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Abstract. In this paper, a tightly-coupled light detection and ranging
(LiDAR)/dead reckoning (DR) navigation system with uncertain sam-
pling time is designed for mobile robot localization. The Kalman filter
(KF) is used as the main data fusion filter, where the state vector is com-
posed of the position error, velocity error, yaw, and sampling time. The
observation is provided of the difference between the LiDAR-derived and
DR-derived distances measured from the corner feature points (CFPs)
to the mobile robot. A real test experiment has been conducted to verify
a good performance of the proposed method and show that it allows for
a higher accuracy compared to the traditional LiDAR/DR integration.

Keywords: Light detection and ranging (LiDAR) · Dead Reckoning
(DR) · Tightly integration · Uncertain sampling period

1 Introduction

Nowadays, mobile robots are widely exploited in indoor closed spaces Borenstein
(2007). In view of the latter and as a basic issue for a robot to accomplish
the task, the robot accurate localization has become a hot research topic Jiang
(2015).

Many localization techniques were developed with time for indoor localiza-
tion. For example, an effective weighted path length and support vector regres-
sion algorithm for radio frequency identification (RFID) is introduced in He
(2018). An bluetooth-based accurate method is proposed for mobile robots and
tested in Raghavan (2010). A WiFi-based solution is present to solve the localiza-
tion problem for robots operating in unknown environments Benjamin (2015).
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2020

Published by Springer Nature Switzerland AG 2020. All Rights Reserved

Y.-D. Zhang et al. (Eds.): ICMTEL 2020, LNICST 327, pp. 116–123, 2020.

https://doi.org/10.1007/978-3-030-51103-6_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-51103-6_10&domain=pdf
http://orcid.org/0000-0002-5966-945X
http://orcid.org/0000-0001-6848-453X
http://orcid.org/0000-0002-2832-4985
http://orcid.org/0000-0002-5444-0285
https://doi.org/10.1007/978-3-030-51103-6_10


Improving Accuracy of Mobile Robot Localization 117

Although the received signal strength indication (RSSI)-based technology can
also be used for indoor localization, it commonly provides an insufficient accu-
racy. In order to improve the localization accuracy, the ultra wide band (UWB)
technology is developed for indoor needs Fan (2017). For instance, the UWB-
based indoor robot localization system is designed Xu (2018). But, even though
the UWB-based approach is able to improve the localization accuracy, it requires
a pre-arranged additional equipment. In order to avoid an extra equipment, the
beacon-free positioning approaches have been proposed. The famous example is
an inertial navigation system (INS) Cai (2018). However, the INS-based schemes
are not suitable for long-time operation due to induced time-drifts Wu (2019),
Cao (2019). In this regard, the light detection and ranging (LiDAR) approach
allows getting a higher positioning resolution in indoor environments Chang
(2019), Akshay (2019) that is an obvious advantage.

In this paper, an tightly-coupled light detection and ranging (LiDAR)/dead
reckoning (DR) navigation system is designed for mobile robot localization with
uncertain sampling time. In this model, the Kalman filter (KF) is used as the
main data fusion estimator. The state vector is composed of the position error,
velocity error, yaw, and the sampling time. Observation is provided of the dif-
ference between the LiDAR-derived and DR-derived distances measured from
the corner feature points (CFPs) to the mobile robot. A real test experiment is
conducted to verify the performance and show that the system designed has a
higher accuracy compared to the traditional LiDAR/DR integration schemes.

2 Tightly LiDAR/DR-Integrated Robot Localization
Model

A block diagram of the tightly LiDAR/DR-integrated indoor mobile robot local-
ization system designed is this paper is given in Fig. 1. In this scheme, the LiDAR
provides measurements of the distance ρLi , i ∈ [1, n] between the mobile robot
and the corner feature points (CFPs), where n is the numbers of the CFPs. The
DR measures distances ρDi , i ∈ [1, n] between the mobile robot and the CFPs.
The differences δρi = ρLi − ρDi , i ∈ [1, n], between the measured distances are
used as measurements for the EKF. The vector output δPoD of the EKF is used
to compensate the vector drift PoD in the DR.

Referring to Fig. 1, the state equation is written as
⎡
⎢⎢⎢⎢⎣
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where t is the discrete time index, (δPett, δPntt) is the DR-based position error,
δVtt is the DR-based velocity error, φtt is the mobile robot’s yaw, the sampling
time ΔTt is considered as one of the states, and ωt ∼ N (0,Q) is the system zero
mean white Gaussian noise with the covariance Q.

Fig. 1. Block diagram of the tightly LiDAR/DR-integrated indoor mobile robot local-
ization system.

Based on the state equation, the distance ρDi between the ith CFP and the
mobile robot can be written as

(
ρDi

)2
=

(
PeD − Pei

)2
+

(
PnD − Pni

)2
, i ∈ [1, n] , (2)

where (Pei, Pni) is the position of the ith CFP and
(
PeD, PnD

)
is the DR-

based position. A distance dRi between the ith CFP and the mobile robot can
thus be specified by

(
ρRi

)2
=

(
PeR − Pei

)2
+

(
PnR − Pni

)2
, i ∈ [1, n] , (3)

where
(
PeR, PnR

)
is the real robot position. Because of PeR = PeD − δPe and

PnR = PnD − δPn, we have

(
ρDi

)2 − (
ρRi

)2
=

(
P eD + P eR − 2Pei

)
δPe +

(
PnD + PnR − 2Pni

)
δPn.

(4)
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Moreover, ΔTt is used as one the elements of the observation vector that, refer-
ring to the above, is written as

⎡
⎢⎢⎢⎢⎢⎣
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(5)
where νt ∼ N(0,R) is the zero mean white Gaussian measurement noise with
the covariance R.

3 Experiment

In this section, a real test measurement is conducted to verify the performance
of the localization system designed. First, we will present the design of the
LiDAR/DR integrated integration system. Then, the performance of the pro-
posed method will be discussed.

Experimental investigations have been provided in the No. 1 teaching build-
ing of the University of Jinan, China. In this test, we employ one LiDAR, one
DR, one mobile, and one computer. The LiDAR, DR, and a computer are main-
tained on a mobile robot. The LiDAR measures ranges ρLi , i ∈ [1, n], from the
robot to the CFPs. The DR measures the velocity of the mobile robot and pro-
vides ranges ρDi , i ∈ [1, n] from the robot to the CFPs. A computer is used to
collect the LiDAR- and DR-based ranges via the RS232. In this work, we set
ΔTt = 0.75 s, which is also included to the observation vector listed in Eq. (5).
Therefore, we suppose that ΔTt is uncertain as it often is in digital systems and
model it with

ΔTtt = 0.75 + δT, (6)

where δT ∼ (0, 0.25) represents an uncertainty in the sampling time.
In Fig. 2 we sketch the reference path and the paths derived from DR

and LiDAR. The reference trajectory and the ones derived by the LiDAR,
LiDAR/DR tightly integration, and LiDAR/DR tightly integration with uncer-
tain sampling period are shown in Fig. 3 and the position errors in east and
north directions are sketched in Fig. 4. From these figures, one can deduce that
the path estimated by the LiDAR/DR tightly integration has a large error due
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Fig. 2. The reference path and the paths derived from the DR and LiDAR.
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Fig. 3. The reference trajectory and ones derived by the LiDAR, LiDAR/DR tightly
integration, and LiDAR/DR tightly integration schemes with uncertain sampling time.
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Fig. 4. Position errors estimated by the LiDAR, LiDAR/DR integration, and
LiDAR/DR integration with uncertain sampling time: (a) east direction (b) north
direction.
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to the uncertain sampling time. Compared to the traditional tightly integration,
the proposed LiDAR/DR tightly integration with uncertain sampling time has
a stable performance. The root mean square error (RMSE) produced by the
DR and LiDAR in the east and north directions are listed in Table 1. For the
uncertain sampling time, the RMSEs are listed in Table 2.

Table 1. RMSE produced by DR and LiDAR

Method RMSE (m)

East North

DR 0.1186 0.1128

LiDAR 0.0917 0.0896

Table 2. RMSE produced nu LiDAR, LiDAR/DR, and LiDAR/DR with uncertain
sampling time

Method RMSE (m)

East North

LiDAR 0.0917 0.0896

LiDAR/DR 0.1793 0.1290

LiDAR/DR with uncertain sampling time 0.0832 0.0850

Observing these tables, one concludes that the proposed localization scheme
has the highest accuracy.

4 Conclusion

The tightly LiDAR/DR-integrated system with uncertain sampling time has
been designed for indoor robot localization. The position error, velocity error,
yaw, and uncertain sampling time were selected as components of the state vector
of the tightly integrated model. The proposed model employs the difference
between the LiDAR- and DR-derived distances measured from the CFPs to the
mobile robot and combined in the observation vector. Real test measurements
conducted in No. 1 teaching building of the University of Jinan, China, have
confirmed a highest accuracy of the solution proposed among other available
schemes, including the traditional LiDAR/DR integration. An overall conclusion
that can be made is that the performance of the proposed tightly model is better
than that demonstrated by traditional methods.
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