security vulnerabilities in commercial
password managers. In: Hölbl, M., Rannenberg, K., Welzer, T. (eds.) SEC 2020.
IAICT, vol. 580, pp. 265–279. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-58201-2 18

12. Chatterjee, R., Bonneau, J., Juels, A., Ristenpart, T.: Cracking-resistant password
vaults using natural language encoders. In: IEEE Symposium on Security and
Privacy. San Jose, CA, USA, May 2015

13. Cheng, H., Zheng, Z., Li, W., Wang, P., Chu, C.H.: Probability model transforming
encoders against encoding attacks. In: USENIX Security (2019)

14. Chiasson, S., van Oorschot, P.C., Biddle, R.: A usability study and critique of two
password managers. In: USENIX Security, vol. 15 (2006)

15. Doglio, F.: Pro REST API Development with Node. js. Apress, New York (2015)
16. Golla, M., Beuscher, B., Dürmuth, M.: On the security of cracking-resistant pass-

word vaults. In: ACM CCS. ACM, Vienna Austria (2016)
17. Habib, H., et al.: It’s a scavenger hunt”: usability of websites. In: ACM SIGCHI,

Opt-Out and Data Deletion Choices (2020)
18. Haekal, M., et al.: Token-based authentication using JSON web token on SIKASIR

RESTful web service. In: 2016 International Conference on Informatics and Com-
puting (ICIC), pp. 175–179. IEEE (2016)

19. Herley, C., Van Oorschot, P.: A research agenda acknowledging the persistence of
passwords. IEEE Secur. Priv. 10(1), 28–36 (2011)

20. Inglesant, P.G., Sasse, M.A.: The true cost of unusable password policies: password
use in the wild. In: CHI’10, pp. 383–392 (2010)

21. Karole, A., Saxena, N., Christin, N.: A comparative usability evaluation of tradi-
tional password managers. In: Rhee, K.H., Nyang, D. (eds.) ICISC 2010. LNCS,
vol. 6829, pp. 233–251. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-24209-0 16

22. Li, Z., He, W., Akhawe, D., Song, D.: The emperor’s new password manager:
security analysis of web-based password managers. In: USENIX Security (2014)

23. Liu, Z., Nersessian, N., Stasko, J.: Distributed cognition as a theoretical framework
for information visualization. IEEE Trans. Visual. Comput. Graph. 14(6), 1173–
1180 (2008)

24. Lyastani, S.G., Schilling, M., Fahl, S., Backes, M., Bugiel, S.: Better managed than
memorized. In: USENIX Security, Studying the Impact of Managers on Password
Strength and Reuse (2018)

25. Maclean, R., Ophoff, J.: Determining key factors that lead to the adoption of
password managers. In: 2018 International Conference on Intelligent and Innovative
Computing Applications (ICONIC). IEEE (2018)

https://doi.org/10.1007/978-3-319-20901-2_13
https://doi.org/10.1007/978-3-030-58201-2_18
https://doi.org/10.1007/978-3-030-58201-2_18
https://doi.org/10.1007/978-3-642-24209-0_16
https://doi.org/10.1007/978-3-642-24209-0_16


466 E. Stobert et al.

26. McCarney, D., Barrera, D., Clark, J., Chiasson, S., Van Oorschot, P.C.: Tapas:
design, implementation, and usability evaluation of a password manager. In:
ACSAC’12, pp. 89–98 (2012)

27. Pearman, S., Zhang, S.A., Bauer, L., Christin, N., Cranor, L.F.: Why people (don’t)
use password managers effectively. In: SOUPS’19. USENIX (2019)

28. Rhee, H.S., Kim, C., Ryu, Y.U.: Self-efficacy in information security: its influence
on end users’ information security practice behavior. Comput. Secur. 28(8), 816–
826 (2009)

29. Ross, B., Jackson, C., Miyake, N., Boneh, D., Mitchell, J.C.: Stronger password
authentication using browser extensions. In: USENIX Security, p. 15 (2005)

30. Ruoti, S., Seamons, K.: End-to-end passwords. In: NSPW. ACM (2017)
31. Seiler-Hwang, S., et al.: “ I don’t see why I would ever want to use it” analyzing

the usability of popular smartphone password managers. In: ACM CCS’19 (2019)
32. Shirvanian, M., Jareckiy, S., Krawczykz, H., Saxena, N.: SPHINX: a password

store that perfectly hides passwords from itself. In: International Conference on
Distributed Computing Systems (ICDCS’17). Atlanta, GA, USA, Jun 2017

33. Silver, D., Jana, S., Boneh, D., Chen, E., Jackson, C.: Password managers: attacks
and defenses. In: USENIX Security (2014)

34. Smith, T., Ruoti, S., Seamons, K.: Augmenting centralized password management
with application-specific passwords. In: SOUPS’17. USENIX (2017)

35. Stebila, D., Sullivan, N.: An analysis of TLS handshake proxying. In: 2015 IEEE
Trustcom/BigDataSE/ISPA, vol. 1, pp. 279–286. IEEE (2015)

36. Stobert, E., Biddle, R.: A password manager that doesn’t remember passwords.
In: NSPW. ACM (2014)

37. Stobert, E., Biddle, R.: The password life cycle. ACM Trans. Priv. Secur. (TOPS)
21(3), 1–32 (2018)

38. Wang, D., Zhang, Z., Wang, P., Yan, J., Huang, X.: Targeted online password
guessing: an underestimated threat. In: ACM CCS. Vienna Austria (2016)

39. Wharton, C., Bradford, J., Jeffries, R., Franzke, M.: Applying cognitive walk-
throughs to more complex user interfaces: experiences, issues, and recommenda-
tions. In: ACM SIGCHI (1992)

40. Wheeler, D.L.: zxcvbn: low-budget password strength estimation. In: USENIX
Security (2016)

41. Whitten, A., Tygar, J.D.: Why johnny can’t encrypt: a usability evaluation of PGP
5.0. In: USENIX Security (1999)

42. Yao, F.F., Yin, Y.L.: Design and analysis of password-based key derivation func-
tions. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 245–261. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-30574-3 17

https://doi.org/10.1007/978-3-540-30574-3_17

