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Abstract. Air quality is one of the most important topics in our urban life, as it
is of great significance for human health and urban planning. However, accurate
assessment and prediction of air quality in urban areas are difficult. In major cities,
typically only a limited number of air quality monitoring stations are available,
and inferring air quality in the un-sampled areas throughout the city is challeng-
ing. On the other hand, air quality varies in the urban areas non-linearly; it is
highly spatially dependent and considerably influenced by multiple factors, such
as building distribution, traffic situation and land uses.

In this research, we model air quality in the city of Augsburg using spatial
features and high quality sensor data. We identify spatial features such as types
and areas of different land uses, road networks with high resolution.

We integrate open available data to the air quality prediction. In this regard, we
compare a simple baseline model with linear regression models (Ordinary Least-
Squares andRidgeRegression) and tree-basedmachine-learningmodels (Gradient
Boosting and Random Forest). In our evaluation, given the non-linearity of the
data, tree-based models outperform all linear models, which are commonly used
in literatures.

In addition, we created an interactive and visual dashboard. This dashboard
demonstrates the analytical workflow, gives insight into model performance and
uncertainty and visualizes the results.

Keywords: Air quality · Land-use regression · Dashboard · Machine-learning

1 Introduction

Smart Cities can be defined as cities that predict and accommodate citizens’ needs
using different types of data and sensors to provide information and applying advanced
information technologies [1]. They will contribute to the efficient management of assets
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and resources. In addition, as mentioned by [2], “all activities for a smart city related to
public services can be managed by developing a platform (dashboard) for monitoring
all relevant data.” Visualization of data is important in Smart City applications, since it
can communicate information clearly and efficiently, which supports people’s decision-
making process in the city planning.

In this context, advanced analysis tools have become essential for a Smart City
development. Nowadays, machine-learning techniques play a key role in data analysis,
predictive modeling and visualization [3]. In regard tomachine-learning, one of themost
complicated problems is the diverse types of input data and the amount of available data.
In particular, for a smart city data analysis, spatial information of events and changes
around the city is required [4].

Relevant spatial data (also known as geospatial data or geographic information)
around a city is usually collected using ground surveying, remote sensing, more recently
through mobile mapping, geo-located sensors, geo-tagged web contents, Volunteered
Geographic Information (VGI) and so on [5]. In this study, we aim to tackle the smart
city issues by using machine-learning based spatial data analysis.

Air quality information, such as the concentration of certain particulate matters
like PM2.5 and PM10, is important for the quality of our urban life, as it is of great
significance for human health and city management. However, in major cities, there is
typically only a limited number of air quality monitoring stations. Inferring air quality in
the areas not covered by measurements is challenging as air quality varies in the urban
areas non-linearly, it is highly spatial-temporal dependent and considerably influenced
by multiple factors, such as meteorology, traffic volume and land uses [6–8].

Compared to the previous works, the contribution of this paper lies in several aspects.
Webuild land-use regression (LUR)models onmobilemeasurement data of air pollution,
we can conclude that mobile monitoring data is suited for LUR modelling at a higher
spatial resolution and therefore they can be used to characterize and prove the spatial
variability of air quality in the complex city area. We identify more spatially related
featureswith higher resolution, such as types and areas of different land uses, information
regarding road networks. By extracting and utilizing data from VGI projects such as
OpenStreetMap (OSM), we evaluate the usefulness of the crowd-sourcing data and
the contribution of the open spatial data. We integrate these features to the air quality
prediction; our proposed approach can be applied to assess air quality in any new urban
areas. Afterwards, a visual interface is developed to demonstrate the work-flow of the
analysis, including the data exploration, correlation analysis, model comparison and the
inference of air quality for a new city area with a finer granularity.

2 Related Work

The LUR is one popular approach for predicting spatial variations in air pollution. As
stated by [9], the general concept of a LUR is based on two steps: first, the dependen-
cies between explanatory variables and monitored pollution levels are evaluated using
ordinary least-square (OLS) regression for all measurement locations; second, the rela-
tionships found between concentrations and the explanatory variables are used to infer
concentration levels at locations without measurements but with available land-use data.
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LUR modeling requires air pollution measurements at multiple locations across the
study area, according to a review by [10], stationarymonitoring used by LUR is typically
at 20 to 100 locations, spread over the study areas. [11] investigated in the effect of the
number of monitoring sites on the LUR performance and their result suggested that for
complex urban settings, a LUR model should be based on a large number of measure-
ments (> 80 in their study), higher R2 achieved from smaller number of monitoring sites
for LUR models do not reflect the true predictive ability. A cost-effective alternative
way to collect data at a high spatial resolution is to use mobile measurements, however,
only few studies use mobile measurements as a basis for LUR modelling [12]. Based on
surveyed papers [9, 12–16], the OLS regression models built on mobile measurement
data explained between 0.40 and 0.60 of the observed variability in concentrations (R2

tested on the training datasets). The time resolution of monitoring is usually 1 s.
To summarize the predictor variables used in the LUR models, frequently used data

include: area of land-use, road network or traffic information, physical geography such
as elevation and slope, and meteorological data. Some studies [15, 17] also used demo-
graphic data such as number of inhabitants and population density. Study of [15] brought
the functions of year, day and hour into their modeling. Most studies have assessed a
large number of potential predictor variables in modeling air quality concentrations and
selected a smaller set of variables to the final models. Because of data availability, extrac-
tion and definition of predictor variables differ substantially between studies. For further
development of LUR methods that can be transferred to other areas, open spatial data is
worth getting more attention.

In addition, machine-learning approaches such as ensemble regressionmethods have
been utilized to handle complex and nonlinear relationships that exist within data and
produce forecasting models with comparable performance in practice. Based on our
review of papers [6, 7, 18, 19] from the domain of spatial data analysis, since the predic-
tion accuracy follows algorithm design, the machine-learning algorithms are crucial for
building air quality prediction models, whereas statistical models have not been heavily
used recently. Moreover, the random forest based approach is a prominent technique in
selecting variables and inferring air pollution values.

3 Study Area and Required Data

3.1 Study Area and Description

The study site is the city of Augsburg, Swabia, Bavaria, Germany, the third-largest city
in Bavaria (after Munich and Nuremberg) with a population of 300,000 inhabitants
(N48

◦
22

′
, E10

◦
54

′
, 2000 inhabitants km−2). The municipal area of Augsburg covers

147 km2 and the city border is 78 km long. The widest point north to south is 23 km
and east to west is 15.5 km. Residential and traffic areas make up only 36% of the city’s
land-use; one-third is devoted to agriculture and nearly 24% is forestland. The inner
city of Augsburg covers approximately 6.8 km2 and it is within the primary highway
B 300 at the south and the primary highway B 2 at the east. Multiple railways locate
at the west border, a tertiary highway borders the inner city at the north. The study
area covers approximately 4 km2, data was collected mostly in the inner city area of
Augsburg, especially within the inner city borders at the south and east. There is no
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primary highway located across the study area, however, multiple railways pass through
it at the southwest, shown in Fig. 1.

Fig. 1. The study area and mobile measurements during the first day of the IOP project in the
city of Augsburg. To give a clear display of the data points and the buffer (50 m) around the
measurements, we applied time-series re-sampling’s approach to take the median PM1 value
during a 5 min period (original data with 1-s resolution). The color gradient represents the height
of PM1 and the data is displayed on a map, which shows different types of railways and roads
extracted from OSM for the study area. (Color figure online)

3.2 Mobile Measurement Data

The mobile measurements were taken from the Intensive Operation Period (IOP) of the
particulate matter measurement project SmartAQnet1. During the first day of the IOP,
on the 26th Sep. 2018, a 11.4 km long route was done on foot 3 times in the study area.
Measurements were taken from 12:16:02 to 23:10:14, about 11 h in total, approximately
4 h for each walk. The route was then repeated during the next day and one month later.
The air pollution data were measured using the DustTrak DRX, which has a 1 s time
resolution. The data types (unit originally in mg/m3, multiplied by 1000 to unit µg/m3)
are: PM1, PM2.5 and PM10.

3.3 Geographic Data

The OSM project2 is a repository that provides user-generated street maps. It is a pow-
erful source of information that can be used free to understand and to model the built
environment. OSM is available as a vector data collection comprising point features
(nodes), line features (ways) and polygon features (ways and relations). Each feature
has at least one “tag” (key-value-pair) describing it. See [20, 21] for more detailed
description.

1 https://smartaqnet.github.io/.
2 https://en.wikipedia.org/wiki/OpenStreetMap.

https://smartaqnet.github.io/
https://en.wikipedia.org/wiki/OpenStreetMap
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The OSM data are downloaded and extracted from Geofabrik’s free download
server3. The file used for our study area is the file for Swabia, Bavaria, Germany4.
The downloaded data is in a number of ESRI compatible shapefiles5.

4 Implementation and Results

4.1 Aggregation of Concentrations

Following the study of [9], the measured air pollution concentrations of all three days are
projected on a gridwith 6100 cells, each of size 50m*50m, covering the complete region
of interest. For this purpose, the maximum and minimum values of the coordinates are
utilized to define the bounding box for the grid building. We use this method to develop
models for mean pollutant concentrations at a high spatial resolution. All measurements
are performed in each cell. To assure data quality, we require the model input to be based
on grid cells containing at least 50 mobile measurements, this removes approximately
4.6% of the data. Within the 6100 grid cells, 760 cells cover data points and 442 cells
of them cover at least 50 measurements. The original datasets of the three days contain
131050 data points in total, 124985 data points remained for building our model after
the selection of grid cells.

Considering the temporal aspect of the measurements, the information of the hour
h is brought into the model to capture the temporal patterns within a day, such as the
pattern during the rush hours. After the manipulation of aggregation, 3363 data points
are used in the final dataset for the further analysis.

4.2 Feature Generation

We use the geographic data available from OSM, which includes land-use, buildings,
traffic, railways and roads. After the aggregation of concentrations, the centroids of
grid cells are used to draw 50 m buffers and to extract geographic features from OSM.
Two types of features from OSM are considered: the polygon features and the line
features. We generate the buffers and intersect these buffers with the OSM geographic
layers. More specifically, the intersected areas for each values of keys are calculated for
polygon features whereas we extract the intersected lengths for each types of the line
features, such as road and railway. Based on the study of [18], we generate a vector as
geographic abstraction for each aggregated mobile measurement location. In the next
step,wequantify and evaluate the importance of individual components in the geographic
abstraction vectors.

4.3 Preprocessing

In the experiment, we started with randomly taking left-out samples in a small size from
the data and using the remaining data as the training set to predict the PM values for the

3 http://download.geofabrik.de/ 2018/12/12 17:02.
4 http://download.geofabrik.de/europe/germany/bayern/schwaben-latest-free.shp.zip.
5 Geospatial vector data format for storing geometric location and associated attribute information.

http://download.geofabrik.de/
http://download.geofabrik.de/europe/germany/bayern/schwaben-latest-free.shp.zip
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left-out samples drawn before. That means, the model fits on the training dataset, then
one uses the left-out samples as the ground truth to calculate the prediction accuracy.
After we split the dataset randomly, the number of the observations in the training dataset
is 2690, the percentage of data in training set is approximately 79.99%; the number of
observations in the left-out set, i.e., test dataset is 673, the percentage of data in test set
is approximately 20.01%.

For geographic features, we standardize them by removing the mean and scaling to
unit variance, calculated from the training set. Standardization is useful when one of the
variables has a very large scale, since this might lead to regression coefficients of a very
small order of magnitude.

Specifically, for the sake of the interpretation of variables in linearmodels, the feature
hour is one-hot encoded. They are therefore not treated as numerical but as categorical
variables. This was done to improve the performance of the linear models, because air
quality varies non-linear with time.

In order to assess the relative importance of the features we generated, we apply the
means of importancemeasure based on random forest algorithm, namelyMeanDecrease
Impurity on the training dataset. The impurity (residual sum of squares) decreases from
each feature can be averaged for a forest and the ranking of features is obtained according
to this measure. Following the proposed approach of [18], we construct the weighted
features by multiplying the values of all aforementioned preprocessed features by their
relative importance. In this way, we can particularly penalize trivial features.

4.4 Experimental Result

To predict PM concentrations for a target location that does not have air quality measure-
ments, we train differentmachine-learningmodels. Themost commonly used LURmod-
els in the literature apply ordinary least-square regression (OLR). We examine OLR and
ridge regression. In addition, we examine two tree-based machine-learning algorithms:
random forest and gradient boosting. The tree-based models are applied particularly for
handling nonlinear relationships.

We tune the hyper-parameters by 5 folds cross-validated grid-search of each model
to further improve their performance (tuned parameters for random forest: n_estimators
= 256 for prediction on PM1 and PM2.5; n_estimators = 512 for prediction on PM10,
min_samples_split = 2; for gradient boosting: n_estimators = 1024, learning_rate =
0.25; for ridge regression: alpha = 0.03125). We use the central tendency, namely, the
mean of the output value observed in the training data, as a baseline to compare the
results of all of our regression models.

From the Table 1, Table 2 and Table 3 we can compare the prediction’s results for
the three pollution types. The best prediction is achieved on the PM1. According to
Table 1, gradient boosting regression generated the best training score whereas random
forest performed the best on the test dataset. Tree-based models outperformed linear
regression models and all the models performed better than the baseline.
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Table 1. Result of prediction on PM1.

Regressors R2 (Train) R2 (Test) RMSE MAE MAPE

RandomForest 0.755999 0.41941 13.013 4.61543 15.5181

GradientBoosting 0.801266 0.413835 13.0754 5.03747 17.3187

RidgeRegression 0.263594 0.177901 15.4848 7.05862 27.4429

LinearRegression 0.28177 0.190075 15.3697 6.92811 26.5321

Baseline 0.00 0.00 17.0807 9.12583 38.3164

Table 2. Result of prediction on PM2.5.

Regressors R2 (Train) R2 (Test) RMSE MAE MAPE

RandomForest 0.747725 0.408235 13.3858 4.86004 16.3528

GradientBoosting 0.792927 0.399515 13.4841 5.3184 18.1369

RidgeRegression 0.244739 0.173651 15.818 7.50331 29.2644

LinearRegression 0.264099 0.187799 15.682 7.34138 28.0926

Baseline 0.00 0.00 17.4022 9.53591 39.8149

Table 3. Result of prediction on PM10.

Regressors R2 (Train) R2 (Test) RMSE MAE MAPE

RandomForest 0.752592 0.299473 26.6166 7.05102 18.4924

GradientBoosting 0.849792 0.305144 26.5086 7.69487 20.9269

RidgeRegression 0.147497 0.0545743 30.921 9.5087 29.5942

LinearRegression 0.162844 0.0625943 30.7895 9.33308 28.4433

Baseline 0.00 0.00 31.811 11.2264 37.669

5 Visualization and Dashboard Development

We present an application to simplify the LUR modeling process. We develop a user-
friendly dashboard using the Python (3.6) programming language, particularly, the visu-
alizations of all parts of this application have been built with the Python package Bokeh6

(1.0.4). This application is developed as a processing pipeline to model air quality based
on sensor data and spatial information. The main goal of this dashboard is to provide
an introduction of the work-flow for predicting air quality using LUR. Our model uses
openly available data, which also offers the possibility to use it on other study area. The

6 https://bokeh.pydata.org/en/latest/.

https://bokeh.pydata.org/en/latest/
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development of the dashboard is inspired by the Smart City applications introduced by
[22] and the RLUR Shiny Dashboard [23].

To make a LUR model on the dashboard, users will need a training dataset with
measured pollution concentrations and extracted geographic features, and a test dataset,
which contains grid cells covering the place of interest with extracted geographic fea-
tures. A sample dataset for training is provided here of PM1 concentrations in the city of
Augsburg, Germany. The data description and complete approach for feature extraction
is described in previous sections. A sample test dataset is provided for the whole city
area of Augsburg. The bounding box of Augsburg is defined using the Nominatim API
(3.2). A short description is also provided on the first page of the dashboard (Fig. 2).

Fig. 2. Description page of the dashboard

5.1 Data Exploration

The first step of the analysis is data exploration. A sample dataset for training is provided,
however, we also allow users to upload a training dataset from a local data source using
Upload Training Set tool to make the dashboard more flexible to use, see Fig. 3. To do
that, we utilize the CustomJS module to supply a snippet of JavaScript code that should
be executed in the browser to open a file dialog. The uploaded data table should be
saved as a csv text file and as another format restriction, the uploaded data table should
contain two columns named as “lat” and “lon” respectivelywith theWGS84 coordinates.
Moreover, object data type is excluded for further development of the dashboard.

The target variable can be selected, e.g., PM1. Indexes are added to the data table as
row labels. With an index slider, users can explore the data nicely, the map shows the
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Fig. 3. Data exploration and correlation analysis (Color figure online)

location of the measurements and color code signifies the value of the target variable. In
this sample dataset, the collection’s time is recorded. We therefore sorted the table by
time and plot the time series graph to show the temporal aspect of the data.

5.2 Correlation Analysis

As the next step, we apply correlation analysis and help users to identify which types
of variables are more important for predicting the target variable. We use the function
of pandas (0.23.4) DataFrame to compute pairwise Pearson correlation of columns,
excluding NA/null values. As initial state, the target variable, in this case PM1 is selected
automatically. The CorrelationMatrix shows the correlation of all other variables except
PM1 to detect the multicollinearity. As illustrated in Fig. 3, the Pearson Correlation
table shows the correlation of the selected features with the target variable and this
table is sorted in a descending order by the absolute value of the correlation. Selected
features will be brought to the next step and will be used for training different models
and comparing the model performance.

5.3 Model Comparison

The dashboard offers six different machine-learning algorithms to predict the air pollu-
tion levels using selected features from the last tab. The six algorithms are random forest,
gradient boosting, extra trees, ridge, lasso and linear regression. To train the models, we
build a function to execute each algorithm through a pipeline, which will fit the regres-
sors on the training dataset, test them on the validation dataset and record performance
metrics. For applying the algorithms, we use the standard methods from Python library
scikit-learn (0.19.1).

As shown in Fig. 4, the Model Options is a multi-selection’s tool, initially, all the
models are selected for comparison. The Test Data Percentage can also be given by users.
As the metrics, we record six measurements in total: Training Time, Training Score,
Testing Score, RMSE, MAE and MAPE. The Training Score and Testing Score specify
the R2 on the training set and on the validation set respectively. Using the Regressor
Properties table and theModelComparisonbar chart,we canget the bestmodel according
to the selected metrics. After the comparison, one can use the Model Options tool again
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to manually identify the best model, which will be applied for the prediction in the next
step.

Fig. 4. Model comparison and prediction (Color figure online)

5.4 Prediction

In the last step, we visualize the prediction for the place of interest, see Fig. 4. To this
end, we will need a test dataset. In the sample dataset, we built grid cells covering the
city of Augsburg, each grid cell has the size 200 m * 200 m and land-use features are
extracted for each grid cell. After that, we apply the model selected from last tab and
predict the target variable, in this case, the PM1 value.We plot our prediction using color
code on the map. The Upload Test Set button extend the flexibility of making predictions
on this dashboard. We allow users to apply new test dataset for any city area. The Update
Prediction button is used to make new predictions when any parameters of previous tabs
have been changed, such as the target variable and the model.

6 Conclusion

6.1 Summary

This paper modeled air quality in the city of Augsburg using spatial features and mobile
measurement data with high quality. We extracted and utilized data fromOSM and iden-
tified spatial features such as types and areas of different land uses, road networks with
high resolution. The advantages of our approach include that it used publicly available
open data to construct the geographic predictor variables instead of using expensive
datasets. Therefore, the built model can be easily used to infer air quality for other urban
areas. In addition, our approach quantified the importance of geographic features on air
quality prediction, enabled us to select features and integrate the important spatial fac-
tors automatically to the modeling, without using domain knowledge of air quality. We
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applied appropriate machine-learning approaches and compared the model performance
using a visual interface (dashboard). A dashboard was developed at the end of this study
to demonstrate the work-flow of the analysis, including the data exploration, correlation
analysis, model comparison and the inference of air quality for a new city area with a
fine granularity.

6.2 Limitations

The applicability of the LUR models obtained in this study is restricted by the charac-
teristics of the input (air pollution) data, such as that the data points are collected using a
single mobile sensor and they are only captured on the walked route. Due to the available
data only covering 3 days, we were not able to include weather or seasonality effects
into our model. Including additional measurements taken throughout the year should
improve the relevance of our predictive model. Furthermore, the LUR models are only
applied in a relatively small study area. How well the model would perform at a larger
scale (e.g., including the peripheries and not only the city center) or even in another city
area is still an open question. For instance, there is no primary highway located across
the study area, however, the highway traffic could be an interesting factor to our study.
As stated by [12], the generalization of the LURmodel to areas where no measurements
were made is limited, especially in predicting absolute concentrations. While this study
showed some potential of mobile sensors and spatial features for air quality prediction,
there is still more data needed for the evaluation of this approaches further applicability.

References

1. Hashem, I.A.T., et al.: The role of big data in smart city. Int. J. Inf. Manag. 36(5), 748–758
(2016)

2. Suakanto, S., et al.: Smart city dashboard for integrating various data of sensor networks. in
ICT for Smart Society (ICISS). In: 2013 International Conference (2013)

3. Gangappa, M., Mai, C.K. Sammulal, P.: Techniques forMachine Learning based Spatial Data
Analysis: Research Directions (2017)

4. Bermudez-Edo,M., Barnaghi, P.: Spatio-temporal analysis for smart city data. In: Proceedings
of WebConf 2018 (2018)

5. Li, S., et al.: Geospatial big data handling theory and methods: a review and research
challenges. ISPRS J. Photogrammetry Remote Sens. 115, 119–133 (2016)

6. Yu, R., et al.: RAQ–a random forest approach for predicting air quality in urban sensing
systems. Sensors 16(1), 86 (2016)

7. Zheng, Y., Liu, F. Hsieh, H.P.: U-Air: when urban air quality inference meets big data. In:
Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pp. 1436–1444. ACM (2013)

8. Kang, G.K., et al.: Air quality prediction: big data and machine learning approaches. Int. J.
Environ. Sci. Dev. 9(1), 8–16 (2018)

9. Hasenfratz, D., et al.: Deriving high-resolution urban air pollution maps using mobile sensor
nodes. Perv. Mob. Comput. 16, 268–285 (2015)

10. Hoek, G., et al.: A review of land-use regression models to assess spatial variation of outdoor
air pollution. Atmos. Environ. 42(33), 7561–7578 (2008)



126 Y. Shen et al.

11. Basagaña, X., et al.: Effect of the number of measurement sites on land use regression models
in estimating local air pollution. Atmos. Environ. 54, 634–642 (2012)

12. VandenBossche, J., et al.:Development and evaluation of land use regressionmodels for black
carbon based on bicycle and pedestrian measurements in the urban environment. Environ.
Model Softw. 99, 58–69 (2018)

13. Weichenthal, S., et al.: A land use regressionmodel for ambient ultrafine particles inMontreal,
Canada: a comparison of linear regression and a machine learning approach. Environ. Res.
146, 65–72 (2016)

14. Hankey, S., Marshall, J.D.: Land use regression models of on-road particulate air pollution
(particle number, black carbon, PM2.5, particle size) using mobile monitoring. Environ. Sci.
Technol. 49(15), 9194–9202 (2015)

15. Patton, A.P., et al.: An hourly regression model for ultrafine particles in a near-highway urban
area. Environ. Sci. Technol. 48(6), 3272–3280 (2014)

16. Kanaroglou, P.S., et al.: Estimation of sulfur dioxide air pollution concentrations with a spatial
autoregressive model. Atmos. Environ. 79, 421–427 (2013)

17. Habermann, M., Billger, M., Haeger-Eugensson, M.: Land use regression as method to model
air pollution. Previous Results Gothenburg/Sweden. Procedia Eng. 115, 21–28 (2015)

18. Lin, Y., et al.: Mining public datasets for modeling Intra-City PM2.5 concentrations at a fine
spatial resolution. In: Proceedings of the 25th ACM SIGSPATIAL International Conference
on Advances in Geographic Information Systems. ACM (2017)

19. Sun, L., et al.: Impact of land-use and land-cover change on urban air quality in representative
cities of China. J. Atmos. Solar-Terrestrial Phys. 142, 43–54 (2016)

20. Wiki, O.: Main Page – OpenStreetMap Wiki (2014)
21. Schultz, M., et al.: Open land cover from OpenStreetMap and remote sensing. Int. J. Appl.

Earth Obs. Geoinf. 63, 206–213 (2017)
22. Lehmler, S., et al.: Usability of open data for smart city applications–evaluation of data,

development of application and creation of visual dashboards. In: REAL CORP 2019–IS
THIS THE REAL WORLD? Perfect Smart Cities vs. Real Emotional Cities. Proceedings of
24th International Conference on Urban Planning, Regional Development and Information
Society (2019)

23. Morley,D.W.,Gulliver, J.:A land use regression variable generation,modelling and prediction
tool for air pollution exposure assessment. Environ. Model Softw. 105, 17–23 (2018)


