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Abstract. Air pollution is becoming an important environmental issue
and attracting increasing public attention. In urban environments, air
pollution changes very dynamically both with time and space and is
affected by a large variety of factors such as road type, urban archi-
tecture, land use and variety of emission sources. In order to better
understand the complexity of urban air pollution, hyperlocal air pol-
lution monitoring is necessary, but the existing regulatory monitoring
networks are typically sparse due to the high costs to cover a full city
area at the necessary spatial granularity. In this paper, we use the city of
Antwerp in Belgium as a pilot to analyze the temporal and spatial dis-
tribution of four atmospheric pollutants (NO2, PM1, PM2.5 and PM10)
at street level by using mobile air pollution monitoring. In particular, we
explore how the atmospheric pollutant concentration is affected by dif-
ferent context factors (e.g., road type, land use, source proximity). Our
results demonstrate that these factors have an impact on the concentra-
tion distribution of the considered pollutants. For example, higher atmo-
spheric NO2 concentrations are observed on primary roads, compared to
secondary roads, and some source locations such as traffic lights have
shown to be hot spots of atmospheric NO2 accumulation. These findings
can be useful in order to formulate future local air quality measures and
further improve current air quality models based on the observed impact
of the considered context factors.
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1 Introduction

With industrial prosperity, urban development and growing traffic, the air pol-
lution caused by the combustion of fossil fuels such as coal, oil and natural gas
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has gradually attracted worldwide attention due to its great threat to human
health and to the natural environment. On one hand, atmospheric pollutants
have a significant negative impact on human health, leading to cardiovascular
diseases, lung cancer and thus reducing life expectancy. On the other hand, air
pollution is responsible for many environmental problems, such as eutrophication
and acidification of ecosystems.

The European Environment Agency (EEA) has listed seven types of atmo-
spheric pollutants that people may be exposed to: particulate matter (PM),
ozone (O3), nitrogen dioxide (NO2), sulfur dioxide (SO2), carbon monoxide
(CO), heavy metals, as well as benzene and benzopyrene [3]. In Europe, the
most problematic pollutants in terms of harm to human health are particulate
matter (PM), nitrogen dioxide (NO2) and ground-level ozone (O3) [1]. In an
urban environment, particularly at street level, these pollutants are directly or
indirectly related to the process of burning fossil fuels such as road transport,
electricity generation, industry and households [2].

Unfortunately, many European citizens live in places with serious air pollu-
tion. Air pollution monitoring is imperative to provide the government accurate
data to assess air quality and the influence of counter measures such as low
emission zones. It also provides the public with detailed and accurate air pol-
lution information. This can help them plan some activities (e.g., location and
time of sports activities). Nowadays, air pollution is measured by regulatory
networks of static monitoring stations. Tian et al. [20] investigated the relation-
ships between air pollution and various factors in the urban landscape including
socioeconomic, urban form, and morphological characteristics based on hourly
data at 35 monitoring stations in Beijing.

Although the static measuring stations are highly reliable and able to accu-
rately measure various pollutants, the network of these stations is not suitable
for street-level air pollution monitoring since the pollutants, especially traffic-
related, can show high spatial and temporal variability within a small neigh-
borhood. Their spatial resolution is typically sparse due to the high installation
and maintenance costs (1–10 km [11]). For example, there are currently only 108
static measuring stations in Belgium, a country with an area of 30,688 square
kilometers and a population of more than 11.4 million inhabitants [12]. There-
fore, the static measuring stations may not always accurately characterize the
high spatio-temporal variation in atmospheric pollutant concentration at street
level and may thus not be representative for the whole city.

Meanwhile, advances in sensor technology and the emergence of portable and
lower-cost sensing devices give rise to new opportunities for mobile air pollution
monitoring. There have been many studies on the feasibility of mobile monitoring
to measure air pollution at the high spatial and temporal resolution [23]. SM et
al. [19] developed a smart personal air quality monitoring system (SPAMS) for
urban air quality monitoring and personal exposure assessment. The monitoring
campaign was designed to assess both pedestrian and public transport passenger
exposure in Chennai city, India. The pedestrian exposure monitoring was carried
out at three locations for 10 days, whereas personal exposure monitoring while
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travelling in bus was carried out at selected routes over a period of three months.
In order to achieve fine-grained and realtime air pollution monitoring, Kaivonen
et al. [10] deploy wireless sensors on public buses running on two selected routes
to complement the coverage of stationary sensors in the city center of Uppsala,
Sweden. McKercher et al. [14] assess the capability of low-cost mobile monitors
to acquire useful data in a city without a monitoring network in place based on
30 days of data resulted from a bicycle platform along a 13.4 km fixed concentric
route in Lubbock, Texas. Van den Bossch et al. [5] explored the potential of
opportunistic mobile monitoring to map exposure to air pollution in an urban
environment at a high spatial resolution. This was based on a total of 393 h of
measurements collected by city wardens in Antwerp, Belgium. Hofman et al. [8]
evaluated personal exposure to ultrafine particle (UFP), black carbon (BC) and
heavy metals while cycling near Antwerp, Belgium. The mobile monitoring was
performed along two commuting routes for about two months.

However, these studies are often limited in spatial and/or temporal coverage.
This is because they usually choose certain locations and time periods to carry
out the monitoring campaigns. For example, the studies in [10] and [14] choose to
use fixed routes to move carries (buses and bicycles). The fixed and short routes
obviously can not prove the impact of various context factors on atmospheric
pollutant concentration. Besides, the duration of monitoring campaigns in [19],
[14] and [5] is very short, ranging from ten days to several months, which ignores
the effects of climate and seasonality on atmospheric pollutant concentration.
In our study, we perform a one-year opportunistic mobile monitoring campaign,
where the routes of mobile sensors cover almost the entire city center of Antwerp.

The main contribution of this paper is in the following aspects: (1) we provide
a systematic guideline on how to process and analyze air pollution datasets with
time sequence and geographic information; (2) we analyze the temporal and
spatial distribution of the considered pollutants and investigate the impact of
various context factors (e.g., road type, land use and different emission sources)
on the atmospheric pollutant concentration, which will facilitate the construction
of a new air quality model [6,7] in the future.

The rest of the paper is organized as follows. Section 2 introduces the methods
and dataset adopted in this study. Section 3 describes and discusses some results
we have found in present study and Sect. 4 presents the conclusions.

2 Materials and Methods

This section firstly describes the monitoring campaign that this study used to
collect air pollution data and the details of the collected dataset. Secondly, this
section provides a systematic guideline on how to process and analyze air pollu-
tion datasets with time sequence and geographic information, as shown in Fig. 1.
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Fig. 1. The main workflow of the system

2.1 Data Collection

Opportunistic mobile monitoring is defined by [5] as a data collection method
that installs the measurement devices on existing mobile sensor platforms. It
differs from targeted mobile monitoring in that the measurement devices in
targeted mobile monitoring follow the fixed routes designed by the researcher
in advance, while the measurement devices in opportunistic mobile monitoring
follow the daily routines of existing mobile sensor platforms. Therefore, oppor-
tunistic mobile monitoring enables the collection of large amounts of data at a
relatively small cost.

The data used in our study has been collected as part of the opportunistic
mobile monitoring campaign in Antwerp (with a population of 520,504 inhab-
itants, covering an area of 204.5 km2), Belgium based on the City of Things
(CoT) framework [18]. 20 air quality sensors were mounted on the roofs of the
Bpost (Belgian Post Group, the Belgian company responsible for the delivery
of national and international mail) vans since January 2018. In this paper, we
use the data from January to December 2018. These sensors deliver a record
every 30 s, including measurements of four pollutants (NO2 and three particu-
late matters with aerodynamic diameters below 1µm (PM1), 2.5µm (PM2.5)
and 10µm (PM10)) and meteorological information, such as temperature and
relative humidity, which are linked with corresponding GPS locations and time
stamps. As each Bpost car is driving around in the city, the set of sensors can
cover the entire city in terms of measurements enabling the collection of real-time
air quality information with broad city coverage, as opposed to an approach with
static sensors, which only allows for local information. Furthermore, the number
of static sensors necessary to cover the entire city is huge when compared to the
needed number of cars and, thus, the installation and maintenance costs are also
higher, which represent a considerable restriction when extending these kind of
deployments.
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2.2 Map Matching

In an urban environment, the occlusion of buildings will affect the reception of
GPS signals. Coupled with the geographical error of the GPS device itself, we
found that there is occasionally a big difference between the GPS location of the
collected data points and their actual location.

The simplest way to improve the quality of the collected data points is to
snap their locations to the nearest road segments. However, this method has
great drawbacks. Without considering the consistency of the trajectories, it may
lead to a point being snapped to an inconsistent road, or successive data points
jumping from one road to another. Specifically, this can result in unfeasible
trajectories, e.g., with unconnected roads.

To overcome this issue, Newson et al. [16] present an approach to use a Hidden
Markov Model (HMM) to select the best candidate by combining the spatial and
temporal component. Therefore, unconnected roads cannot be candidates and
trajectories of data points must be consistent with the road network. For each
GPS location, a number of map matching candidates within a certain radius
around the GPS point is computed. To complement this approach, Luxen et
al. [13] exploit the Viterbi algorithm to compute the most likely sequence of map
matching candidates. An implementation of this approach is available in OSRM
(Open Source Routing Machine) project. This framework can use a referenced
road network (e.g., OpenStreetMap) to generate a hierarchical routing network.
Xie et al. [22] proposed a novel approach to infer the road network by aligning
the tracks for each road segment using a “stretching and compression” strategy.
In this paper, we applied OSRM project to improve the data quality. Fig. 2
displays an example of the original locations and the improved locations after
map-matching.

2.3 Data Processing and Data Cleaning

Further processing steps include filtering out data located outside of the study
area and data not in working hours. These are described in more detail later in
this section.

Step 1. Filtering Out Data Outside the Study Area. This study focuses
on the city of Antwerp. To determine which measurements are located in the
study area, we set two simple thresholds: 51.1430 < latitude < 51.3780 and
4.2170 < longitude < 4.4980. We found that more than 90% of the measure-
ments for each pollutant were located in the city of Antwerp.

Step 2. Activity Pattern Detection and Filtering Out Off-Hour Data.
Since the mobile sensors are measuring continuously day and night, we need
to determine the working period to distinguish when the vehicle is on the road
(working hours) and when it is parked in the garage (off-hours). We calculated
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Fig. 2. Spatial data quality improvement by map matching

Fig. 3. The activity pattern of vehicles. It indicates the average speed (km/h) of vehi-
cles for each hour and each day of the week.

the vehicle speed (km/h) from the geographical locations of subsequent measure-
ments. Then, we applied the vehicle speed to detect the daily activity pattern
of these devices.

As shown in Fig. 3, the daily working periods (working hours) can be defined
as follows:
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– Monday to Friday: 08:00–21:00
– Saturday: 08:00–15:00
– Sunday: no activity

Based on that, nearly 40% of the collected data is recorded in the streets, and
is used in our analysis.

In this study, we measured, processed and analyzed four pollutants NO2,
PM1, PM2.5 and PM10. In the following sections, we only choose one or two
pollutants (e.g., NO2 and PM2.5) to show representative analysis results, since
our main purpose is to use Antwerp as a pilot to illustrate the feasibility of the
system, rather than investigating the actual urban pollution levels.

2.4 Data Aggregation

Spatial Variability. We generate the air pollution map at street level for the
entire city to see if we can identify general distribution patterns of these pol-
lutants. Figure 4 shows the resulting map of atmospheric NO2 concentration.
Different colors represent different NO2 concentration levels. The darker the
color, the higher the NO2 concentration level and the worse the air quality. It
is obvious that the concentration of NO2 on the main roads is much higher
compared to secondary roads in residential areas. We can also find that the con-
centration of these pollutants exhibits high spatial variability in the considered
urban environment. The concentration of NO2 in two adjacent streets may vary
considerably.

Temporal Variability. All analyses of the temporal variation in atmospheric
concentrations in this paper are based on the work-hour data, as defined ear-
lier. From Fig. 5, we can observe the daily and weekly distribution patterns of
the exhibited NO2 and PM2.5 concentrations. During the day, atmospheric con-
centrations of NO2 and PM2.5 increase during the morning and evening rush
hours, especially during the morning peak (at 8 am and 9 am). This is proba-
bly because the morning rush hour is more concentrated between 9 am and 10
am, whereas the evening rush hour seems to be spread out over a longer period
of time (4 am–8 am). During the week, the concentrations of NO2 and PM2.5

in working days are generally higher than that on Saturdays. This pronounced
diurnal variation, including rush hour peaks and difference between working and
weekend days is typically observed for traffic-related pollution in urban environ-
ments [8,9,15,17,21].
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3 Result and Discussion

In this section, a series of data analysis tasks are conducted to understand the
relationship between the considered pollutants and various context factors (e.g.,
road type, land use) and then find whether these context factors have an effect
on the concentration of pollutants.

Fig. 4. Map of NO2 concentration: average NO2 concentration for each road segment
with at least one measurement. The NO2 concentration levels correspond to the Euro-
pean Air Quality Index [4].
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(a) (b)

Fig. 5. The temporal pattern of (a) NO2 and (b) PM2.5. It indicates the average NO2

and PM2.5 concentrations (µg/m3) for each work-hour of the day and each day of the
week.

3.1 Road Type: Primary Roads and Secondary Roads

In this study, the primary roads refer to roads with reference number like N173
and E19, as shown in Fig. 6. In fact, these primary roads usually have high
traffic flow as they connect popular regions and have higher capacity. As for
secondary roads, they tend to have relatively lower traffic capacity but higher
traffic density. In this paper, traffic flow refers to the number of vehicles passing
a reference point per unit of time while traffic density is defined as the number
of vehicles per unit length of the road. From Fig. 7(a), we can see that the NO2

concentration on primary roads is slightly shifted towards higher values. Based on
the T-test, there is a statistically significant difference in the NO2 concentrations
observed along primary roads and secondary roads (p < 0.05). Also, the NO2

concentration on primary roads is always higher than that on secondary roads
during most hours of the day, as shown in Fig. 7(b). This confirms that the road
type has a significant impact on the distribution of NO2 concentration. The ring
road is a 6–8 lane road with a much higher capacity, when compared to a single-
lane secondary road. This higher capacity (vehicles per hour per lane) will lead
to the higher atmospheric NO2 concentrations.
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Fig. 6. Classification of road types in Antwerp, where the red lines represent the pri-
mary roads and the blue lines represent the secondary roads. (Color figure online)

3.2 Source Proximity: Traffic Signals

The reason that we are interested in the locations of traffic signals is that these
locations usually have relatively high traffic density and are prone to congestion,
as the vehicles stop at the traffic signals frequently and many traffic signals are
deployed at road intersections. We define a threshold to determine if a measure-
ment is close to the traffic signals. In this study, we set the threshold to 30 m. If
the distance between a point and a traffic signal is less than 30 m, then the point
belongs to the subset close to the traffic signals, otherwise the point belongs to
the other subset. From Fig. 8(a), we can find that the NO2 concentration close to
the traffic signals is slightly shifted towards higher values. As confirmed by the
T-test’s result (p < 0.05), there is a clear difference in the NO2 concentration
close to traffic signals and others. Figure 8(b) shows the NO2 concentration of
data close to traffic signals is higher during most time of the day and shows
higher temporal variability within a day.
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Fig. 7. (a) The normalized histogram and boxplot of the NO2 concentration on primary
roads and secondary roads: they both indicate the NO2 concentration on primary roads
is slightly shifted towards higher values; (b) The temporal distribution of NO2 concentra-
tion on primary roads and secondary roads: it indicates the average NO2 concentration
on the two kinds of roads for each hour of the day and each day of the week.

Fig. 8. (a) The normalized histogram and boxplot of the NO2 concentration close to
traffic signals and others: they both indicate the NO2 concentration close to traffic sig-
nals and others is slightly shifted towards higher values; (b) The temporal distribution
of NO2 concentration close to traffic signals and others: it indicates the average NO2

concentration of these two subsets for each hour of the day and each day of the week.
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Fig. 9. Classification of land use types in Antwerp, where the purple polygons represent
the industrial area and the yellow polygons represent the residential area. (Color figure
online)

3.3 Land Use: Residential Regions and Industrial Regions

In this study, we acquire the land use types from OpenStreetMap, a collaborative
project to create a free editable map of the world, as shown in Fig. 9. We define a
threshold to decide whether a point belongs to the industrial region or residential
region. In this study, we set the threshold to 10 m. If the distance from a point
to the industrial/residential region is less than 10 m, then this point belongs to
the industrial/residential region.

From Fig. 10, for both NO2 and PM2.5, we can observe that the concentration
in residential regions is slightly shifted towards higher values compared to that
in industrial regions. According to T-test’s result (p < 0.05), there is a signifi-
cant difference between the concentrations in industrial regions and residential
regions. Figure 11 shows the NO2 and PM2.5 concentrations in residential regions
are always higher than that in industrial regions during most time of the day.
This is not surprising as this study focuses on urban traffic-related pollutants
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Fig. 10. The normalized histograms and boxplots of the (a) NO2 and (b) PM2.5 con-
centrations in industrial regions and residential regions: they indicate for both NO2

and PM2.5, the concentrations in residential regions are higher than that in industrial
regions.

Fig. 11. The temporal distribution of (a) NO2 and (b) PM2.5 concentrations in indus-
trial regions and residential regions: it indicates the average NO2 and PM2.5 concen-
trations in these two kinds of regions for each hour of the day and each day of the
week.
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Fig. 12. (a) The normalized histogram and boxplot of the PM2.5 concentration inside
LEZ and outside LEZ: they both indicate the PM2.5 concentration outside LEZ is
slightly shifted towards higher values; (b) The temporal distribution of PM2.5 concen-
tration inside LEZ and outside LEZ: it indicates the average PM2.5 concentration of
these two subsets for each hour of the day and each day of the week.

(e.g., NO2 and PM), while industry in the city of Antwerp is mainly petro-
chemical. Due to the obvious higher traffic density in the city center and urban
architecture impeding natural ventilation, higher pollutant concentrations can
be expected in the residential areas.

3.4 Low Emission Zone

Since February 2017, the city of Antwerp has introduced a Low Emission Zone
(LEZ) in the entire city center. The entry restrictions of the LEZ will be gradually
tightened. In the first stage between 2017 and 2020, vehicles with high pollutant
levels are no longer permitted to enter the environmental zone. The LEZ of
Antwerp is permanent, that means 24 h a day for 7 days a week, also on Sundays
and public holidays. The environmental zone covers 20 km2 and affects about
200,000 inhabitants. Figure 12(a) shows that the PM2.5 concentration outside
LEZ is hugely shifted towards higher values. In addition to the T-test’s result
(p < 0.05), there is a significant difference in the PM2.5 concentration inside
LEZ and outside LEZ. As shown in Fig. 12(b), PM2.5 concentration outside
LEZ is always higher than that inside LEZ during most time of the day. This
may be because in the face of additional taxes, people are more likely to choose
environmentally friendly modes of travel, such as taking a bus or riding a bicycle
instead of taking a private car with high emissions.
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4 Conclusion and Further Steps

First of all, this study proofs the feasibility of collecting meaningful air quality
data from opportunistic mobile monitoring platforms. Based on the data col-
lected from Antwerp, we analyzed the spatial and temporal distribution of the
considered pollutants (NO2 and PM) and found that the atmospheric pollutant
concentration is highly variable in both time and space. The results show the
value of fine-grained air pollution monitoring. We also identified general distri-
bution patterns of the considered pollutants. For example, the main roads are
very conspicuous in the NO2 concentration map. In particular, we investigated
the impact of various context factors (e.g., road type, land use and some emission
sources) on the atmospheric pollutant concentration. For example, some source
locations, such as traffic signals, tend to have higher NO2 concentration levels.
We believe that these findings are of great value in assessing current air pollution
control measures and formulating future air quality improvement measures.

Next, we intend to construct more effective air quality prediction and air
pollution early warning models based on the context aware analysis.
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