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Abstract. Air pollution has become a global challenge during the
growth of megacities, which drives the deployment of air quality mon-
itoring in order to understand and mitigate district level air pollution.
Currently, air pollution monitoring mainly relies on high-end accurate
reference stations, which are usually stationary and expensive. Thus,
the air quality monitoring deployments are typically coarse grained with
only a very small number of stations in a city. We propose scalable air
quality monitoring by leveraging low-cost air pollution sensors, artificial
intelligence methods, and versatile connectivity provided by 4G/5G. We
describe pilot deployments for testing the developed sensing technologies
in three different locations in Helsinki, Finland.
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1 Introduction

In recent years, we have witnessed unprecedented growth of urban areas. Future
smart cities are characterized by high density, versatile connectivity require-
ments, localized processing, and mobile sensors. Citizens are expecting to expe-
rience personalized, anticipatory, real-time, clean and safe city services supported
by digital services, autonomous vehicles, Artificial Intelligence (AI), and robots.
Hundreds of thousands of smart street lights, base stations, and sensors support
near real-time decision making and optimization.

During the growth of urban areas, we have also witnessed the degradation
of air quality in developing countries. Urban air pollution has become a global
challenge for human health, ecosystem, and the climate. The recent study by
the Global Burden of Disease (GBD) project reported 5.5 million people world-
wide are dying prematurely each year as a result of air pollution [1]. Air pol-
lutants are conventionally measured by expensive high-end stationary stations.
However, high cost and needs for constant maintenance of such stations pre-
vent large-scale dense deployments. The recent advances in sensing technologies
and wireless communications enable a complementary approach with large scale
sensing solutions with low-cost sensors.
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In the MegaSense research program, we introduce a scalable and intelligent
real-time air pollution monitoring system by developing and deploying a hierar-
chical sensing architecture with low-cost sensors and leveraging machine learning
for sensor calibration and versatile connectivity provided by 4G/5G. Our goal
is to achieve near real-time air quality sensing with high spatial resolution. We
propose calibration of a large number of low-cost sensors with a small number of
accurate reference stations by using machine learning techniques. 5G offers uni-
fication by supporting versatile connectivity options and a framework for man-
aging smart city deployment. Scalable real-time air quality sensing is expected
to enable many applications.

We present pilot deployments carried out in the EU UIA HOPE project [2]
in Helsinki, Finland. The experimental results from three large urban test areas
indicate that crowd sourcing of air quality measurement is feasible, data valid-
ity can be significantly improved through calibrating the low-cost sensors with
higher quality stations, and crowd-sourced air quality data can serve as a basis
for new applications, such as green path routing.

The chapter is organized as follows: Sect. 2 presents the vision of the scalable
air pollution sensing in megacities. We describe the low-cost sensors used in
our sensing platform in Sect. 3 and present our pilots currently running with
these sensors in Sect. 4. Section 5 concludes this chapter with discussing future
research.

2 Spatio-Temporal Air Quality Sensing

In this section, we present the vision of the scalable spatio-temporal air quality
sensing.

Fig. 1. Vision of spatio-temporal air quality sensing.
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Figure 1 gives an outline of our vision of spatio-temporal air quality sens-
ing. A number of different types of sensors are deployed for monitoring the air
quality, including low-cost mini-sensors, middle-cost sensors, and high-cost ref-
erence stations. The low-cost and medium-cost sensors can be mobile and can
be integrated into vehicles or carried by citizens [3].

The emerging 5G-based technologies are expected to enable efficient data
collection, reliable sensor connection, less energy consumption, and intelligent
sensor management. Building on massive connectivity, sensing and distributed
data processing capabilities, the next-generation air quality monitoring networks
can automatically identify the operational environment of each sensor and opti-
mize sensor parameters in order to minimize errors and sensor drift.

Air quality sensors are hindered by many environmental factors and need to
be placed in suitable locations, where network connectivity and power supply
issues are taken into account. We introduce flexible and short-term placement of
the mini-sensors to optimize the coverage and accuracy of the pollution detection
process and study urban mobility patterns to improve coverage using portable
micro-sensors carried by citizens. We envisage that multi-vendor and open-source
sensor devices of different accuracy and capabilities can form a self-optimizing
mesh network. In our current work, we investigate the integration of low-cost
(tens to hundreds of euros) air pollution sensors, mid-cost sensors (thousands of
euros), and the high accuracy Measuring Earth Surface-Atmosphere Relations
(SMEAR) [4] stations that monitor a high number of pollutants every second.

Low-cost sensors are typically limited in accuracy compared with city mon-
itoring reference stations. We have designed a calibration model that maps the
measurements of low-cost sensors to measurements of reference stations using
machine learning algorithms to improve the performance of the low-cost sensors.
The low-cost sensors are co-located near to the reference station for a sufficient
period of time to collect the data for performing the sensor analysis and calibra-
tion. This corresponds to other research work related to sensor calibration [5–7].
Periodic re-calibration of sensors is necessary during the air quality monitoring
process due to its high instability, sensor drift phenomenon [8], and other errors
that reduce the accuracy.

The current solutions for sensor calibration have limited support for large-
scale and very dense deployments. It is not practical to bring thousands of sensors
to the reference stations for performing the calibration. Our key insight is to sup-
port calibration through a hierarchical mesh of sensors with both stationary and
mobile sensors (Fig. 1). We are exploring the possibility of using opportunistic
re-calibration, collaborative re-calibration, and transfer re-calibration [9] with
hierarchical sensor mesh networks.

Near real-time wide-area air quality sensing is expected to support the devel-
opment of many applications. Reliable and fine-grained air quality data and
insights are helpful in pinpointing pollution hot-spots and gaining understand-
ing of the root causes of the identified pollution problems [10]. The insights can
then help in mitigating pollution. For example, a smartphone map and navi-
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(a) Portable low-cost device. (b) Device attachment. (c) Measurement
application.

Fig. 2. Pilot devices.

gation application provide suggestions and directions regarding the paths and
routes with the best estimated air quality.

The MegaSense system is designed to provide information on multiple levels
from the city and district levels to the level of personal exposure to pollution.
On the city and district levels, it is possible to detect pollution sources and
provide suggestions for stakeholders to take actions for mitigating pollution.
Such information can be used to improve fitness and health applications as well
as control air ventilation systems. For example, the car ventilation system can
be controlled based on the current and predicted outside air quality to maximize
indoor air quality. The air quality information can also be used for building a
predictive model for early warning, which is very important especially for people
with respiratory problems.

3 Low-Cost Sensors

To evaluate the capabilities of low-cost crowd-sourced micro-sensors, we designed
a portable air quality sensing platform based on a BMD-340 system on a module
and mobile phone application (Fig. 2c). The portable platform connects to the
citizen’s Android smartphone over Bluetooth Low Energy, and the smartphone
reports the readings and GPS location to a collecting server. The measurements
are calibrated using the data from reference stations and machine learning tech-
niques before being displayed in the mobile app. The mini-sensor platform com-
ponent for measuring the Particulate Matter (PM) is a Sensirion SPS30. Table 1
presents a list of all the sensor components available on the portable device. The
platform is powered with a 3500 mAh battery and enclosed in a 3D-printed case
made of ESD-PETG filament. The form dimensions are: width 75 mm, depth
33 mm, height 127 mm, with weight 165 grams. The front is protected by an
aluminum mesh. General battery life before recharging via micro USB interface:
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26 h. Figure 2a presents a portable low-cost sensor that was carried by one of
the voluntary citizens in his bag for tracking the measurements of air pollutants
(Fig. 2b).

Table 1. Sensor types available in the low-cost portable device.

Sensor Type

BME-280 Temp, Humidity, Air Pressure

Battery Voltage

Sensirion SPS30 PM

SI1133-AA00-GM UV

MiCS-4514 CO, NO2

MQ-131 O3

To evaluate the practicalities of low-cost mini air quality sensors, we designed
a Raspberry Pi HAT with the same sensors (Table 1) with Nb-IoT modem
encased in water-proof rugged casing suitable for fixed outdoor stationary loca-
tions having constant power. This allows us to experiment with edge computing
as we can have more computation power with the sensors in comparison to the
portable sensor.

4 Pilot Deployments

We are running multiple pilot deployments with the university designed sensors,
including three pilots with portable micro-sensors and one pilot with stationary
mini-sensors in Helsinki, Finland.

Fig. 3. The MegaSense platform architecture.
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One hundred portable micro-sensors are loaned to voluntary citizens in the
UIA HOPE project [2] for measuring their own daily air pollution exposure using
the HOPE mobile application and crowd-sourcing data gathering. The citizen
exposure readings are based on measurements from the portable sensors, city
reference stations and an air quality model. The mini-sensors are deployed in a
small Nb-IoT network as part of a 5G testbed at the Kumpula area with support
from the City of Helsinki.

Both the portable micro-sensors and stationary mini-sensors upload air
quality measurements and download data to/from the MegaSense Edge/Cloud
data services. This is aligned with the MegaSense research program focuses on
addressing significant challenges towards scalable air quality sensing using low-
cost sensors with 5G technology and realizing big data analytics with machine
learning for supporting wide-area air quality monitoring applications. As pre-
sented in Fig. 3, sensors and mobile devices are connected to Edge/Cloud with
available 5G/4G connections via Rest API. Air quality MLaaS (machine learn-
ing as a service) offers machine learning tools as a part of Edge/Cloud services
to support business analytics. Specifically, low-cost sensors are periodically cal-
ibrated to provide reliable air quality data, data can be saved and processed on
Edge/Cloud depending on the application purposes.

(a) Pilot monitoring areas in Helsinki,
Finland. Top-down: Pakila, Vallila, and

.iraasäktäJ

(b) Pollution hotspot map created from
Pakila using portable low-cost sensors.

Fig. 4. Monitoring areas.

Early results from the UIA HOPE monitoring areas support the MegaSense
approach for optimising the spatial coverage and accuracy of the pollution detec-
tion through loaning citizens portable low-cost micro-sensors living in three dis-
tricts of Helsinki for a period of 3 months, and each district having a different
source for the emitted air pollutants (Fig. 4). Jätkäsaari is a new maritime inner
city district with a busy passenger port in the area which has high levels of traffic
pollution (see Fig. 4a). Pakila is an old suburban housing area and has mostly
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been single-family housing burning wood which had lead to high black carbon
emissions. Vallila is an old densely built residential district at the edge of the
inner-city with major traffic routes and street canyons recycling high street dust
pollution. An example of citizen crowd-sourcing data is the pollution hotspot
map presented in Fig. 4b based on the measurements from Pakila. The emis-
sions data on the map consist readings for one day. On the map the PM2.5 scale
ranges from light red (2.5µg) to dark red (25µg).

5 Conclusion

MegaSense addresses significant challenges pertaining to scalable air quality sens-
ing by developing and using low-cost sensors with 5G technology in a hierarchical
mesh network environment, and implementing big data analytics with machine
learning. MegaSense utilizes the designed sensing data platform and reliable
atmospheric data from SMEAR reference stations to field calibrate low-cost sen-
sors that can be integrated into vehicles or carried by users for scalable and
near real-time air pollution monitoring. In future research, we will continue to
explore runtime calibration of the hierarchical sensor mesh as well as investigate
approaches for processing real-time image and video data from hyperspectral
cameras for air pollutant detection.
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