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Abstract. With the rapid development of information technology, the
power system already has the typical characteristics of the information
physical fusion system. The power industrial control system is widely
used in the power industry. While improving the efficiency, the economic
benefits have also been greatly improved. However, the dependence on
information technology has also increased the vulnerability to malicious
attacks. Power industry control system is facing a more serious threat.
In this paper, we combine anomaly detection and data dimensionality
reduction to propose a feature extraction method for iForest power mea-
surement data, which not only ensures the targeting of attack detection
in the data processing stage, but also takes into account the data qual-
ity of feature extraction. In addition, we use deep learning techniques
to identify attack behavior characteristics and use captured features to
detect attack behavior in real time. We prove the availability of the
method through simulation of the IEEE 118-bus power systems.
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1 Introduction

With the deep integration of informatization and the rapid development of the
Internet of Things, more and more information technology is applied to the
industrial field, and the power industrial control system is facing the threat of
cyber attacks [1].

The power industry control system is an important part of the country’s
critical infrastructure, covering power monitoring systems such as power plants,
substations, and distribution automation systems [2]. However, the existing secu-
rity protection methods cannot meet the new trend of intelligent and interactive
development of industrial control systems [3–5]. Some provincial power compa-
nies have begun to introduce new methods and ideas in some production pro-
cesses to build an industrial control system security system, forming a complete
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set of security early warning mechanisms for industrial control systems. However,
in order to fundamentally solve the problem of network security of power indus-
trial control systems, it is necessary to model for network intrusion and attack
behavior [6]. It is also necessary to combine the operational characteristics of
the power industrial control system to build a well-featured network intrusion
behavior signature database.

The research on network intrusion of power industrial control system is divided
into two aspects [7]. One is for the typical vulnerabilities in the power industrial
control protocol, and the other is to analyze the types of industrial control pro-
tocols involved in the business in combination with the business scenario. Among
them, the threat of attack is a possible factor or event that has potential damage
to the organization or assets. Generally speaking, the attack methods for power
industrial control systems, including distributed data tampering, forgery control
commands, and other advanced and customized attacks closely integrated with
business logic, have strong concealment and complexity [8,9].

In 2009, Yao Liu et al. [10] first proposed the basic concepts and related the-
ories of False Data Injection Attacks (FDIA) and conducted simulation exper-
iments. Literature [11–13] studied how to launch FDIA attacks through local
parameter information of local power systems. In addition to FDIA attacks
based on DC power systems, literature [14] studied the false data injection
attacks based on AC power systems. The above research is mainly aimed at
the false data attack in static state estimation. Literature [15] studied the false
data attack in the dynamic Kalman filter algorithm, proposed an effective attack
model, and analyzed the impact of the attack on the state estimation result.

In this paper, we comprehensively consider the above situation, combine
anomaly detection and data dimensionality reduction, and propose a feature
extraction method for iForest power measurement data. It not only ensures the
targeting of attack detection in the data processing stage, but also takes into
account the data quality of feature extraction [16]. In addition, we use deep
learning techniques to identify attack behavior characteristics and use captured
features to detect attack behavior in real time. The main contributions of this
paper are listed as follows.

– We use the advantages of isolated forest (iForest) and local linear embedding
(LLE) in anomaly detection and data dimensionality reduction, and innova-
tively combine abnormal score extraction and data dimensionality reduction.

– We design a real-time Deep Learning Based Identification (DLBI) based on
deep learning mechanism to detect false data bypassing the traditional bad
data detection mechanism.

– In response to our proposed false data attack detection mechanism, we con-
duct a simulation experiment. Then we compare them with ANN-based and
SVM-based false data attack detection mechanisms to test the detection accu-
racy and efficiency.



98 B. Wang et al.

The remainder of this paper is organized as follows. In Sect. 2, we briefly
introduce a unified preprocessing method for power measurement data. In Sect. 3,
we introduce an attack detection mechanism based on deep learning. In Sect. 4,
we deploy IEEE 118-bus system in the environment and carry out simulation
experiments. Finally, in Sect. 5, we conclude this work and make plans for the
future.

2 Uniform Preprocessing of Measurement Data

In this section, we consider that the power system, especially the large com-
plex network, has a high measurement data dimension and the data structure
is mostly non-linear. Although the linear dimension reduction method is sim-
ple to implement, the effect is not good [17]. At the same time, the individual
data dimension reduction will ignore the change of data distribution and abnor-
mal characteristics after the injection attack, resulting in the lack of pertinence
of feature extraction [18]. Therefore, we propose an abnormal score extraction
method based on Isolation Forest (iForest) as an independent feature, and then
use the nonlinear feature extraction scheme of Locally Linear Embedding (LLE).

2.1 Outlier Extraction Based on Isolated Forest

A well-designed false data injection attack can successfully evade the state esti-
mation detection mechanism and invalidate the traditional anomaly detection
algorithm. In addition, the power measurement data is increasing rapidly and is
already in the category of big data. If we directly use clustering and correlation
algorithms to detect abnormal data, it will generate a huge amount of compu-
tation, and real-time and accuracy cannot be guaranteed. Based on the iForest
algorithm, this paper establishes the iForest anomaly score equation of physical
data to realize the feature extraction of the physical system. It has the charac-
teristics of shorter calculation time and higher detection stability, and is suitable
for large-scale and high-complexity power measurement data, which meets the
requirement of all-weather real-time performance of attack detection.

Building iTree and iForest For the power measurement data set Dp contain-
ing n data samples x and ϕ features f , the establishment of iForest is composed
of multiple isolated trees iTree. As a random binary tree, the establishment
process of iTree is as follows:

Step1: Select a feature P randomly from the power measurement data set Dp;
Step2: Randomly selecting a single value Q in feature P ;
Step3: According to the feature P , binary log segmentation is performed for

each record. If any record in the attribute P is R < Q, the record is placed in
the left child node, and if R ≥ Q, it is placed on the right child node;

Step4: Recursively construct the left child node and the right child node to
construct a binary tree until each sample is isolated or the height of the tree
reaches a defined height to form an iTree.
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Isolated Forest iForest consists of a large number of iTree trees. The estab-
lishment process is a random sampling process. The establishment process is to
sample the measurement data set Dp multiple times, and obtain a plurality of
sub data sets, and respectively establish multiple iTree according to the sub data
sets to form iForest.

Output Outlier Feature After the establishing of iTree and iForest, the abnor-
mal score of each measurement data can be output. For a power measurement
data sample x, the calculation principle of the abnormal score is the average
traversal depth of all iTrees. For the quantification of the detection sample x
at each iTree traversal depth, define the following anomaly score quantization
equation:

c(μ)

⎧
⎨

⎩

2H(μ − 1) − (2(μ − 1)/n), μ > 2
1, μ = 2
0, μ < 2

(1)

H(t) = ln(t) + ξ (2)

The iForest exception score for each physical data x can be expressed as:

iscore(x) = 2
−E[h(x)]

c(µ) , (3)

where ξ is the Euler constant, h(x) is the path length of x, that is, the sum
from the root node to the edge of the isolated node, and E[h(x)] is the mean
of the path lengths on all iTrees. When iscore(x) approaches 0.5, the higher
the normality, the higher the degree of abnormality when it tends to 1. In the
detection of false data injection attacks, we use the abnormal score iscore(x),
which is quantized by outliers, as an independent feature of attack detection.
The power measurement data after extracting the abnormal score still has high
latitude and strong noise. The problem requires further feature extraction.

2.2 Power Measurement Data Dimensionality Reduction Method

After extracting the abnormal score of the measured data in the previous section,
it is regarded as an independent feature, and further data reduction is needed for
the high-dimensional measurement data. In this paper, we use nonlinear local lin-
ear embedding and linear principal component analysis to measure feature data.

Nonlinear Local Linear Embedding. Local linear embedding (LLE) is an
unsupervised dimensionality reduction method for nonlinear structural data. For
global nonlinear structures, LLE considers each data point in its neighboring
data points in a local linear structure, constructing a local reconstruction weight
matrix. While maintaining the nonlinear structure of the global high-dimensional
space, the low-dimensional mapping of high-dimensional data is sought to achieve
data dimensionality reduction. The implementation process is as follows:
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(1) In the original high-dimensional data, for each data point xi, artificially
specify the nearest k (k < N) points as the neighboring points, and calculate
the distance between xi and the adjacent points in turn, as follows:

dij =
√∑

(xik − xjk)
2 (4)

(2) Define the local reconstruction weight matrix W . In each local range, the
sample point and the adjacent point can be approximated as a linear structure,
then there is an error P (W ), and the following objective function is established
to minimize the error:

min P (W ) =
∑N

i=1

∣
∣
∣xi − ∑k

j=1 wijxij

∣
∣
∣
2

j = (1, 2, · · · , k)
, (5)

where xij is the neighboring point of xi, Wij is the weight between the sample
points, and satisfies

∑k
j=1 wij = 1. The error for any point xi is:

e =

∣
∣
∣
∣
∣
∣
xi −

k∑

j=1

wijxij

∣
∣
∣
∣
∣
∣

2

=

∣
∣
∣
∣
∣
∣

k∑

j=1

wij (xi − xj)

∣
∣
∣
∣
∣
∣

2

=
k∑

j=1

k∑

m=1

wijwinQi
jm (6)

Qi
jm = (xi − xj)

T (xi − xm) (7)

Using the Lagrangian multiplier method, we obtain the following partial recon-
struction weight matrix:

wij =

∑k
m=1

(
Qi

)−1

jm
∑k

p=1

∑k
q=1 (Qi)−1

pq

(8)

When Qi is a singular matrix, regularize it:

Qi = Qi + rI, (9)

where r is the regularization parameter and I is the identity matrix.
(3) Define the data points xi and xj in the high-dimensional space, and

find the yi and yj projected to the low-dimensional space. The local weight
matrix Wij remains unchanged to maintain the nonlinear structure of the high-
dimensional space. The following objective function is established:

min P (Y ) =
N∑

i=1

∣
∣
∣
∣
∣
∣
yi −

k∑

j=1

wijyij

∣
∣
∣
∣
∣
∣

2

=
N∑

i=1

N∑

j=1

Mijy
T
i yj (10)

Among them, the definition of M is as follows:

M = (I − W )T (I − W ) (11)
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At the same time, the objective function satisfies the following:
{ ∑N

i=1 yi = 0
1
N

∑N
i=1 yiy

T
i = I

(12)

Using the Lagrange multiplier method, we get:

MY T = λY T (13)

As shown in the above formula, the solution of the high dimensional space in
the low dimensional space can be obtained by means of feature decomposition,
wherein the low dimensional solution Y is the eigenvector corresponding to the
smallest eigenvalue in the M matrix.

iForest-LLE Feature Extraction Method. The feature data extraction for
the false data injection attack, using the iForest method to extract the abnormal
score, can detect most of the random tampering and part of the injection attack
in the measured data. However, the well-designed false data injection attack will
bypass the traditional state estimation of bad data identification. Therefore, it
is necessary to further determine whether or not FDIAs are accepted by the
machine learning classification method. This requires further data reduction for
high-dimensional nonlinear power measurement data.

This paper combines the advantages of iForest in dealing with anomaly
detection and LLE in dealing with dimensionality reduction of high-dimensional
data attributes, and proposes the iForest-LLE power measurement data feature
extraction method for false data injection attack detection. Figure 1 shows the
algorithm flow.

For the power measurement data x, first extract the abnormal score iscore(x)
of each data and use it as an independent feature, and then use LLE to perform
dimensionality reduction on the high-dimensional measurement data with the
specified dimension r. When the attack detection is performed, two character-
istics are comprehensively calculated to perform classification decision, thereby
defining the attack detection measurement data feature P :

P = [ID, iscore(x), f1, f2, · · · , fr] , (14)

where ID is the data sample number and iscore(x) is the iForest exception score,
[f1, f2, · · · , fr] is a new attribute of the power measurement data based on LLE
dimension reduction.

3 Attack Detection Based on Deep Learning

In this section, we propose a false data detection mechanism based on deep learn-
ing mechanism (Deep Learning Based Identification (DLBI) to detect spurious
data that bypasses traditional bad data detection mechanisms [19].
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Fig. 1. The iForest-LLE feature extraction method.

3.1 DLBI Detection Method Design

The detection method flow is shown in Fig. 2. The proposed detection mechanism
is mainly composed of the traditional State Data Estimator (SVE) and the Deep
Learn Based Identification (DLBI) scheme [20]. As described in Eq. (15), the
traditional bad data detection compares the critical value with the real-time
data, and when the processing result exceeds the critical value (n > τ), the
attack alarm is triggered, and the collected data is considered to be infused with
false data. {‖z − Hx‖2 > τ

‖z − Hx‖2 ≤ τ
(15)

When the processing result is within the critical value (n < τ), the obtained
measurement data is transmitted to the DLBI for further detection. In theory,
the critical value τ should be within an appropriate range [21]. If τ is too small,
the robustness of the traditional bad data detection system to environmental
noise will be reduced to some extent, which may lead to excessive unobjectionable
attack alarms [22]. On the other hand, if the value of τ is too large, it may have
a large impact on the effectiveness of the traditional bad data detection system,
and it will also cause a large load pressure on the subsequent DLBI system [23].

Based on Eq. (15), the measured value Za injected into the attack vector
cannot be found by the traditional bad data detection mechanism, as described
below:

‖za − Hxbad‖2 = ‖z+a−H(x+c)‖2 = ‖z−Hx+(a−Hc)‖2+‖a−Hc‖2 ≤ τ (16)
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Fig. 2. Attack detection mechanism.

Let τa = τ − ‖z − Hx‖2, if ‖a − Hc‖ ≤ τa, false data attacks can bypass
traditional bad data detection mechanisms [24]. Therefore, we can describe the
sufficient conditions for a false data attack to bypass the traditional bad data
detection mechanism as follows:

a = Hc + t, (17)

where H is the measured Jacobian matrix provided to the attacker, c and t are
the measured values designed by the attacker, and ‖t‖2 ≤ τa. A false data attack
that can be detected by the traditional bad data detection mechanism is called
an observable false data attack, and a false data attack that cannot be detected
by the traditional bad data detection mechanism is called an unobservable false
data attack. In our proposed mechanism, DLBI is used to detect undetectable
false data attacks.

4 Experiment Analysis

In this section, we evaluate the performance of DLBI through the IEEE-118
bus test system. In the 118 bus system, the state vector x ∈ R118 consists of the
voltage phase angle of each individual bus, and the measurement vector z ∈ R490

consists of the measured values of the bus and the branch that are actually
injected into the power system. In our simulation, we use complex load curves
collected from real-world environments, only a portion of which was verified
false data. In order to train enough false data to train the CBDN model in our
proposed DLBI mechanism, we use Fourier transform and principal component
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analysis to analyze the pattern of the confirmed false data. Considering that
the attacker has limited resources under actual conditions, an attacker who can
reasonably launch a false data attack can only tamper with a limited load curve.
We assume that an attacker of a false data attack can only tamper with 64 bus
of the IEEE-118 bus systems.

In order to verify the validity of our proposed CDBN structure, we compared
the mechanism of using ANN and SVM as false data identification with our
proposed CDBN mechanism. In the simulation experiment, the ANN consists
of a hidden layer with 25 cells, and the SVM algorithm uses a Gaussian kernel
function. In order to ensure fairness of comparison, we use the same amount of
tag data in the training process of these three methods.
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(c) Traditional bad data.
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(d) Malfunction caused by misoperation.

Fig. 3. Comparison of experimental results of three algorithms.

We model the ambient noise as Gaussian white noise ∼ N(0, 0.5), set the
threshold τ to 10, and consider the number of tamper-evident load curves k = 32,
40, 48, 56, 64. Our load curve is made up of 360 samples obtained by collecting
power measurements every 4 min on the load bus. From each load curve consist-
ing of 360 samples, we obtain 50 labeled data samples and 200 unmarked data
samples for training the DLBI mechanism using CDBN. Figure 3 compares the
detection accuracy of ANN-based and SVM-based detection mechanisms. From
Fig. 3 we can see that our proposed detection mechanism achieves the highest
detection accuracy among three different detection mechanisms. Our proposed
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test solution has a strong environmental noise robustness. In addition, to a cer-
tain extent, it can avoid the detection impact caused by misuse.

5 Conclusion

In this paper, we aim at the problem that the depth of abnormal behavior detec-
tion in the power industrial control system is not high enough, and the ability
to monitor the customized network attack combined with the industrial control
business logic is insufficient. We propose a feature extraction method based on
iForest, which realizes high-speed acquisition of real-time data of power indus-
trial control system and unified preprocessing of different structures, dimensions
and format data. And we also use the knowledge of deep learning to propose
a DBN-based attack detection method to achieve accurate identification of net-
work attacks in specific attack scenarios.

In order to test the attack detection mechanism, we deploy IEEE 118-bus sys-
tem in the environment and carry out simulation experiments. The final results
show that our proposed method has excellent performance.

The future work is mainly to strengthen the integration of power indus-
trial control systems and detection mechanisms, and how to effectively detect
advanced and customized attacks that are closely integrated with business logic,
including distributed data tampering and forgery control commands.
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