
DTMFTalk: A DTMF-Based Realization
of IoT Remote Control for Smart

Elderly Care

Shih-Chun Yuan1, Shun-Ren Yang1,2(B) , I-Fen Yang1, and Yi-Chun Lin1

1 Department of Computer Science, National Tsing Hua University,
Hsinchu 30010, Taiwan

2 Institute of Communications Engineering, National Tsing Hua University,
Hsinchu 30010, Taiwan

sryang@cs.nthu.edu.tw

Abstract. Smart elderly care becomes a popular technology to remotely
assist the aged at home in recent years because of the population ageing.
This paper demonstrates the DTMF-based realization of IoT remote
control for telecommunication operators to achieve the smart elderly-
care service. By utilizing IoTtalk, we implement a system, DTMFTalk,
which supports IoT remote control via conventional circuit-switched
DTMF signaling during a phone call conversation. DTMFTalk can mon-
itor the Call State of the smart phone, capture DTMF keys from the
in progress call, and send the key values to the IoTtalk server. After-
wards, the smart elderly-care devices can gain the related IoT instruc-
tions from the IoTtalk server. Through the delay measurement exper-
iment for DTMFTalk, we observe that DTMFTalk can constantly and
accurately recognize the DTMF keys as long as the user holds the desired
DTMF keys with enough period.

Keywords: Internet of Things (IoT) · Smart elderly care · Dual Tone
Multi-Frequency (DTMF) · Remote control

1 Introduction

In recent years, the smart elderly-care services [2,3,8,9] start developing along
with the population ageing. It is becoming more and more common that the
aged live alone or family members leave the aged staying at home alone due to
working. It is inconvenient for most of the aged to manipulate a lot of essential
equipment at home, and danger may even happen in case of carelessness. Thus,
the elderly-care service becomes a popular technology to take care of the aged at
home. The service can combine some IoT techniques with medical devices, home
devices and emergency notification facilities to establish the smart elderly-care
service, which can achieve the goal of remotely assisting the aged.

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2020

Published by Springer Nature Switzerland AG 2020. All Rights Reserved

D.-J. Deng et al. (Eds.): SGIoT 2019, LNICST 324, pp. 16–27, 2020.

https://doi.org/10.1007/978-3-030-49610-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-49610-4_2&domain=pdf
http://orcid.org/0000-0003-1702-1361
https://doi.org/10.1007/978-3-030-49610-4_2

DTMFTalk 17

Although the smart elderly-care service can integrate with IoT services, there
are some existing problems for IoT. The transporting paths of IoT services may
involve the public network which cannot guarantee the quality of service (QoS),
and various network security problems also exist. Additionally, most of the users
install Apps on their smart phones to access IoT services. While the foreground
Apps will consume great amounts of power, and the background Apps may cause
the users to miss real-time events. Moreover, the cost is very high for managing
and maintaining end-to-end Internet-based IoT service platforms with telecom-
grade quality. Thus, extra developing the extensive systems is not cost effective
for Internet-based IoT service providers.

Circuit-switched telephony network is one of the successful telephony net-
work mechanism in history, and it offers some solutions to existing IoT ser-
vice problems [6]. For Qos, the transporting paths between the CPEs and the
switches are based on the private network, which keeps telecom-grade quality
and security. With the telephone number provided by the trust telecommuni-
cations operator and routed by their switches, most network security dangers
can be blocked. Besides, the CPEs can handle real-time events with lower power
consumption like the condition that the users access IoT services deployed on
the CPEs through the telephone numbers. Moreover, it is easier and lower cost
for telecommunication operators to accommodate IoT services in the existing
extensive telecom systems. The related charging mechanisms have been devel-
oped for over 100 years and become reliable and flexible, so that IoT services can
be charged without extra overhead [7].

In this paper, we propose the approach for telecommunication operators
to integrate Dual Tone Multi-Frequency (DTMF) signaling with IoT [5,10] for
Smart Elderly Care. DTMF signaling based on circuit-switched telephony net-
work can also solve some existing IoT problems. DTMF signaling supplies push-
button telephones with much higher dialing speed than the dial-pulse signaling
used in conventional rotary telephone sets, and it prompts users to select options
from menus by sending appropriate DTMF signals from their telephones. Due
to the DTMF signaling applications in various fields for years, it becomes one of
the familiar technologies for the aged. The smart elderly-care service is provided
for the aged, so it is more appropriate for us to choose DTMF signaling to coor-
dinate with the aged habits. Furthermore, we design a system to support IoT
remote control via conventional circuit-switched DTMF signaling during a phone
call conversation, and we choose to utilize IoTtalk as our IoT service platform.

The following describes the paper organization. Sect. 2 illustrates our system
architecture. Sect. 3 further explains how our system captures DTMF signals.
Sect. 4 provides the conclusion of our system.

2 The Software Architecture of DTMFTalk

To support IoT remote control via conventional circuit-switched DTMF sig-
naling during a phone call conversation, we design and implement an Android
App, DTMFTalk, following the application development/execution framework

18 S.-C. Yuan et al.

DTMFTalk
Controller

DTMFTalk
Requester

IoTtalk
Server Smart Elderly-Care Devices

Smart Home
DTMFTalk App

Home
WiFi

Home
WiFi

Mobile
Signal

Mobile
Signal

PSTN
Signal

a b cd

Circuit-Switched
Fixed/Mobile

Communication
Networks

Fig. 1. System architecture

of IoTtalk. Figure 1 illustrates our system architecture, which consists of four
components: a DTMFTalk requester a, an IoTtalk server b, several smart elderly-
care devices c, and a DTMFTalk controller d. The DTMFTalk requester a is an
Android smart phone installed with our DTMFTalk App, while the DTMFTalk
controller d is a normal cell or PSTN phone. When the DTMFTalk requester a
and the DTMFTalk controller d are in a circuit-switched phone call conversa-
tion, the DTMFTalk App is responsible for capturing the DTMF keys embedded
inside the audio stream of the call from d, and further transferring the captured
DTMF keys to the IoTtalk server b. According to the DTMF keys, the IoTtalk
server b continuously manipulates the expected smart elderly-care devices c.

2.1 Overview of the DTMFTalk Software Architecture

The main tasks of DTMFTalk in the DTMFTalk requester a are: (1) to detect if
the DTMFTalk controller d (after the authentication and authorization proce-
dures) operates a call conversation with the DTMFTalk requester a, and (2) to
capture the DTMF keys from the audio stream and send the keys to the IoTtalk
server b. Figure 2 shows the detailed software modules of our DTMFTalk. As
illustrated in Fig. 2, DTMFTalk implements two Android application compo-
nents: the Call Detecting Service (CDS; see Fig. 2(I)) and the DTMF Handling
Activity (DHA; see Fig. 2(II)), which handle the above mentioned Tasks 1 and 2,
respectively. Note that a typical Android smart phone exercises a state machine
for call control in the Android telephony service. Thus, to achieve Task 1, the
CDS of DTMFTalk constantly monitors the state machine to retrieve the cur-
rent call status. The CDS is essentially an Android service, which is responsible
for detecting if a call is in progress, and controlling when to perform the DHA.
Initially, after DTMFTalk is activated, the CDS is executed in the back end.
Whenever a starts to engage in a phone call conversation, the CDS will call to
perform the DHA until the phone call conversation is completed. On the other
hand, the DHA is an Android activity, which implements the IoTtalk device-side
IDA and DA functionalities to capture DTMF keys and send those keys to the
IoTtalk server b, respectively. Besides, it provides a user interface for displaying
DTMF key related information to the user of a.

DTMFTalk 19

DTMFTalk Requester
DTMFTalk
DTMF Handling ActivityCall

Detecting
Service

Phone
Call

DTMFTalk
Controller

III

IoTtalk Device-Side
Functionalities

User Interface 1

Audio
Stream

Call
State

Update
Event

DTMF Key DA

IoTtalk DA

3

DTMF Key Extractor

IoTtalk IDA

2

Fig. 2. Software modules of DTMFTalk

2.2 The Functionalities of the CDS

The CDS should, in the back end, continually monitor the call state machine (in
particular, its state transitions) in the Android telephony service. The Android
telephony call state machine contains three states: the IDLE state, the RINGING
state, and the OFFHOOK state. The IDLE state represents that the Android
phone has no call activities; the RINGING state represents that a new call arrival
occurred and is ringing or waiting; the OFFHOOK state represents that at least
one call exists which is dialing, active, or on hold, and no calls are ringing or
waiting. By tracking the call state updates, the CDS can be aware if a call is
ongoing. We accomplish this via the Android broadcast mechanism. In Android,
the system and Apps can send broadcast messages when events of interest, e.g.,
a call state update in our case, occur. Other Apps can then utilize the Android
component BroadcastReceiver to register to receive these specific broadcasts.
In the implementation, our CDS extends (or inherits) the BroadcastReceiver
class, in which we specify a receiver that can be notified of a system broadcast
message in case a call state update event occurs.

By parsing the received broadcast messages of the call state update events,
the CDS can determine the new state after each state update and proceed accord-
ingly. Given the initial state IDLE, a typical state-update sequence and the
corresponding reaction of the CDS upon each update are illustrated as follows.

– Update 1 - The new state is RINGING: The DTMFTalk controller invites the
DTMFTalk requester, or vice versa, for a call. The CDS can first authenticate
and authorize the DTMFTalk controller’s telephone number (retrieved via
the Caller ID telephone service) before activating the subsequent DTMFTalk
tasks.

20 S.-C. Yuan et al.

– Update 2 - The new state is OFFHOOK: The DTMFTalk requester or the
DTMFTalk controller accepts the call invitation. The CDS will launch the
DHA.

– Update 3 - The new state is IDLE: The DTMFTalk requester or the
DTMFTalk controller terminates the call. The CDS will then end the DHA.

2.3 The Functionalities of the DHA

The DHA implements the IoTtalk IDA and DA functionalities for DTMF key
capture and delivery to the IoTtalk server, requesting the IoTtalk server to
conduct the expected IoT remote control. In fact, the DHA manipulates an IDF
DTMFKey from the perspective of IoTtalk. Therefore, the main task of the
DHA is to update and synchronize the value of the corresponding DTMFKey
IDF module in the IoTtalk engine. The detailed settings/configurations within
the IoTtalk engine for the proper operation of the DHA will be discussed in the
later sections. In the following, we summarize the functionalities of the DHA’s
three components: the User Interface (UI), the DTMF Key Extractor, and the
DTMF Key DA.

– UI (Fig. 2(II-1)). The UI is responsible for displaying App views. Besides,
the UI also incorporates into the Android component Text To Speech (TTS)
capability to transform the content of the App views into sounds, assisting the
user of the DTMFTalk requester (an elderly person) to use the DTMFTalk
App in a more user-friendly manner. Figure 3 shows a snapshot of the UI.

(a) Home Page (b) Guideline Page

TTS Volume:

(c) Settings Page

RC_Activity

(d) RC Activity
Page

Fig. 3. DTMFTalk user interfaces

– DTMF Key Extractor (Fig. 2(II-2)). The DTMF Key Extractor uses the
Android AudioRecord object to access the audio pieces from the audio stream

DTMFTalk 21

of the ongoing phone call. Afterwards, the DTMF Key Extractor analyzes the
audio pieces through the Fast Fourier Transform to determine whether DTMF
keys are contained in the call. Moreover, the DTMF Key Extractor can also
pass DTMF key related information to the UI, updating the content of the
App views. The details of this component will be given in Sect. 3.

– DTMF Key DA (Fig. 2(II-3)). The DTMF Key DA is responsible for updat-
ing the DTMF key value to the IoTtalk engine. The DTMF Key DA first
formulates an HTTP-based RESTful API request by attaching the DTMF
key value derived by the DTMF Key Extractor in the message body. Then,
the DTMF Key DA delivers the request to the DTMFKey IDF module in the
IoTtalk engine to synchronize the IDF value.

3 The Design and Implementation of the DTMF Key
Extractor

This section details how we design and implement the DTMF Key Extractor in
the DHA of DTMFTalk to capture the DTMF keys from the audio stream of
an ongoing phone call. We note that some existing Android Apps, e.g., “DTMF
decoder” [4] and “MobIVRS” [12], can already achieve this. These Apps typi-
cally perform sound recording first and then conduct decoding analysis on the
recorded audio stream. Our DTMF Key Extractor mainly follows the frame-
work of the “MobIVRS” App, which is the most complete open source among
the consider Android Apps. However, the “MobIVRS” App, which is actually
based on the older Android version, operates with some more inefficient methods
and components for most of the current smart phones. Besides, human voices can
easily lead the “MobIVRS” App to incorrectly recognize the DTMF keys. In the
DTMF Key Extractor, we rearrange the application framework to improve oper-
ational efficiency. Moreover, we also introduce and implement the two modes,
the TALKING Mode and the DTMF Mode, in the Main thread to promote the
recognition accuracy.

3.1 The Operation of the DTMF Key Extractor

As Fig. 4a illustrates, the DTMF Key Extractor operates a Java-library Blocking
Queue (Fig. 4a(1)) and three threads, one for the Main thread (Fig. 4a(2)) and
two for the Record Service (Fig. 4a(3)) and the Recognition Service (Fig. 4a(4)),
to achieve its tasks. The Blocking Queue is employed to store the DataBlock
objects, encapsulating the audio pieces recorded by the Record Service, for
DTMF key recognition by the Recognition Service. The Blocking Queue has
the property that if full, it will block the “producer” (i.e., the Record Service
in our case) from putting new objects until the space is released by the “con-
sumer” (i.e., the Recognition Service in our case). In the following, we explain
the operation the DTMF Key Extractor in terms of the interactions of its three
concurrent threads.

22 S.-C. Yuan et al.

DTMF Key Extractor

Audio
Stream

DataBlockDataBlock

Record
Service
Thread

Blocking Queue
<DataBlock>

DTMF Key DA / UI

DTMF Key Result

DTMFTalk

3

1

Main Thread

Recognition
Service
Thread

4

2

(a) Software Modules of DTMF Key
Extractor

Start AudioRecord recording

this.isCancelled()

False
True

True

False

DataBlock ← the audio piece;

BlockingQueue.put(DataBlock);

EndStop AudioRecord recording

Start

1

2

5

6

3

AudioRecord.read()
> 0 ?

4

(b) The Record Service thread

DataBlock ← BlockingQueue.take();

Key ← DataBlock.dtmfAnalyze();

Key is null ?

FalsefgRecognized ← true;

End

Start

this.isCancelled()

False

True

True

2

3

4

5

6

Set the variables:
fgRecognized ← false;
Key ← null;

1

(c) The Recognition Service thread

fgRecognized
True

Switch
mode

True

Update Key to
DTMF Key DA & UI

fgOngoingCall

True

End

False

True

False

False

False

Start

Cancel the Record Service thread
Cancel the Recognition Service thread

Key is # ?

1

3

5 7

2

In
DTMF ?

4 6

fgRecognized ← false;
8

(d) The Main thread

Fig. 4. Software modules and operations of the DTMF key extractor

The Record Service Thread. The Record Service thread employs an Android
AudioRecord object to record the audio stream of the ongoing call. According
to the designated audio source, sampling rate, encoding audio format, etc., the
read() member function of the AudioRecord object allows to obtain (from the

DTMFTalk 23

audio stream) a sampled, quantized, and encoded audio piece in signal format (0
or 1). The Record Service thread then formulates this audio piece as a DataBlock
object for storing in the Blocking Queue. The operation of the Record Service
thread is illustrated in Fig. 4b and is explained as follows. In Step 1, the Record
Service thread starts recording by creating an AudioRecord object and execut-
ing its startRecording() method. Next, Steps 2–6 repeatedly read/transform
an audio piece and store it in the Blocking Queue until the Record Service
thread is terminated by the Main thread. Step 2 first checks whether the thread
is cancelled by the Main thread. If true, Step 3 will stop recording using the
AudioRecord object (via the stop() method), and then the thread ends; oth-
erwise, Step 4 attempts to read an audio piece from the AudioRecord object.
In Step 4, if the return value of the read() method equals 0, nothing can be
read and the procedure moves back to Step 2 for the next iteration; otherwise,
Step 5 transforms the recorded audio piece (stored in a buffer) into a DataBlock
object, and Step 6 puts the DataBlock object into the Blocking Queue.

The Recognition Service Thread. The Recognition Service thread takes
and analyzes each DataBlock object from the Blocking Queue, checking if any
DTMF tone sound is embedded in the audio stream. In case a DTMF tone
sound is found, the Recognition Service thread will pass the DTMF key value to
the Main thread. Note that the Recognition Service thread uses a Fast Fourier
Transform (FFT) to analyze each DataBlock object based on the time domain,
which will be detailed in the next subsection. The operation of the Recognition
Service thread is illustrated in Fig. 4c and is explained as follows. Step 1 initializes
the two involved variables, fgRecognized (a flag) and Key, as false and null,
respectively. Next, Steps 2–6 repeatedly retrieve and analyze a DataBlock object
from the Blocking Queue until the Recognition Service thread is terminated by
the Main thread. Step 2 first checks whether the thread is cancelled by the Main
thread. If true, the thread ends; otherwise, Step 3 uses the take() method to
retrieve a DataBlock object from the Blocking Queue. Then, Step 4 analyzes
the content of the DataBlock object, attempting to derive the embedded DTMF
key value and store the result in Key. Step 5 further determines if Key contains
a null value. If not, a valid DTMF key value is found, and Step 6 will update
the shared flag variable fgRecognized as true to reflect this condition to the
Main thread.

The Main Thread. The Main thread controls the operations of the Record
Service and Recognition Service threads, and updates valid DTMF key values
to the DTMF Key DA and the UI. We note that in a wireless environment, with
non-negligible probabilities, normal human audio pieces and even background
environment noises can be coincidentally recognized as valid DTMF keys. If the
users can first “reveal” when they intend to remotely control (via the DTMF
keys) the smart elderly-care devices, the above-mentioned incorrectly identified
DTMF keys can be easily ignored, leading to a significantly reduced false DTMF-
key detection probability. Besides, in this case, the DTMF Key Extractor can

24 S.-C. Yuan et al.

be allowed to only focus on those meaningful DTMF key detections when the
users are indeed operating DTMF keys. For this, the Main thread implements
two modes: the TALKING mode and the DTMF mode. When the two parties of
the call are in conversation, the Main thread stays at the TALKING mode; on
the other hand, when the user of the DTMFTalk controller is pressing DTMF
keys for remote control, the Main thread stays at the DTMF mode. Moreover,
the specific DTMF key ‘#’ is employed to switch between the two modes.

The operation of the Main thread is illustrated in Fig. 4d and is explained as
follows. The whole thread repeatedly checks the call status, switches the current
mode if necessary, and updates a recognized DTMF key to the DTMF Key DA
and the UI until the call is completed. Step 1 first checks the status of the
flag, fgOngoingCall, which is controlled by the CDS (see Fig. 2(I)), shared with
the Main thread of the DTMF Key Extractor, and is used to indicate if the
monitored call is still ongoing. If false, Step 2 cancels the Record Service and
Recognition Service threads, and then the Main thread ends; otherwise, Step
3 checks if the status of the flag, fgRecognized, has been set as true by the
Recognition Service thread, indicating that a DTMF key has been successfully
recognized. If a DTMF key has been detected and Step 4 finds that the key is the
control key ‘#’, Step 5 switches the mode from TALKING to DTMF, or from
DTMF to TALKING, depending on the current mode. However, if another
DTMF key is found and the current mode is DTMF (i.e., the IoT remote control
mode) at Step 6, the key can be regarded as a valid key and will be reported
to the DTMF Key DA and the UI at Step 7. Finally, before moving back to
Step 1 for the next iteration, the fgRecognized flag should be reset as false
at Step 8 to allow the Recognition Service thread to recognize the next DTMF
key. Note that for the synchronization among the Main, the Record Service, and
the Recognition Service threads, some sophisticated constructs are implemented
for the protection of the shared variables. Nevertheless, these details are not
presented in this paper due to space limitation.

3.2 The Fast Fourier Transform for DTMF Signal Detection

In Step 4, the Recognition Service thread (see Fig. 4c) performs Fourier analysis
for DTMF signal detection [1]. As shown in Fig. 5a, a DTMF signal consists
of two tones - with frequencies taken from two mutually exclusive groups: one
frequency from the low group (697 Hz, 770 Hz, 852 Hz, 941 Hz), while the other
frequency from the high group (1209 Hz, 1336 Hz, 1477 Hz). For example, press-
ing ‘3’ will generate a 697-Hz tone from the low frequency group along with a
1477-Hz tone from the high frequency group at the same time. Based on such
DTMF working principle, the DTMF signal detection in the Recognition Service
thread can be achieved as follows.

DTMFTalk 25

1209 Hz 1336 Hz 1477 Hz

697 Hz 1 2 3

770 Hz 4 5 6

852 Hz 7 8 9

941 Hz * 0 #

(a) DTMF keypad

0.0

0.2

0.4

0.6

0.8

1.0

0 20 40 60 80 100 120 140

Magnitude

Frequency

(b) The spectrum array

Fig. 5. The fast Fourier transform for DTMF signal detection

– When a DataBlock object encapsulating the sampled/encoded audio piece
for a DTMF signal in the time domain is given, the Cooley-Tukey algo-
rithm [11,13], the most commonly used fast Fourier transform (FFT), is
applied to compute the discrete Fourier transform (DFT), a frequency domain
representation, of the DTMF signal. This allows to reveal the frequency com-
ponents that are present in the DataBlock object. The output of the Cooley-
Tukey FFT algorithm is stored in a double array, spectrum, of size 150,
where the array indices of spectrum represent the frequency samples (unit:
15.4 Hz) while the array value of spectrum under a given array index rep-
resents the corresponding DFT magnitude normalized within [0, 1]. As an
example, Fig. 5b illustrates the content of the spectrum array after the DTMF
signal of ‘3’ is transformed and recorded.

– To determine the corresponding low and high frequencies for the DTMF sig-
nal represented by spectrum, the Recognition Service thread divides the array
indices of spectrum into two halves: the low frequencies [0, 74] and the high
frequencies [75, 149]. Afterward, the Recognition Service thread searches the
frequency with the maximum DFT magnitude in each half, and saves the
obtained low frequency in the first half and high frequency in the second half
into lowMax and highMax, respectively. The lowMax and highMax can be
used to look up the corresponding mapping in the DTMF frequency table in
Fig. 5a. If matched, the DTMF signal can then be recognized. For example, in
Fig. 5b, lowMax contains 45 with respect to a frequency value approximately
697 Hz, while highMax contains 95 with respect to a frequency value approx-
imately 1477 Hz, which matches the frequency pair of the DTMF signal ‘3’.
Thus, the Recognition Service thread can store the valid key character ‘3’ in
Key.

3.3 Real Testbed Deployment

We have implemented the functionalities of DTMFTalk, and deployed a real
testbed (as shown in Fig. 6) to justify the feasibility of our DTMFTalk as an
approach to IoT remote control, especially for elderly-care applications.

26 S.-C. Yuan et al.

DTMFTalk
Controller

DTMFTalk
Requester

IoTtalk
Server

Smart Elderly-Care Devices in
our DTMFTalk Demo Room

Chunghwa
Telecom

Modile Network

Fig. 6. A real testbed deployment

4 Conclusion

This paper demonstrates how we achieve the integration between DTMF sig-
naling and IoT service. By choosing IoTtalk as the IoT service platform, we
design a system called DTMFTalk to support IoT remote control via conven-
tional circuit-switched DTMF signaling during a phone call conversation. DTMF
signaling is operated through telephony network, which offers some solutions to
existing IoT service problems, such as QoS, network security, power consump-
tion, charging mechanism, maintaining cost and so on. DTMFTalk can monitor
the Call State of the smart phone, capture DTMF keys from the in progress call,
and send the key values to the IoTtalk server for IoT controlling. Therefore, when
DTMFTalk executes in the phone call conversation, the user of the DTMFTalk
controller is able to remotely control the smart elderly-care devices by pressing
the specific DTMF keys according to the requests coming from the user of the
DTMFTalk requester. We perform the delay measurement, which shows that the
DTMFTalk controllers can efficiently operate DTMFTalk (within 3 s). Besides,
we also explore the background environment noise effect for DTMFTalk. In con-
clusion, DTMFTalk can constantly and accurately recognize the DTMF keys as
long as the user of the DTMFTalk controller holds the desired DTMF keys with
enough period.

DTMFTalk 27

Acknowledgment. The authors would like to thank Prof. Yi-Bing Lin, CS, NCTU,
Taiwan, for his invaluable discussions and suggestions. This work was supported in
part by the Ministry of Science and Technology (MOST), Taiwan, under Contracts
MOST-108-2221-E-007-034-, MOST-107-2221-E-007-117-MY3, and MOST-106-2923-
E-002-005-MY3, in part by the Ministry of Economic Affairs (MOEA), Taiwan, under
Contract MOEA-107-EC-17-A-02-S5-007, and in part by the Ministry of Education
Higher Education Sprout Project.

References

1. Bhavanam, S.N., Siddaiah, P., Reddy, P.R.: FPGA based efficient DTMF detection
using split goertzel algorithm with optimized resource sharing approach. In: 2014
Eleventh International Conference on Wireless and Optical Communications Net-
works (WOCN), pp. 1–8, September 2014. https://doi.org/10.1109/WOCN.2014.
6923072

2. Borelli, E., et al.: Habitat: an IoT solution for independent elderly. Sensors 19(5),
1258 (2019). https://doi.org/10.3390/s19051258

3. Ghasemi, F., Rezaee, A., Rahmani, A.M.: Structural and behavioral refer-
ence model for IoT-based elderly health-care systems in smart home. Int.
J. Commun. Syst. 32(12), e4002 (2019). https://doi.org/10.1002/dac.4002.
https://onlinelibrary.wiley.com/doi/abs/10.1002/dac.4002

4. Jasiun, P.: DTMF decoder (2011). https://github.com/pjasiun/dtmf-decoder
5. Johar, R.A., Fakieh, E., Allagani, R., Qaisar, S.M.: A smart home appliances con-

trol system based on digital electronics and GSM network. In: 2018 15th Learning
and Technology Conference (L&T), pp. 52–58, February 2018. https://doi.org/10.
1109/LT.2018.8368485

6. Lin, Y., Lin, R., Chen, Y., Twu, C., Yang, S.: Deploying the first PSTN-based IoT
mechanism. IEEE Wirel. Commun. 25(6), 4–7 (2018). https://doi.org/10.1109/
MWC.2018.8600748

7. Lin, Y.B., Sou, S.I.: Charging for Mobile All-IP Telecommunications. Wiley, Chich-
ester (2008)

8. Liu, Y., et al.: A novel cloud-based framework for the elderly healthcare services
using digital twin. IEEE Access 7, 49088–49101 (2019). https://doi.org/10.1109/
ACCESS.2019.2909828

9. Lu, Y., Lin, C.: The study of smart elderly care system. In: 2018 Eighth Interna-
tional Conference on Information Science and Technology (ICIST), pp. 483–486,
June 2018. https://doi.org/10.1109/ICIST.2018.8426110

10. Noman, A.T., Rashid, H., Chowdhury, M.A.M., Islam, M.S.: Design implementa-
tion of a microcontroller based low cost DTMF controlled acoustic visual detecting
robot to monitor child aged person. In: 2019 International Conference on Electri-
cal, Computer and Communication Engineering (ECCE), pp. 1–6, February 2019.
https://doi.org/10.1109/ECACE.2019.8679401

11. Sedgewick, R., Wayne, K.: Algorithms, 4th edn. Addison-Wesley Professional,
Reading (2011)

12. Sharma, N., Jain, R., Garg, M., Arya, S.: Mobivrs (2015). https://github.com/
SharmaNishant/MobIVRS

13. Sorensen, H., Heideman, M., Burrus, C.: On computing the split-radix FFT. IEEE
Trans. Acoust. Speech Signal Process. 34(1), 152–156 (1986). https://doi.org/10.
1109/TASSP.1986.1164804

https://doi.org/10.1109/WOCN.2014.6923072
https://doi.org/10.1109/WOCN.2014.6923072
https://doi.org/10.3390/s19051258
https://doi.org/10.1002/dac.4002
https://onlinelibrary.wiley.com/doi/abs/10.1002/dac.4002
https://github.com/pjasiun/dtmf-decoder
https://doi.org/10.1109/LT.2018.8368485
https://doi.org/10.1109/LT.2018.8368485
https://doi.org/10.1109/MWC.2018.8600748
https://doi.org/10.1109/MWC.2018.8600748
https://doi.org/10.1109/ACCESS.2019.2909828
https://doi.org/10.1109/ACCESS.2019.2909828
https://doi.org/10.1109/ICIST.2018.8426110
https://doi.org/10.1109/ECACE.2019.8679401
https://github.com/SharmaNishant/MobIVRS
https://github.com/SharmaNishant/MobIVRS
https://doi.org/10.1109/TASSP.1986.1164804
https://doi.org/10.1109/TASSP.1986.1164804

	DTMFTalk: A DTMF-Based Realization of IoT Remote Control for Smart Elderly Care
	1 Introduction
	2 The Software Architecture of DTMFTalk
	2.1 Overview of the DTMFTalk Software Architecture
	2.2 The Functionalities of the CDS
	2.3 The Functionalities of the DHA

	3 The Design and Implementation of the DTMF Key Extractor
	3.1 The Operation of the DTMF Key Extractor
	3.2 The Fast Fourier Transform for DTMF Signal Detection
	3.3 Real Testbed Deployment

	4 Conclusion
	References

