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Abstract. Radon gas is one of the most relevant indoor pollutants in
areas of slaty and granitic soils, and is considered by the World Health
Organization (WHO) as the second-largest risk factor associated with
lung cancer. In the IoT era, active radon detectors are becoming afford-
able and ubiquitous, and in the near future, data gathered by these IoT
devices will be streamed and analyzed by cloud-based systems in order
to perform the so-called mitigation actions. However, a poor radon risk
communication, independently of the technologies and the data analyt-
ics adopted, can lead to a misperception of radon risk, and therefore,
fail to produce the wanted risk reduction among the population. In this
work we propose a visual analytics approach that can be used for effec-
tive radon risk perception in the IoT era. The proposed approach takes
advantage of specific space-time clustering of time-series data and uses a
simple color-based scale for radon risk assessment, specifically designed
to aggregate, not only the legislation in force but also the WHO reference
level, by means of a visual analytics approach. The proposed method-
ology is evaluated using real time-series radon data obtained during a
long-term period of 7 months.
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1 Introduction

Along with other indoor air pollutants (smoke produced from solid fuel combus-
tion, volatile organic compounds, etc.), radon gas is responsible for the degrada-
tion of air quality in enclosed rooms. However, the World Health Organization
(WHO) considers indoor radon exposure as one of the most important causes
responsible for lung cancer, right after tobacco smoking [1].

Regarding radon exposure in enclosed environments, the 2013/59/Euratom
Directive imposes the so-called reference level of 300 Bq.m−3 for the occupational
exposure limit value [2]. All European legislation concerning ionizing radiation
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exposure protection goes in the same direction as a result of the transposi-
tion of the referred Directive. Furthermore, in [1], the WHO recommends that
countries adopt reference levels of 100 Bq.m−3 and if this level cannot be imple-
mented under the prevailing country-specific conditions, WHO recommends that
the annual average limit for indoor radon concentration in dwellings, offices, and
workplaces must stay below the reference level of 300 Bq.m−3 otherwise, mitiga-
tion actions are required to remediate the non-regulatory rooms [2].

Nevertheless, the reference level of 300 Bq.m−3 is the base value to set off
some remediation actions in order to reduce indoor radon concentration in a
given room, the period of occupancy is a key variable. By way of example, an
office where occupants stay on a daily basis for 8 working hours, exposed to
an indoor radon level of 300 Bq.m−3, results in a higher risk than a technical
room, with the same average level, where workers go there by one hour per
day for maintenance purposes. In summary, it can be said that the indoor radon
concentration taken in isolation cannot assess radon risk exposure since variables
like buildings occupancy, the period of occupation and type of building are of
vital importance on radon risk assessment.

Recently, several IoT-based radon detectors have been proposed, cf. [3–5],
and in the near future, data gathered by these devices will be streamed and
analyzed by cloud-based systems in order to perform the so-called mitigation
actions. Having in mind that a poor radon risk communication can lead to
a misperception of radon risk, and therefore, fail to produce the wanted risk
reduction among the population. Given this, in this work we propose a visual
analytics approach that can be used for effective radon risk perception when
data is streamed continuously by these IoT radon detectors.

The remainder of this paper is organized as follows, in Sect. 2 a discussion
about related works is undertaken, in Sect. 3 the visual analytics approach used
for effective radon risk perception is introduced, in Sect. 4, the case study is pre-
sented in detail, and finally in Sect. 5, conclusions are pointed out and discussed.

2 Related Works

Recently, due to the rapid growth of IoT and Big Data technologies, large
amounts of data from distinct varieties (timestamps, geolocations, sensor data,
images, audio, video, etc.) have been produced. However, such data are not useful
without analytic power [6]. Other analytics approaches, notably visual analytics
methods, have been explored with success in the IoT and Big Data domains.
Visual analytics methods aim to assist users in gaining insights, and therefore to
extract knowledge from the data, by means of visual interpretations and inter-
actions in the data analysis process [7]. Note that, an insight, can be seen as
the ability of a user to understand a specific cause and effect within a specific
context.

In [7], Keim et al. define visual analytics as the combination of automated
analysis techniques with interactive visualizations for an effective understanding,
reasoning and decision making on the basis of very large and complex data sets,
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that enable people to i) synthesize information and derive insights; ii) detect the
expected and discover the unexpected; iii) provide timely, defensible, and under-
standable assessments and iv) communicate assessment effectively for action.

In this context, several recent works have been addressing the topic of IoT
visual analytics, cf. [8–10], in order to assist users in the knowledge extraction
process. In [8], the authors present the Virtual Open Operating System (vf-OS)
approach to IoT Analytics, and describe its main components. The proposed
approach can be used to capture data from IoT devices to generate and run
machine learning models to perform data analytics, not only in the cloud but
also on the edge. In [9], Lee et al. present a study that introduces a holistic per-
spective of storing, processing, and visualizing IoT-generated contents to support
context-aware spatio-temporal insight. The study focus on the combination of
deep learning techniques with a geographical mapping interface. Visualization
is provided under an interactive web-based user interface to enhance the visual
data exploration process, by means of a spatio-temporal query-based interface.
In [10], the authors propose a framework for visual analytics of geospatial, spatio-
temporal time-series data to handle multivariate, multiscale, and time-series data
visualization. In the adopted design model they concluded that the most useful
patterns are those that show relationships and aggregations of the data in both
space and time domains.

3 Visual Analytics for Effective Radon Risk Perception

In order to extract knowledge from radon concentration data, first we need to
understand the data under analysis in a space-time context, cf. Fig. 1. Under-
standing the data will help in the process of selection of appropriate data anal-
ysis models, and therefore assist in gaining insights, knowledge generation, and
knowledge communication about the data [10].

Fig. 1. Indoor radon fluctuation over a week with ventilation actions identified.
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Indoor radon levels fluctuate over time depending on the building occupancy
and the number of ventilation actions undertaken, cf. [11–13]. Commercial active
radon detectors can perform continuous measurements in periods from 10 to
60 min. These detectors normally use an internal averaging mechanism to reduce
data dispersion and therefore improve data quality. Figure 1 illustrates the vari-
ation over one week of the indoor radon concentration in a room with regular
ventilation actions performed.

Moreover, indoor radon concentration is also affected by the space dimen-
sion, i.e. the soil composition and the building construction materials. Granitic
soils and granitic construction materials both contribute, 80% and 20% respec-
tively [1], to high indoor radon levels.

In our case it is expected that users can easily, and based on visual analytics,
gain insights about radon risk exposure and the relations of practical situations
such as building occupation and ventilation actions in the overall radon risk
perception. Figure 2 depicts the proposed visual IoT analytics model that will
be used in the visual analytics process.

Visual IoT Analytics Model

  Data 
 Streams 

Data Model

1) Time Series Data
2) Geospatial Features

Visualization Model

1) Clustered Point Maps
2) Time-based Heatmaps

Analysis Model

1) Space-Time Clustering
2) Color-based scale definition

Spatio-temporal
Observations

Sensor
Node 0
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. . .
Sensor
Node N

Insights
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Fig. 2. Visual IoT Analytics Model: from spatio-temporal observations to user insights.

3.1 Data Model

Given the fact that multiple IoT devices can be used in distinct rooms and/or
buildings, spatial context is key for radon concentration data exploration, and
therefore, spatial-based clustering must be performed having in mind the relation
of geographical entities, i.e. District > County > Building > Room > Device, as
defined in [3], each having a specific set of geospatial features, such as soil com-
position, architectonic style, construction materials, etc. Moreover, time-series
modeling is appropriate for radon concentration data when multiple devices geo-
graphically distributed are considered, not only for temporal clustering, but also
for short-term prediction of indoor radon concentration.
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3.2 Analysis Model

In [1], short-term measurements are defined as radon concentrations measure-
ments that takes place over a period of not more than 3 months, and long-
term measurements as radon concentrations measurements that take place over
periods of 3 months up to 1 year. This definition was used as our baseline for
clustering IoT time-series radon concentration data when multiple devices geo-
graphically distributed are considered. Multiple devices will generate time-series
radon concentration data that will be difficult to analyse if no time clustering is
performed. Given this, and having in mind the definitions previously introduced
for short-term and long-term data clustering, we opted to use a more refined
granularity containing five distinct time-based clustering approaches:

1) RT - Real Time (Hour);
2) VST - Very Short Term (Day);
3) ST - Short Term (Week);
4) LT - Long Term (Year), for periods always greater than 3 months.

In this analysis, the Euratom reference level of 300 Bq.m−3 [2] and the WHO
reference level of 100 Bq.m−3 [1] were considered in the analysis model for scale
definition and color selection, cf. Fig. 3, and therefore to enhance the visual
analytics process.

500 100 150 200 250 300 Bq/m3 

WHO
Reference Level 

EURATOM
Reference Level 

Fig. 3. Scale definition based on seven distinct colors mapped to the WHO [1] and
Euratom [2] reference levels.

3.3 Visualization Model

Based on the geographical hierarchy introduced in Sect. 3.1, clustered point maps
can be used and controlled by simple user-interface actions, such as zooming in to
break a cluster (one point) in a subset of clusters (a group of new points), or
zooming out to aggregate a set of clusters (a group of points) in a new cluster
(one point).

To visualise radon concentration data in the time domain we opted to perform
Very Short Term (VST), Short Term (ST) and Long Term (LT) time-based
clustering through a heatmap visualization approach, were data is visualised
through color variations in cells, enabling the easy assessment of its variance
using distinct time-based clusters and the identification of relevant patterns.
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4 Case Study

In this section, we present the evaluation of the proposed methodology using
real data obtained with a certified Airthings Plus Radon detector, between
12/11/2018 and 30/06/2019 in the Lab.1.11 of the School of Technology and
Management of the Polytechnic Institute of Viana do Castelo, cf. Fig. 4. The
Lab is occupied regularly between 9h00 am and 5h00 pm. Radon concentration
data is clustered in time, horizontally, using the periods defined in Sect. 3.2,
VST, ST and LT. Vertically, and aligned from top to bottom is presented the
evolution in time, week-by-week, with seasons identified.

Fig. 4. The placement of the radon detectors in the Lab.

When occupancy is considered, radon concentration time-series data should
be considered for particular time schedules, i.e. when users are effectively exposed
to the pollutant. Since that, in public buildings, offices, schools, kindergartens,
etc, occupancy is normally restricted to regular schedules during working days,
many of the time-series data values must not be considered in the computation
of related radon risk metrics and indicators. Common time-series models (e.g.
averaging/smoothing models) are inadequate in the case of intermittent time-
series because many of the series values must not be considered. Since these
models are based on weighted-summations of all past time-series data, they
negatively bias the calculus of, not only radon concentration exposure metrics,
but also, effective radon risk exposure indicators.
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The evaluation is presented based on two time aggregation criteria, i) Very-
Short Term (Day) and ii) Short-Term (Week). Additionally, two distinct data
visualization approaches were produced, one considering the effective room occu-
pancy and the other considering all the data gathered by the sensors.

4.1 Time-Based Heatmap Data Visualization

Figure 5 illustrates the variation of the radon concentration during 33 consec-
utive weeks. The data presented was acquired in the Lab and is used here for
methodology validation based on two distinct scenarios: a) no occupation consid-
ered and b) with occupation considered. The Lab under analysis is a ground-floor
office regularly occupied by three people, between 9h00 am and 5h00 pm, during
working days. Figure 1 b) illustrates the average radon concentration is obtained
directly from the occupancy profile previously defined.

(a) (b)

Fig. 5. Time-based Heatmap Visual Analytics: a) no occupancy considered; b) with
occupancy considered.
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Table 1 presents four evaluation metrics for easy comparison of the two sce-
narios introduced in Fig. 5. One observation is that scenario B regarding radon
concentration data with occupancy considered between 9h00–17h00, results in
a variation increase of metrics A and D which reveals that, the number of days
below the WHO reference level [1] increased, and the number of days bellow
the Euratom reference level [2] also increased. This observation also reveals that
the risk perception tends to be overestimated if we look to the heatmap that
considers all data, cf. Fig. 5a.

Table 1. Visual analytics performance metrics.

Metric All data Occupancy

data

Variation Reference level

24 h 9h00–17h00

A =
∑

Green cells/
∑

All cells 2.6% 4.2% ↑ 1.6% ≤100Bq.m−3

(WHO [1])

B =
∑

not(Green cells)/
∑

All cells 97.4% 95.8% ↓ 1.6% >100Bq.m−3

(WHO [1])

C =
∑

Red cells/
∑

All cells 72.7% 70.9% ↓ 1.8% >300Bq.m−3

(Euratom [2])

D =
∑

not(Red cells)/
∑

All cells 27.3% 29.1% ↑ 1.8% ≤300Bq.m−3

(Euratom [2])

4.2 User Evaluation

In order to validate the proposed approach, a set of user evaluation tests were
conducted. The main goal of this evaluation test was to understand how users
would read and perceive the proposed data visualization approach, and therefore,
their ability to effectively perceive risk.

The evaluation protocol was based on the methodology presented in [14]. The
evaluation protocol was based in two distinct documents: A) document used to
introduce users to the Radon exposure problem, our case study and the main
guidelines of WHO and the Portuguese legislation; and B) document with 11
questions, cf. Table 2 in which users have to answer about the visual analytics
approach followed in this work, cf. Fig. 5. The questions were split in three main
topics regarding Fig. 5 by considering heatmaps a), and b) alone, and considering
both heatmaps at the same time.

Before the tests were conducted, the document A) was given to the users to
explain the concept of the project to users. After this, the users had 3 min to
look at the data visualizations and try to extract knowledge from them. Then,
the questionnaire B), cf. Table 2, was handed to the participants. Subjects were
then informed that, for each question, while reading the question until an answer
was given, an independent observer would collect metrics on time duration and
number of errors made. Finally, users were ensured that the evaluation process
was about testing the visualizations and not themselves, giving them more con-
fidence and comfort to freely answer the questions.
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Table 2. Set of user evaluation questions.

ID Heatmap Question

1 a) Give an example of a day where the Radon
concentration was considered good by the WHO

2 a) Indicate (one of) the best weeks regarding Radon
concentration level

3 a) Indicate the interval of the Radon concentration
level observed on Thursday, week 18

4 a) Indicate the interval of the Radon concentration
level observed in week 20

5 a) Indicate a week where the Radon concentration
was better than the three months average

6 b) Indicate the interval of the Radon concentration
level observed on Wednesday week 11

7 b) Indicate the interval of the Radon concentration
level observed in week 19

8 a)+b) Indicate one day in which the Radon
concentration level was above the
WHO recommendation level but below the same
level, when occupation is considered

9 a)+b) Indicate the day or days of the week for which
the overall Radon Risk is considered higher

10 a)+b) From all available data, what is the week with
less Radon Risk exposure for the workers and
what are the less risky days of that week?

11 a)+b) What is the season with less Radon Risk
exposure associated?

4.3 Results

The user evaluation was performed with 10 subjects aged between 22 and 48
years old, and was based on the protocol introduced in Sect. 4.2. Figure 6 depicts
the statistical results regarding the users’ response time through a standardized
box plot representation. Additionally, in the same figure at right, the percentage
of wrong answers was added. From the results presented in Fig. 6, one can observe
that the spreading of the response time regarding questions 4, 6, 7 and 10B are
the smallest. The results also show that most of the participants needed more
time to answer question 8, with an average response time of 106 s. As shown in
Fig. 6, this is the first question that regards both heatmaps. In this question,
the user was asked to make connections between both heatmaps which naturally
took more time to relate and gain an insight. It seems that this question was
quite hard for the majority of the users, due to the fact that only half of the
users answered this question correctly. Question 6 and 7 were answered rather
quickly, i.e. all users answered this question in less than one minute. This relative
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quick response can be due to the fact that both questions are similar to question
3 and 4, which also resulted in a better success rate. Question 6 was even better
understood by the users than question 3, i.e. every user answered question 6
correctly while 2 users answered question 3 wrongly. This shows that users were
generally able to answer more quickly because previously gained insight earlier
questions. While the users were conduction the test, it was observed that the
difference between the time scales were sometimes unclear (VST-ST-LT) and
it took the user some time to figure out which time scale was relevant for the
question.

Fig. 6. User evaluation results, response time and percentage of wrong answers.

5 Conclusions

In this work, we proposed a visual analytics approach that can be used for effec-
tive radon risk perception in the IoT era. The proposed approach took advantage
of specific space-time clustering of time-series data and used a simple color-based
scale for radon risk assessment, specifically designed to aggregate, not only the
legislation in force but also the WHO reference level.

The field results obtained after evaluation with users show that 83% of the
overall questions were answered correctly with an overall average response time
of 49 s. Another relevant observation was regarding similar questions made inter-
mittently, resulting in a considerable reduction of the response time and also in
a better success rate. Moreover, this study revealed that the performance of
the proposed visual analytics method increases when occupancy is considered
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because when considering the heat map with all data available, we are inducing
users to overestimate radon risk, and therefore emphasize their risk perception.

The study allowed to conclude that a proper radon risk communication is key
for an effective radon risk perception, which results in a natural increase of the
radon risk awareness among the population. As a consequence of this awareness
increase, an overall radon risk reduction can be achieved based on these two
main factors: i) increase of regular ventilation actions and ii) performing proper
building occupancy management.
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